JPS6042439B2 - Vitrification method of radioactive waste solution - Google Patents

Vitrification method of radioactive waste solution

Info

Publication number
JPS6042439B2
JPS6042439B2 JP7078580A JP7078580A JPS6042439B2 JP S6042439 B2 JPS6042439 B2 JP S6042439B2 JP 7078580 A JP7078580 A JP 7078580A JP 7078580 A JP7078580 A JP 7078580A JP S6042439 B2 JPS6042439 B2 JP S6042439B2
Authority
JP
Japan
Prior art keywords
radioactive waste
waste solution
oxide
added
vitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7078580A
Other languages
Japanese (ja)
Other versions
JPS56168198A (en
Inventor
潔 川原
福彦 菅
慎一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP7078580A priority Critical patent/JPS6042439B2/en
Publication of JPS56168198A publication Critical patent/JPS56168198A/en
Publication of JPS6042439B2 publication Critical patent/JPS6042439B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【発明の詳細な説明】 本発明は放射性廃棄物溶液の処理法に関し、より具体的
にいえば、いわゆるガラス固化法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating radioactive waste solutions, and more particularly to an improvement in the so-called vitrification method.

使用済核燃料の再処理工程から発生する放射性廃棄物溶
液は、近年その発生量が増えるにつれて、その処理・処
分方法開発の要請がたかまつている。
As the amount of radioactive waste solution generated from the reprocessing process of spent nuclear fuel has increased in recent years, there has been an increasing demand for the development of methods for processing and disposing of it.

その一つとしてガラス固化法があり、通常は放射性廃棄
物溶液に固化剤として粉末状の無水けい酸無水ほう酸 酸化アルミニウム 酸化リチウム(水酸化リチウム) 酸化ナトリウム(水酸化ナトリウム、炭酸ナトリウム)
酸化マグネシウム酸化カリウム(水酸化カリウム) 酸化亜鉛 酸化カルシウム(水酸化カルシウム) などを所定量加えてスラリーとし、水分を蒸発留去した
後に残分である放射性物質を含む金属化合物成分とガラ
ス構成成分を1200〜1300℃まで加熱してガラス
化することによつて不溶性固体とする処理が行われてい
る。
One of these methods is the vitrification method, in which powdered silicic anhydride, boric anhydride, aluminum oxide, lithium oxide (lithium hydroxide), and sodium oxide (sodium hydroxide, sodium carbonate) are usually used as solidifying agents in the radioactive waste solution.
A predetermined amount of magnesium oxide, potassium oxide (potassium hydroxide), zinc oxide, calcium oxide (calcium hydroxide), etc. are added to make a slurry, and after the water is evaporated and distilled off, the remaining metal compound components containing radioactive substances and glass constituent components are mixed. It is heated to 1,200 to 1,300°C to vitrify it to form an insoluble solid.

また、放射性廃棄物溶液に硝酸イオンが含まれている場
合には、ギ酸などの硝酸分解剤を加えて、加熱・濃縮す
ることにより硝酸を分解し、さらに放射性廃棄物溶液中
の放射性元素を含む金属化合物成分を濃縮してから、上
”記の固化剤を添加し、加熱によるガラス化を行う方法
も採られている。しかし、放射性廃棄物溶液をガラス固
化する工程において調製されるスラリーは水に難溶性の
固化剤を含むために、添加成分が容易に沈降し、加熱処
理前またはその最中に沈澱を再分散させ、その沈降を防
止する手段を講じなければならなかつた。
In addition, if the radioactive waste solution contains nitrate ions, a nitric acid decomposer such as formic acid is added, and the nitric acid is decomposed by heating and concentrating. There is also a method of concentrating the metal compound components, adding the above-mentioned solidifying agent, and vitrifying by heating. However, the slurry prepared in the process of vitrifying the radioactive waste solution is water-based. Since the additive contains a hardening agent that is hardly soluble, the added components easily precipitate, and it is necessary to redisperse the precipitate before or during the heat treatment to prevent the precipitate from settling.

また、放射性廃棄物溶液に固化剤を添加したのちの加熱
の工程で、水分が少くなつてくると、固化剤が跳ねて、
装置器壁に付着する傾向があり、均一なガラス組成を得
て、放射性物質をガラス固化体中に完全に捕獲すること
に難点があつた。
In addition, during the heating process after adding a solidifying agent to the radioactive waste solution, when the water content decreases, the solidifying agent splashes and
They tend to adhere to the walls of the equipment, making it difficult to obtain a uniform glass composition and completely capture radioactive substances in the vitrified body.

本発明者らは、この添加無水けい酸として超微粒状シリ
カを使用することによつて添加固化成分が沈降を起こさ
ないスラリーを得ることができ、また加熱時にスラリー
が跳ね(飛散し)ないことを発見して本発明を完成した
。本発明によれば、放射性廃棄物溶液にガラス化固化剤
を添加し加熱して放射性物質をガラス状固体として固定
するいわゆるガラス固化法において、前記固化剤のけい
酸成分として加水分解可能な揮発性けい素化合物を酸水
素焔中で燃焼させて得られる超微粒シリカを使用するこ
とを特徴とする方法が提供される。
The present inventors have found that by using ultrafine silica as the added silicic anhydride, it is possible to obtain a slurry in which the added solidifying component does not cause sedimentation, and that the slurry does not splash (splatter) during heating. discovered this and completed the present invention. According to the present invention, in the so-called vitrification method in which a vitrification solidification agent is added to a radioactive waste solution and heated to fix the radioactive substance as a glassy solid, a hydrolyzable volatile silicic acid component of the solidification agent is used. There is provided a method characterized in that ultrafine silica obtained by burning a silicon compound in an oxyhydrogen flame is used.

本発明に従つて、前記の超微粒状シリカを使用したガラ
ス化成分を加えて調製したスラリーは、濃稠であるがチ
キソトロピー性(揺変性)を有し、攪拌すれば粘性は弱
まり流動化し、容易にポンプ輸送することができる一方
、静置すればゲル状となつて、難容性成分の沈降も起さ
ず、殆んど半永久的に組成均一の寒天状を保つ。
According to the present invention, the slurry prepared by adding the vitrification component using the ultrafine silica is thick but has thixotropy (thixotropy), and when stirred, the viscosity weakens and becomes fluid. While it can be easily transported by pump, it becomes gel-like when left to stand, does not cause sedimentation of difficult-to-tolerate components, and maintains an agar-like state with a uniform composition almost semi-permanently.

特に高放射能レベルの廃棄物は、操作時の作業員の安全
性の確保などのために装置の形状等に各種の制約を受け
るが、本発明に従つて調整されたスラリーは、放射性物
質の濃度に無関係に粘稠なスラリーが得られ、沈降の防
止ないし再分散のための攪拌操作を必要とせず、単なる
流体の輸送、貯蔵の概念で取り扱えるので、遮へいの内
部で遠隔操作によつて処理しなければならない放射性廃
棄物の処理には特に有利である。
In particular, waste with a high radioactivity level is subject to various restrictions on the shape of the equipment in order to ensure the safety of workers during operation, but the slurry prepared according to the present invention can be A viscous slurry can be obtained regardless of the concentration, and there is no need for stirring operations to prevent sedimentation or redispersion, and it can be handled simply by transporting and storing fluids, so it can be processed by remote control inside the shield. This is particularly advantageous for the disposal of radioactive waste that must be disposed of.

また、超微粒状シリカを用いると、放射性廃棄物溶液の
加熱による水分留去の末期に添加成分ないし、放射性同
位元素を含む金属成分の濃厚スラリーが跳ねにくくなる
ことは放射性廃棄物溶液中に添加された超微粒状シリカ
が蒸発乾固の過程で次第にゲル化して、乾固時には、シ
リカの網目構造中に金属成分が補促されてしまうためと
推察される。
In addition, when ultrafine silica is used, it is difficult for the concentrated slurry of added components or metal components containing radioactive isotopes to splash during the final stage of water distillation due to heating of the radioactive waste solution. This is presumed to be because the ultrafine silica particles gradually gel during the process of evaporation to dryness, and during drying, metal components are trapped in the network structure of the silica.

本発明において使用される無水けい酸は特公昭36−3
359,特公昭47−46274などに記されるように
必要に応じ、可燃性ガスを添加した混合ガスと加水分解
可能な発揮性のけい素化合物を激しく混合して均質にし
、引き続き一諸に一つの焔の中で燃焼させることによつ
て得られる。
The silicic anhydride used in the present invention is
359, Japanese Patent Publication No. 47-46274, etc., if necessary, a mixed gas to which a flammable gas has been added and a hydrolyzable active silicon compound are vigorously mixed to make them homogeneous, and then they are uniformly mixed together. Obtained by burning in a single flame.

因に、上記特公昭36−33関号には1水を形成しなが
ら燃焼するガスを加水分解すべき揮発性化合物と均質に
混合し、原料混合物中の酸素を水の形成に関して、水素
又は水素を出すガスに対して少なくとも化学量論的割合
に保ち且つすべての成分の激しい均質な混合が得られる
ようにし、引き続き一諸に一つの焔の中で反応させるこ
とを特徴とする細分された酸化物の製法ョが開示されて
おり、本発明の超微粒状シリカはこのように加水分解可
能な揮発性けい素化合物を酸水素焔中で燃焼させ得られ
るものである。
Incidentally, in the above-mentioned Japanese Patent Publication Publication No. 36-33, 1, the combustion gas is homogeneously mixed with the volatile compound to be hydrolyzed while forming water, and the oxygen in the raw material mixture is converted into hydrogen or hydrogen with respect to the formation of water. subdivided oxidation, characterized in that it is maintained in at least stoichiometric proportions with respect to the gases emitted and that an intense homogeneous mixing of all components is obtained, followed by reaction all at once in one flame. The method of manufacturing the product is disclosed, and the ultrafine silica of the present invention is obtained by burning a hydrolyzable volatile silicon compound in an oxyhydrogen flame.

なお、固化用添加成分の組成および、脱硝、水分留去,
ガラス化の温度プロフィルは、無水けい酸に超微粒状シ
リカを用いることにより、何ら変更する必要はなく、所
望のガラス性状を考慮して当業者が適宣に定め得るとこ
ろであり、一例としての添加成分の組成は、放射性廃棄
物水溶液中の放射性物質を含む金属化合物の重量100
部に対して超微粒状シリカ 150〜220 無水ほう酸 30〜65 酸化アルミニウム 10〜25 酸化リチウム 3〜14 酸化ナトリウム 30〜60 酸化マグネシウム O〜10 酸化カリウム O〜10 酸化亜鉛 0〜10 酸化カリシウム O〜10 が適当であり、溶液中に上記成分が含まれている場合に
は固化体に組成が上記範囲になるように添加量を調整す
る。
In addition, the composition of the additive components for solidification, denitrification, water distillation,
The temperature profile of vitrification does not need to be changed at all by using ultrafine silica for silicic anhydride, and can be appropriately determined by a person skilled in the art taking into consideration the desired glass properties. The composition of the components is based on the weight of the metal compound containing the radioactive material in the radioactive waste aqueous solution.
Ultrafine silica 150-220 Anhydrous boric acid 30-65 Aluminum oxide 10-25 Lithium oxide 3-14 Sodium oxide 30-60 Magnesium oxide O-10 Potassium oxide O-10 Zinc oxide 0-10 Calcium oxide O- 10 is appropriate, and when the above components are contained in the solution, the amount added is adjusted so that the composition of the solidified product falls within the above range.

例えば、放射性廃棄物溶液には、ナトリウム分を含んで
いるので、ガラス固化体を形成するために添加する酸化
ナトリウムは1〜1睡量部程度で好適となることが多い
。次に模擬放射性廃棄物溶液を使用した実施例に゜つい
て本発明を例示する。
For example, since the radioactive waste solution contains sodium, the amount of sodium oxide added to form the vitrified material is often preferably about 1 to 1 part by weight. The invention will now be illustrated with reference to an example using a simulated radioactive waste solution.

実施例1 コバルトイオン200g/′ナトリウムイオン78.0
g/eの割合で含有する硝酸酸性硝酸ナトリウム水溶液
を放射性廃棄物溶液の模擬溶液とし、この溶液200r
T1′に、前記の超微粒状シリカ66.6g1硼酸(H
3BO3)38.0g1酸化アルミニウム(Ae2O3
)5.18g1水酸化リチウムー水和物(LfOH−H
2O)12.9、水酸化ナトリウム(NaOH)1.9
1g、炭酸カリウム(K2CO3)4.57g酸・化亜
鉛(ZnO)、3.12g1水酸化カルシウム(Ca(
0H)2)4.12gを添加し、よく攪拌混合した、こ
の液のPHは4.5であつた。
Example 1 Cobalt ion 200g/'sodium ion 78.0
A nitric acid acidic sodium nitrate aqueous solution containing the ratio of g/e was used as a simulated solution of radioactive waste solution, and 200 r
To T1', 66.6 g of the ultrafine silica described above, 1 boric acid (H
3BO3) 38.0g1 Aluminum oxide (Ae2O3
) 5.18g Lithium hydroxide hydrate (LfOH-H
2O) 12.9, sodium hydroxide (NaOH) 1.9
1g, potassium carbonate (K2CO3) 4.57gzinc acid (ZnO), 3.12g1 calcium hydroxide (Ca(
0H)2) 4.12g was added and mixed well, and the pH of this liquid was 4.5.

この混合物はコロイド状で、静置状態ては全く上澄を生
ずることなくゲル化し、1ケ月間放置しても同じ状態を
保つた(上澄を生じなかつた)が、攪拌すれば容易に流
動化し、ろう斗を使用して移すことができた。
This mixture was colloidal and gelled without producing any supernatant when left to stand, and remained the same even after being left for one month (no supernatant was produced), but it easily flowed when stirred. and could be transferred using a funnel.

この混合物をルツボに入れて静置したのち電気炉内で除
々に加熱したが飛散することなく、650゜Cに3紛間
保持し、さらに昇温し1200℃で1時間溶融したのち
除冷し、取り出したところ185gのガラス固化体が得
られた。
This mixture was placed in a crucible and left to stand still, and then heated gradually in an electric furnace without scattering.The mixture was kept at 650°C for 3 minutes, then heated further and melted at 1200°C for 1 hour, then slowly cooled. When taken out, 185 g of vitrified material was obtained.

実施例2 ウラニルイオン20g/′(ウラン換算)ナトリウムイ
オン6.8g/eの割合で含有する硝酸酸性硝酸ナトリ
ウム水溶液を放射性廃棄物の模擬溶液とし、この溶液1
1にギ酸を添加して硝酸を分解させてから200n1e
に加熱濃縮したのち超微粒状シリカ40.3g1無水硼
酸7.26g1酸化アルミニウム3.78g1酸化リチ
ウム1。
Example 2 A nitric acid acidic sodium nitrate aqueous solution containing uranyl ions at a rate of 20 g/' (uranium equivalent) and 6.8 g/e of sodium ions was used as a simulated solution of radioactive waste, and this solution 1
Add formic acid to 1 to decompose nitric acid, then 200n1e
After heating and condensing, 40.3 g of ultrafine silica, 7.26 g of boric anhydride, 3.78 g of aluminum oxide, and 1 lithium oxide were obtained.

48g1酸化ナトリウム0.222g、酸化マグネシウ
ム1.70gを添加しよく攪拌混合した。
48 g, 0.222 g of sodium oxide, and 1.70 g of magnesium oxide were added and mixed with thorough stirring.

この混合物も実施例1に記したのと同様の性質を示し、
そのPHは9.5であつた。
This mixture also exhibited similar properties as described in Example 1,
Its pH was 9.5.

これをルツボに入れ、電気炉内で除々に加熱して130
0℃で1時間溶融したのち除冷し、取り出したところ、
92gのガラス固化体が得られた。以上の実施例は現在
行なわれているピユレツクス法などの産物である硝酸酸
性放射性廃棄物の再処理を対象として硝酸塩溶液につい
て例示したが、本発明の原理は溶液の液性に関係なく適
用できることが理解されるであろう。
Put this in a crucible and gradually heat it in an electric furnace to 130℃.
After melting at 0℃ for 1 hour, it was slowly cooled and taken out.
92 g of vitrified material was obtained. Although the above embodiments have been exemplified using nitrate solutions for the reprocessing of nitric acid-based radioactive waste, which is a product of the currently practiced Piurex method, the principles of the present invention can be applied regardless of the liquid nature of the solution. It will be understood.

Claims (1)

【特許請求の範囲】[Claims] 1 放射性廃棄物溶液にガラス化固化剤を添加し加熱し
て放射性物質をガラス状固体として固定するいわゆるガ
ラス固化法において、前記固化剤のけい酸成分として加
水分解可能な揮発性けい素化合物を酸水素焔中で燃焼さ
せて得られる超微粒状シリカを使用することを特徴とす
る方法。
1 In the so-called vitrification method, in which a vitrification solidification agent is added to a radioactive waste solution and heated to fix the radioactive substance as a glassy solid, a hydrolyzable volatile silicon compound is used as the silicic acid component of the solidification agent. A method characterized by using ultrafine silica obtained by combustion in a hydrogen flame.
JP7078580A 1980-05-29 1980-05-29 Vitrification method of radioactive waste solution Expired JPS6042439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7078580A JPS6042439B2 (en) 1980-05-29 1980-05-29 Vitrification method of radioactive waste solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7078580A JPS6042439B2 (en) 1980-05-29 1980-05-29 Vitrification method of radioactive waste solution

Publications (2)

Publication Number Publication Date
JPS56168198A JPS56168198A (en) 1981-12-24
JPS6042439B2 true JPS6042439B2 (en) 1985-09-21

Family

ID=13441520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7078580A Expired JPS6042439B2 (en) 1980-05-29 1980-05-29 Vitrification method of radioactive waste solution

Country Status (1)

Country Link
JP (1) JPS6042439B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036999A (en) * 1983-08-09 1985-02-26 株式会社荏原製作所 Volume-reduction solidified body of radioactive sodium borate waste liquor, volume-reduction solidifying method anddevice thereof
DE3510173C2 (en) * 1984-08-16 1994-02-24 Bosch Gmbh Robert Monitoring device for an electronically controlled throttle valve in a motor vehicle

Also Published As

Publication number Publication date
JPS56168198A (en) 1981-12-24

Similar Documents

Publication Publication Date Title
JPS6046394B2 (en) Method for solidifying high-level radioactive waste liquid using glass
US5662579A (en) Vitrification of organics-containing wastes
CA1171266A (en) Nuclear waste encapsulation in borosilicate glass by chemical polymerization
JP2016127924A (en) Treatment of liquid waste containing heavy metal
US4797232A (en) Process for the preparation of a borosilicate glass containing nuclear waste
SU1087091A3 (en) Composition for solidifying radioactive wastes and method for solidifying radioactive wastes
Metcalfe et al. Candidate wasteforms for the immobilization of chloride-containing radioactive waste
US4094809A (en) Process for solidifying high-level nuclear waste
Spedding et al. Production of pure rare earth metals
JPS6042439B2 (en) Vitrification method of radioactive waste solution
JPH0252839B2 (en)
US3114716A (en) Method of preparing radioactive cesium sources
CN114105472B (en) Iron-containing high-phosphate glass, preparation method and application thereof
JP3864203B2 (en) Solidification method for radioactive waste
JP4129237B2 (en) Glass for solidifying radioactive waste
US3272756A (en) Radioactive waste disposal using colemanite
JP4089269B2 (en) Method and apparatus for solidifying radioactive liquid waste
CN111933326A (en) Method for treating radioactive tritium-containing wastewater
Rudolph et al. Lab-scale R+ D work on fission product solidification by vitrification and thermite processes
Dong et al. Dechlorination and vitrification of electrochemical processing salt waste
JPS60159699A (en) Method of solidifying nuclear waste
CN109721242B (en) Low-melting-point glass for curing volatile nuclide Tc/Re and preparation and use methods thereof
JP2001027694A (en) Solidified body of radioactive condensed waste substance and manufacture of the same
EP1412950B1 (en) Encapsulation of waste
JPS63241400A (en) Solidifying processing method of radioactive waste