JPS6042169B2 - Arsenic recovery method - Google Patents

Arsenic recovery method

Info

Publication number
JPS6042169B2
JPS6042169B2 JP15157479A JP15157479A JPS6042169B2 JP S6042169 B2 JPS6042169 B2 JP S6042169B2 JP 15157479 A JP15157479 A JP 15157479A JP 15157479 A JP15157479 A JP 15157479A JP S6042169 B2 JPS6042169 B2 JP S6042169B2
Authority
JP
Japan
Prior art keywords
arsenic
extraction
extractant
solution
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15157479A
Other languages
Japanese (ja)
Other versions
JPS5673630A (en
Inventor
巌 京野
▲あきら▼ 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP15157479A priority Critical patent/JPS6042169B2/en
Publication of JPS5673630A publication Critical patent/JPS5673630A/en
Publication of JPS6042169B2 publication Critical patent/JPS6042169B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は、砒素を含有する溶液から砒素を回収する方法
に関するものであり、特には非鉄金属製錬における硫酸
製造工程で産出する希薄硫酸のような砒素含有溶液から
溶媒抽出法により砒素を選択的に回収する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering arsenic from arsenic-containing solutions, and particularly relates to a method for recovering arsenic from arsenic-containing solutions such as dilute sulfuric acid produced in the sulfuric acid production process in non-ferrous metal smelting. This invention relates to a method for selectively recovering arsenic using an extraction method.

非鉄金属製錬における電解後液あるいは硫酸製造工程か
らの希薄硫酸等にはかなりな量の砒素が含まれており、
近時、公害対策上または副産物としての砒素回収目的の
ために、これら砒素含有溶液から砒素を回収する試みが
為されている。
The solution after electrolysis in nonferrous metal smelting or dilute sulfuric acid from the sulfuric acid manufacturing process contains a considerable amount of arsenic.
Recently, attempts have been made to recover arsenic from these arsenic-containing solutions for the purpose of preventing pollution or recovering arsenic as a by-product.

従来からの砒素回収法としては、硫化法により砒素を硫
化砒素とした後それに濾別分離して回収し、水分を約7
0%含む脱水ケーキとし、その後更に脱水および塊状化
処理を施すことによつて得られた塊体をピット内に貯蔵
することが行われていた。この方法は簡便であるとは云
え、大きな貯蔵スペースを必要とする。最近、上記硫化
法により得られた硫化砒素を亜砒酸として回収する方法
が提案されている。この方法は、硫化法により生成され
た硫化砒素を酸化浸出し、浸出液を還元後、濃縮および
高山を行うものであるが、工程が長く複雑であり、面倒
な操作を必要とする。上述した従来法とは違つて、砒素
含有溶液から砒素を直接回収しうるなら、それに勝るも
のはない。
The conventional arsenic recovery method involves converting arsenic into arsenic sulfide using a sulfurization method, and then separating and recovering it by filtration, and removing water by approximately 7.
A dehydrated cake containing 0% was prepared, and then the resulting cake was further dehydrated and agglomerated, and the resulting cake was stored in a pit. Although this method is simple, it requires a large amount of storage space. Recently, a method has been proposed for recovering arsenic sulfide obtained by the above-mentioned sulfurization method as arsenous acid. In this method, arsenic sulfide produced by the sulfurization method is oxidized and leached out, and the leachate is reduced, then concentrated and concentrated, but the process is long and complicated, and requires troublesome operations. Unlike the conventional methods mentioned above, there is no substitute for recovering arsenic directly from an arsenic-containing solution.

これを可能ならしめるものとして溶媒抽出法と呼ばれる
方法がある。溶媒抽出法は、特定の物質を選択的に抽出
しうる抽出剤を含む有機溶媒を使用して、その物質を含
む水溶液からそれを分離するものである。従つて、砒素
含有水溶液からの砒素の回収に溶媒抽出法を利用するに
は、水溶液から砒素イオンを選択的にしかも効率的に抽
出しうる性能を具備する抽出剤を開発することが必要で
ある。この場合、抽出剤は、砒素含有水溶液と混らない
ことが必要であり、また抽出剤はその粘・性を低下せし
め、分散性を良くしそして接触効率を大きくするために
希釈剤て薄めて使用するのが一般的であるから、希釈剤
によく溶けることも必要である。加えて、抽出操作後逆
抽出が行われるので、逆抽出操作を容易に行わしめるこ
とも必要・である。こうした様々の考慮事項の下で、本
発明者は、砒素含有水溶液から溶媒抽出による砒素抽出
のための抽出剤について多くの試行を重ねた結果、ジア
ルキルジチオ燐酸エステル(アルキル基炭素数8〜10
)が上記抽出剤として好適に使用しうることを見出した
There is a method called solvent extraction method that makes this possible. Solvent extraction uses an organic solvent containing an extractant capable of selectively extracting a particular substance to separate it from an aqueous solution containing the substance. Therefore, in order to use the solvent extraction method to recover arsenic from arsenic-containing aqueous solutions, it is necessary to develop an extractant that has the ability to selectively and efficiently extract arsenic ions from aqueous solutions. . In this case, the extractant needs to be immiscible with the arsenic-containing aqueous solution, and the extractant must be diluted with a diluent to reduce its viscosity, improve dispersibility, and increase contact efficiency. Since it is commonly used, it is also necessary that it dissolves well in the diluent. In addition, since back-extraction is performed after the extraction operation, it is also necessary to easily perform the back-extraction operation. Under these various considerations, the present inventor conducted many trials on extractants for extracting arsenic from arsenic-containing aqueous solutions by solvent extraction, and as a result, the inventors discovered dialkyldithiophosphate (alkyl group having 8 to 10 carbon atoms).
) was found to be suitable for use as the above-mentioned extractant.

この抽出剤は砒素に対する選択性にきわめて秀れ、条件
を適正に選定することにより99%以上の砒素を抽出し
うると共に、アルカリ溶液によつて逆抽出操作も比較的
楽に行いうる。本発明において抽出剤として使用される
炭素数8〜10のアルキル基を持つジアルキルジチオ燐
酸エステルは下記の構造式を有する:(但しRは、8〜
10の炭素数を持つアルキル基であり、同一であつても
異つてもよい。
This extractant has extremely high selectivity for arsenic, and by appropriately selecting conditions, it is possible to extract more than 99% of arsenic, and back-extraction operations can be performed relatively easily using an alkaline solution. The dialkyldithiophosphate ester having an alkyl group having 8 to 10 carbon atoms used as an extractant in the present invention has the following structural formula: (wherein R is 8 to 10)
They are alkyl groups having 10 carbon atoms, and may be the same or different.

)斯くして、本発明は、砒素を含有する溶液を、炭素数
8〜10のアルキル基を有するジアルキルジチオ燐酸エ
ステルを抽出剤として含む有機溶媒と接触することから
なる砒素の回収方法を提供する。
) Thus, the present invention provides a method for recovering arsenic, which comprises contacting a solution containing arsenic with an organic solvent containing as an extractant a dialkyldithiophosphate having an alkyl group having 8 to 10 carbon atoms. .

更に、本発明は、砒素を含有する溶液を、炭素数8〜1
0のアルキル基を有するジアルキルジチオ燐酸エステル
を抽出剤として含む有機溶媒と接触し、有機溶媒中に砒
素を移行させた後砒素を含有する抽出後溶媒をアルカリ
溶液て逆抽出することからなる砒素の回収方法を提供す
る。
Furthermore, the present invention provides a solution containing arsenic with a carbon number of 8 to 1.
Arsenic removal consists of contacting with an organic solvent containing a dialkyldithiophosphate having 0 alkyl groups as an extractant, transferring arsenic into the organic solvent, and then back-extracting the arsenic-containing extraction solvent with an alkaline solution. Provide collection methods.

本発明における溶媒抽出操作は上記抽出剤を希釈剤に溶
かしてなる有機溶媒と砒素含有溶液とを接触することに
よつて実施される。
The solvent extraction operation in the present invention is carried out by bringing an arsenic-containing solution into contact with an organic solvent prepared by dissolving the above extractant in a diluent.

希釈剤としては、鉱油、鉱油+アルコールあるいはトル
エン等が好適に使用される。砒素含有溶液は酸性溶液が
好ましい。例えば硫酸溶液であればPH4以下の硫酸酸
性溶液としておくことが好ましい。接触操作は、周知の
ミキサーセトラー設備、抽出塔、遠心抽出機等を使用し
てバッチ式でも連続式でも行いうる。混合温度は使用さ
れる希釈剤に依存して10〜80℃、好ましくは20〜
60′Cに選定される。有機相(有機溶媒)対水相(被
処理液)の接触時の容積比(以下0/A比と称する)は
1/15〜5/1程度、好ましくは1/2〜2/1であ
り、使用する設備および操業条件に応じて適宜選択され
うる。接触時間は、接触効率に依存するが、2〜30分
、通常5〜1紛程度で充分であるから、砒素抽出後の有
機溶媒は、被処理液から分離後、逆抽出操作を受ける。
逆抽出剤としては、炭酸ナトリウム、炭酸アンモニウム
のようなアルカリ溶液が使用される。逆抽出条件として
は、温度は10〜80℃、好ましくは20〜60℃とさ
れ、0/A比は1/5〜10/1、好ましくは2/1〜
5/1とされそして接触時間は2〜3紛、好ましくは5
〜1紛とされる。逆抽出後の有機溶媒は循環再使用され
る。実施例1 9.98yIeのAs(■)を含有する水溶液50m1
を、1へ5へ10へ300および600yIeの硫酸濃
度に調整後、抽出剤としてジ2ーエチルヘキシルジチオ
燐酸を希釈剤としてのデスパーゾル(シェル化学の商品
名)で20%に希釈した有機溶媒によつて抽出試験した
As the diluent, mineral oil, mineral oil+alcohol, toluene, etc. are preferably used. The arsenic-containing solution is preferably an acidic solution. For example, in the case of a sulfuric acid solution, it is preferable to use a sulfuric acid acidic solution with a pH of 4 or less. The contacting operation can be carried out either batchwise or continuously using well-known mixer-settler equipment, extraction towers, centrifugal extractors, and the like. The mixing temperature is 10-80°C, preferably 20-80°C depending on the diluent used.
60'C. The volume ratio of the organic phase (organic solvent) to the aqueous phase (liquid to be treated) during contact (hereinafter referred to as 0/A ratio) is about 1/15 to 5/1, preferably 1/2 to 2/1. can be selected as appropriate depending on the equipment used and operating conditions. The contact time depends on the contact efficiency, but 2 to 30 minutes, and usually about 5 to 1 powder is sufficient, so the organic solvent after arsenic extraction is separated from the liquid to be treated and then subjected to a back extraction operation.
As a back-extracting agent, an alkaline solution such as sodium carbonate or ammonium carbonate is used. As for the back extraction conditions, the temperature is 10 to 80°C, preferably 20 to 60°C, and the 0/A ratio is 1/5 to 10/1, preferably 2/1 to
5/1 and the contact time is 2-3 times, preferably 5 times.
It is said to be a mistake. The organic solvent after back extraction is recycled and reused. Example 1 50 ml of aqueous solution containing 9.98yIe of As(■)
After adjusting the sulfuric acid concentration to 1 to 5 to 10 to 300 and 600yIe, diluted with an organic solvent in which di-2-ethylhexyldithiophosphoric acid as an extractant was diluted to 20% with Despersol (trade name of Shell Chemical) as a diluent. An extraction test was conducted.

抽出条件は次の通りとした:温度50℃、時間10分、
攪拌羽根回転数750r″PmlO/A=50m1/5
0m10得られた砒素抽出率を下表゛に示す。表かられ
かるように、本発明は99%以上のきわめて高い砒素抽
出率を実現する。実施例2 抽出剤としてジ3・5・5−トリメチルヘキシルチオ燐
酸エステルおよびジイソデシルジチオ燐酸エステルを使
用して実施例1と同じ条件て抽出試験を行つた。
The extraction conditions were as follows: temperature 50°C, time 10 minutes,
Stirring blade rotation speed 750r″PmlO/A=50m1/5
The arsenic extraction rate obtained is shown in the table below. As can be seen from the table, the present invention achieves an extremely high arsenic extraction rate of 99% or more. Example 2 An extraction test was conducted under the same conditions as in Example 1 using di3,5,5-trimethylhexylthiophosphate and diisodecyl dithiophosphate as extractants.

硫酸濃度は100qIeとした。いずれも、99%以上
の高い抽出率を示した。実施例3 9.98y1e(7)AS(■)と10yIeの硫酸を
含む砒素含有溶液100m1を実施例1と同様にして抽
出“することにより11.32ダI′のAs(■)を含
む抽出後溶媒を得た。
The sulfuric acid concentration was 100 qIe. All showed a high extraction rate of 99% or more. Example 3 100ml of an arsenic-containing solution containing 9.98y1e(7)AS(■) and 10yIe of sulfuric acid was extracted in the same manner as in Example 1 to obtain an extraction containing 11.32 daI' of As(■). A post-solvent was obtained.

但しO/A比は50mt/100mtとした。この抽出
後溶媒50m1を0.5モル炭酸ナトリウム溶液および
0.5モル炭酸アンモニウム溶液各々100mtで逆抽
出した。逆抽出条件は、温度50℃、接触時間1紛とし
た。以下の通りの逆抽出率が得られた。以上説明した通
り、本発明は砒素含有溶液から砒素を容易に分離でき、
回収液から高純度の砒素化合物を回収することが可能で
あり、従来法に較べてきわめて効果的に且つ簡便に砒素
の回収を行いうるので工業的意義はきわめて大きい。
However, the O/A ratio was 50 mt/100 mt. After this extraction, 50 ml of solvent was back-extracted with 100 ml each of 0.5 molar sodium carbonate solution and 0.5 molar ammonium carbonate solution. The back extraction conditions were a temperature of 50°C and a contact time of 1 extraction. The following back extraction rates were obtained. As explained above, the present invention can easily separate arsenic from an arsenic-containing solution,
It is possible to recover highly pure arsenic compounds from the recovered liquid, and the arsenic can be recovered more effectively and easily than conventional methods, so it has great industrial significance.

Claims (1)

【特許請求の範囲】 1 砒素を含有する溶液を、炭素数8〜10のアルキル
基を有するジアルキルジチオ燐酸エステルを抽出剤とし
て含む有機溶媒と接触することからなる砒素の回収方法
。 2 砒素を含有する溶液を、炭素数8〜10のアルキル
基を有するジアルキルジチオ燐酸エステルを抽出剤とし
て含む有機溶媒と接触し、そして砒素を含有する抽出後
溶媒をアルカリ溶液で逆抽出することからなる砒素の回
収方法。
[Scope of Claims] 1. A method for recovering arsenic, which comprises contacting a solution containing arsenic with an organic solvent containing a dialkyldithiophosphate having an alkyl group having 8 to 10 carbon atoms as an extractant. 2. Contacting a solution containing arsenic with an organic solvent containing a dialkyldithiophosphate having an alkyl group having 8 to 10 carbon atoms as an extractant, and back-extracting the arsenic-containing post-extraction solvent with an alkaline solution. How to recover arsenic.
JP15157479A 1979-11-22 1979-11-22 Arsenic recovery method Expired JPS6042169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15157479A JPS6042169B2 (en) 1979-11-22 1979-11-22 Arsenic recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15157479A JPS6042169B2 (en) 1979-11-22 1979-11-22 Arsenic recovery method

Publications (2)

Publication Number Publication Date
JPS5673630A JPS5673630A (en) 1981-06-18
JPS6042169B2 true JPS6042169B2 (en) 1985-09-20

Family

ID=15521488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15157479A Expired JPS6042169B2 (en) 1979-11-22 1979-11-22 Arsenic recovery method

Country Status (1)

Country Link
JP (1) JPS6042169B2 (en)

Also Published As

Publication number Publication date
JPS5673630A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
US4193968A (en) Process for recovering gallium
US7597863B2 (en) Extractant for palladium and method for separation and recovery of palladium
CN103160689B (en) Method of iron extraction and removal with solvent extraction agent
US3751553A (en) Process for separating yttrium values from the lanthanides
US3923615A (en) Winning of metal values from ore utilizing recycled acid leaching agent
US3973949A (en) Zinc recovery by chlorination leach
JPH0776391B2 (en) Zinc recovery method
JPS5817815B2 (en) How to recover copper from copper-containing materials
JPH0323229A (en) Recovery of metal by using monothiophosphinic acid
KR900003065A (en) Method of producing titanium oxide
JPH0445570B2 (en)
JPS6042169B2 (en) Arsenic recovery method
JPH0448733B2 (en)
JPS61170528A (en) Method for recovering cobalt
JPS6042170B2 (en) Arsenic separation and recovery method
JPH1150167A (en) Production of high purity cobalt solution
JPS5924169B2 (en) Selective separation method for indium
JPS6112010B2 (en)
JPS6058173B2 (en) Arsenic separation and recovery method
JP2636940B2 (en) Extraction method of iron ion from aqueous solution and method of back extraction of iron ion from extraction solvent
JPH0448038A (en) Method for separating indium and method for separating indium and gallium
JPS6220134B2 (en)
JPS6115936B2 (en)
JPH03173723A (en) Recovery of gallium from gallium containing basic solution
JPS6139386B2 (en)