JPS6041644B2 - Aromatic hydrocarbon purification method - Google Patents

Aromatic hydrocarbon purification method

Info

Publication number
JPS6041644B2
JPS6041644B2 JP12696780A JP12696780A JPS6041644B2 JP S6041644 B2 JPS6041644 B2 JP S6041644B2 JP 12696780 A JP12696780 A JP 12696780A JP 12696780 A JP12696780 A JP 12696780A JP S6041644 B2 JPS6041644 B2 JP S6041644B2
Authority
JP
Japan
Prior art keywords
hydrogenation
hydrogen
temperature
primary
hydrogen sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12696780A
Other languages
Japanese (ja)
Other versions
JPS5750930A (en
Inventor
九十九 堀米
豊紀 藤田
豊喜 富永
英之 松本
富士雄 土屋
憲二 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP12696780A priority Critical patent/JPS6041644B2/en
Publication of JPS5750930A publication Critical patent/JPS5750930A/en
Publication of JPS6041644B2 publication Critical patent/JPS6041644B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は、芳香族炭化水素とくにC6〜C。[Detailed description of the invention] The present invention is directed to aromatic hydrocarbons, particularly C6-C.

成分を多量に含有する原料油から、不純物を除去してこ
れらの成分を取得する、精製法の改良に関する。によれ
ば、製品収率のよび原単位の向上とならんで、消費エネ
ルギーの低減が実現する。 ベンゼン、トルエン、キシ
レンなど(以下、一括して「BTX」とよぶ)のC0〜
C8芳香族炭化水素は、たとえばナフサの熱分解に際し
て副生する分解ガソリン中に多量に含有されている。こ
の種の原料油には、不純物として、有機イオウ化合物と
ともに、重合性のジオレフィンやスチレン類が含まれて
いる。これらの不純物を除去して精製BTXを取得する
には、従来、まずパラジウムのような低温で活性を示す
触媒を用いて、比較的低温でジオレフインなどの重合を
避けつつこれらの炭化水素添加を行なつてσ一次水添ョ
とよぶ)重合し難いものに変え、周期表第VIB族元素
(Cr,MO,W)および鉄族元素(Fe,CO,Ni
)からなる群から選んだ少なくとも一種の、比較的高温
で有効な触媒を用いて、高められた温度でさらに接触水
素添加をしてσ二次水添ョとよぶ)有機イオウ化合物を
硫化水素に変え、また有機窒素化合物があれば同時にア
ンモニアに変え、除去するという二段階の精製法が採用
されている。
The present invention relates to an improvement in a refining method for obtaining components by removing impurities from raw oil containing a large amount of these components. According to , in addition to improving product yield and unit consumption, it also reduces energy consumption. C0~ of benzene, toluene, xylene, etc. (hereinafter collectively referred to as "BTX")
C8 aromatic hydrocarbons are contained in large amounts in cracked gasoline, which is produced as a by-product during the thermal decomposition of naphtha, for example. This type of raw material oil contains polymerizable diolefins and styrenes as well as organic sulfur compounds as impurities. In order to remove these impurities and obtain purified BTX, conventionally, these hydrocarbons have first been added at relatively low temperatures using a catalyst that is active at low temperatures, such as palladium, while avoiding the polymerization of diolefins. Group VIB elements of the periodic table (Cr, MO, W) and iron group elements (Fe, CO, Ni
) The organic sulfur compound is further catalytically hydrogenated at elevated temperature using at least one catalyst selected from the group consisting of A two-step purification method is adopted in which organic nitrogen compounds, if present, are simultaneously converted to ammonia and removed.

二次水添ののち反応生成物とともに流出する硫化水素や
アンモニアを含む未反応の水素は、水洗により少なくと
もアンモニアを分離除去したのち、再度二次水添工程へ
戻して利用する。上述のプロセスの実施に当つては、不
純物を完全に除去することだけでなく、芳香族炭化水素
の核への水素添加(以下、1核水添ョと略す)によるロ
スを最少限に止めるべきことが要求される。
Unreacted hydrogen containing hydrogen sulfide and ammonia that flows out together with the reaction product after the secondary hydrogenation is washed with water to separate and remove at least ammonia, and then returned to the secondary hydrogenation step for use. When carrying out the above process, it is necessary not only to completely remove impurities, but also to minimize the loss caused by hydrogenation to the nucleus of aromatic hydrocarbons (hereinafter abbreviated as 1-nuclear hydrogenation). This is required.

従来は、高度の精製と高収率とは両立し難いものとされ
、たとえは100ppmほどの有機イオウ化合物を含有
する原料を処理して残留イオウ分を1ppm以下にする
精製を行なうときは、BTXが核水添されたシクロヘキ
サンまたはその誘導体に転化することによるロスは、3
〜5%に達することも止むを得ないとして許容されてた
。しかし、近年の石油価格の高騰と需給関係の緊迫化と
は、こうしたロスを最少限に止めるこを要求する。最近
の研究により、二次水添に際しての核水添は、触媒に特
定の予備処理を施し、かつ反応条件を適切にえらぶこと
によつて著しく低減できるようになり、BTX収率を9
9%以上にすることが容易になつた。無用の核水添が避
けられるとは、原料としての水素の必要量もその分だけ
節約できることにもなり、原単位の点から好ましい。と
ころで、前記の触媒を用いる有機イオウ化合物を除去す
るための二次水添操作は、200〜4000Cといつた
、かなりの高温度が適当とされている。
Conventionally, it has been considered that a high degree of purification and a high yield are incompatible; for example, when processing a raw material containing about 100 ppm of organic sulfur compounds to reduce the residual sulfur content to 1 ppm or less, BTX is used. The loss due to conversion to nuclear hydrogenated cyclohexane or its derivatives is 3
It was allowed to reach ~5% as unavoidable. However, the recent rise in oil prices and the tightening of the supply-demand relationship demand that such losses be kept to a minimum. Recent research has shown that nuclear hydrogenation during secondary hydrogenation can be significantly reduced by subjecting the catalyst to specific pretreatment and appropriately selecting reaction conditions, resulting in a BTX yield of 9.
It has become easier to increase the ratio to 9% or more. Avoiding unnecessary nuclear hydrogenation also means that the amount of hydrogen required as a raw material can be saved by that amount, which is preferable from the point of view of basic unit consumption. By the way, in the secondary hydrogenation operation for removing organic sulfur compounds using the above-mentioned catalyst, a considerably high temperature of 200 to 4000C is considered appropriate.

二段階精製法において、熱分解ガソリンが蒸留しC6〜
C8芳香族成分が留出するときの温度は約100℃であ
るのに対し、従来のパラジウム触媒による一次水添の温
度は50〜80℃が採用されていた。従つて、原料油は
100℃前後から50〜80℃へー旦冷却しなければな
らず、そしてこれを二次水添にかけるためには、上記の
200〜400℃まで加熱しなければならなかつた。こ
うした操作は、当然に多大の熱エネルギーの消費をもた
らし、あるいは余分の熱交換器などの設置を必要とする
ので、工業プロセスとしてはの節減をはかるべきである
。本発明者らは、このような観点から研究を進めたとこ
ろ、意外にも、一次水添工程に、二次水添工程で生成し
た硫化水素を含む水素を循環使用できること、そして水
素中の硫化水素含有量に応じてパラジウム触媒を用いる
一次水添の好適温度が、従来の新鮮な水素だけを用いた
場合より高くなり、この一次水添の好適温度と、触媒層
に供給される全水素中の硫化水素濃度および原料油供給
速度との間にある好ましい条件を確立して本発明に至つ
た。本発明の芳香族炭化水素の精製法は、これまて述べ
てきたように、C6〜C8芳香族炭化水素を主体とする
原料油を、まずパラジウム触媒を用いる比較的低温の接
触水素添加処理、すなわち一次水添により、その中のジ
オレフインおよびスチレン類に水素添加することにより
それらを除去し、ついで、周期表第■IB族元素(Cr
,N4O,W)および鉄族元素(Fe,CO,Ni)か
らなる群から選んだ少なくとも一種の触媒を用いる比較
的高温の接触水素添加処理、すなわち二次水添により、
含有されている有機イオウ化合物を硫化水素に変えたの
ち芳香族成分を分離回収することからなるC6〜C8芳
香族炭化水素の精製法において、二次水添の反応生成物
から分離された硫化水素を含む水素ガスを、そのまま、
または硫化水素の一部を除去しただけで一次水添に循環
させ、新たに補給される水素とともに接触水素添加に使
用すること、ならびに、一次水添に供給される全水素中
の硫化水素濃度X(容積Ppm)および一次水添への原
料油供給速度m(触媒容積あたり容積、毎時)に応じて
、一次水添の触媒層入口の温度T(℃)を、下式がみた
されるように制御することを特徴とする。
In the two-step refining process, pyrolyzed gasoline is distilled to produce C6~
The temperature at which the C8 aromatic component is distilled is about 100°C, whereas the temperature for primary hydrogenation using a conventional palladium catalyst has been 50 to 80°C. Therefore, the feedstock oil must be cooled from around 100°C to 50-80°C, and in order to undergo secondary hydrogenation, it must be heated to the above-mentioned 200-400°C. . Such operations naturally result in the consumption of a large amount of thermal energy or require the installation of extra heat exchangers, and therefore, as an industrial process, savings should be made. The present inventors conducted research from this perspective and surprisingly found that hydrogen containing hydrogen sulfide produced in the secondary hydrogenation process can be recycled in the primary hydrogenation process, and that sulfide in the hydrogen can be recycled. Depending on the hydrogen content, the preferred temperature for primary hydrogenation using a palladium catalyst is higher than when using only conventional fresh hydrogen. The present invention was achieved by establishing favorable conditions between the hydrogen sulfide concentration and the feedstock oil supply rate. As mentioned above, the method for refining aromatic hydrocarbons of the present invention involves first treating a feedstock oil mainly composed of C6 to C8 aromatic hydrocarbons with a relatively low-temperature catalytic hydrogenation treatment using a palladium catalyst. That is, by primary hydrogenation, diolefins and styrenes therein are removed by hydrogenation, and then they are removed from group IB elements of the periodic table (Cr
, N4O, W) and iron group elements (Fe, CO, Ni) by relatively high temperature catalytic hydrogenation treatment, that is, secondary hydrogenation, using at least one catalyst selected from the group consisting of
In a method for purifying C6 to C8 aromatic hydrocarbons, which involves converting the contained organic sulfur compounds into hydrogen sulfide and then separating and recovering aromatic components, hydrogen sulfide separated from the reaction product of secondary hydrogenation. Hydrogen gas containing
Alternatively, only a part of the hydrogen sulfide is removed and recycled to primary hydrogenation, and used together with newly supplied hydrogen for catalytic hydrogenation, and the concentration of hydrogen sulfide in the total hydrogen supplied to primary hydrogenation (Volume Ppm) and feedstock oil supply rate m (volume per catalyst volume, per hour) to the primary hydrogenation, the temperature T (°C) at the inlet of the catalyst bed for primary hydrogenation is determined so that the following formula is satisfied. It is characterized by control.

(ただし、0.8≦m≦5) 上式は、50≦T≦200℃の範において有効である。(However, 0.8≦m≦5) The above formula is valid in the range of 50≦T≦200°C.

すなわち、一次水添は50〜200℃の温度範囲で行な
う。また、二次水添は200〜400℃、一般には25
0〜350℃の温度で実施する。本発明の標準的な精製
法を図面を参照して説明すれば、第1図に示すように、
熱分解ガソリンCGを分留塔1で分留し、C6〜C8成
分を主体とする留分を分離して、一次水添塔2にかける
That is, primary hydrogenation is performed at a temperature range of 50 to 200°C. In addition, secondary hydrogenation is carried out at 200 to 400°C, generally at 25°C.
It is carried out at a temperature of 0-350°C. If the standard purification method of the present invention is explained with reference to the drawings, as shown in Figure 1,
Pyrolysis gasoline CG is fractionated in a fractionating column 1, and a fraction mainly containing C6 to C8 components is separated and passed to a primary hydrogenation column 2.

分留塔1から留出するC6〜C8成分は、97〜102
′Cの温度をもつている。一次水添の適温が、たとえば
130℃であるならば、原料油はわずかに加熱して(一
次水添生成物の一部を有機イオウ化合系に循環すること
により達成できる)一次水添工程に送り、そこでパラジ
ウム触媒により、硫化水素を含有する水素を用いて、ジ
オレフインおよびスチレン類への水素添加を行なう。こ
れらの不飽和成分の存在量に応じて、かなりの発熱とそ
れに伴う昇温をみる。一次水添の生成物は、水素ととも
に二次水添塔3に入り、周期表第VIB族(Cr,MO
,W)および鉄族(Fe,CO,Ni)からなる群から
選んだ少なくとも1種を含有する触媒により、二次水添
を受ける。
The C6 to C8 components distilled from the fractionating column 1 are 97 to 102
It has a temperature of 'C. If the suitable temperature for primary hydrogenation is, for example, 130°C, then the feedstock may be heated slightly (achieved by recycling a portion of the primary hydrogenation product to the organic sulfur compound system) to the primary hydrogenation step. There, diolefins and styrenes are hydrogenated using hydrogen containing hydrogen sulfide over a palladium catalyst. Depending on the amount of these unsaturated components present, considerable heat generation and associated temperature rise are observed. The products of the primary hydrogenation enter the secondary hydrogenation tower 3 together with hydrogen, and enter the periodic table group VIB (Cr, MO
, W) and a catalyst containing at least one selected from the group consisting of iron group (Fe, CO, Ni).

これらの触媒のうち現在多く用いられているのは、CO
−MO系、Ni−MO系およびNi−CO−MO系のも
のである。場合により、一次水添の生成物の一部分を、
前記したように一次水添の触媒層入ロへ戻して循環させ
、温度のコントロールをはかつてもよい。この場合、循
環する分はmの計算に算入しない。二次水添の適温は、
前記のよいに250〜350℃である。生成物は冷却し
て凝縮させ、水に加えて洗浄し、分離器において気相成
分および洗浄水と分けてC6〜C8成分をとり出し、所
望であればさらに最終精製・分留工程に向ける。原料油
中には通常は有機窒素成があり、二次水添によりアンモ
ニアが生成するが、これは上記の水洗により除去される
。気相成分すなわち硫化水素を含む水素は、消費された
水素を補給して一次水添工程へ循環させる。
Among these catalysts, the one most commonly used at present is CO.
-MO type, Ni-MO type and Ni-CO-MO type. Optionally, a portion of the product of the primary hydrogenation is
As described above, the temperature may be controlled by circulating it back into the catalyst bed for primary hydrogenation. In this case, the circulating portion is not included in the calculation of m. The appropriate temperature for secondary hydrogenation is
The temperature is preferably 250 to 350°C. The product is cooled and condensed, added to water, washed, and separated from the gas phase components and wash water in a separator to remove the C6-C8 components, which are then directed to further final purification and fractionation steps if desired. The feedstock oil usually contains organic nitrogen, and secondary hydrogenation produces ammonia, which is removed by the water washing described above. Hydrogen containing gas phase components, ie hydrogen sulfide, is recycled to the primary hydrogenation step to replenish the consumed hydrogen.

循環水素中の硫化水素は水洗により若干は除かれるが、
それでは不足で循環ガス中に蓄積し、その結果最適値が
200℃を超えるようであれば、再水洗またはアルカリ
洗浄などの手段で積極的にその量を減らせばよい。循環
水素中の硫化水素が1100ppmてあるときには、同
量の新規水素を加えるならば、一次水添に供給される全
水素中の硫化水素濃度Xは550ppmとなり、m=1
のときの好適温度は前記の式により131±10℃とな
るから、あえて硫化水素を除去する必要はない。スター
トアップ時であつて、循環水素ガス中の硫化水素濃度が
低いときか、その濃度に応じて除々に温度を高めて行け
ばよい。このようにして、本発明は、水素中の硫化水素
濃度を、それがあまり過大にならない限り、あまり気に
することはなく循環させ、その濃度に応じた触媒層入口
温度を与えることにより円滑に操業を続けることもでき
るし、適切な一次水添温度をもたらすように硫化水素の
除去の度合を調節してもよく、それも容易に実行できる
Although some hydrogen sulfide in the circulating hydrogen is removed by washing with water,
If this is insufficient and the amount accumulates in the circulating gas, and as a result, the optimum value exceeds 200°C, the amount can be actively reduced by re-washing with water or alkaline washing. When the hydrogen sulfide in the circulating hydrogen is 1100 ppm, if the same amount of new hydrogen is added, the hydrogen sulfide concentration X in the total hydrogen supplied to the primary hydrogenation will be 550 ppm, m = 1
According to the above equation, the suitable temperature in this case is 131±10° C., so there is no need to intentionally remove hydrogen sulfide. The temperature may be gradually raised at startup, when the concentration of hydrogen sulfide in the circulating hydrogen gas is low, or in accordance with the concentration. In this way, the present invention circulates the hydrogen sulfide concentration in hydrogen without worrying about it as long as it does not become too excessive, and smoothly circulates the hydrogen sulfide concentration in hydrogen by providing a catalyst layer inlet temperature that corresponds to the concentration. The operation can be continued or the degree of hydrogen sulfide removal can be easily adjusted to provide the appropriate primary hydrogenation temperature.

あるいはまた原料油供給速度を調節することによつて、
望ましい操業条件をつくり出すこともできる。たとえば
、触媒層に入る硫化水素の濃度がX=300ppmであ
り、原料油供給速度がm=1である場合、前記の式から
、一次水添の適温は98±10℃となる。
Alternatively, by adjusting the feedstock feed rate,
It is also possible to create desirable operating conditions. For example, when the concentration of hydrogen sulfide entering the catalyst layer is X=300 ppm and the raw oil supply rate is m=1, the appropriate temperature for primary hydrogenation is 98±10° C. from the above equation.

この関係は、いくつかのmについて、硫化水素濃度Xに
対する温度Tの関係をグラフで示した第2図にみるとお
りである。一次水添の温度が98゜Cであることは、分
留塔からのC6〜C8成分を、加熱も冷却もせずに、一
次水添に供給できることを意味する。C6〜C8以外に
C6成分も回収する場合には、分留温度はさらに高くな
るが、二次水添は比較的高温において行なうので、一次
水添をもつと高温で実施してもよい。原料油中のイオウ
含量が少なく、循環ガス中の硫化水素濃度が低い楊合に
は、一次水添最適温度が分留温度よりも低く、若干の冷
却を必要とすることもあり得るが、硫化水素が存在しな
い場合にくらべれば高くなる方向にあるので、それなり
に温度ギャップが小さくない。いずれにせよ、X..m
およびTの間に前記の式の関係が成立する限り、後に掲
げる実例が示すとおり、一次水添においてジオレフイン
および接触水素添加の側鎖への水素添加が高度に選択的
に行なわれ、芳香族への水素添加はほとんど起らない。
This relationship is as shown in FIG. 2, which graphically shows the relationship between temperature T and hydrogen sulfide concentration X for several values of m. The temperature of the primary hydrogenation of 98° C. means that the C6-C8 components from the fractionation column can be fed to the primary hydrogenation without heating or cooling. If the C6 component is also recovered in addition to C6 to C8, the fractional distillation temperature will be higher, but since the secondary hydrogenation is carried out at a relatively high temperature, the primary hydrogenation may also be carried out at a high temperature. When the feedstock has a low sulfur content and the circulating gas has a low hydrogen sulfide concentration, the optimum primary hydrogenation temperature is lower than the fractionation temperature and may require some cooling; The temperature gap tends to be higher than that in the case where hydrogen does not exist, so the temperature gap is not small. In any case, X. .. m
As long as the relationship in the above formula holds true between Almost no hydrogenation occurs.

また、ジオレフインまたはスチレン類の重合によるガム
の生成もない。
Furthermore, no gum is produced due to polymerization of diolefins or styrenes.

この範囲より低い温度では、水素添加が全体として不十
分にしか行なわれず、一方、高すぎる温度では、水素添
加はほぼ完全に行なわれるが、芳香核も攻撃されるので
、口スを1%以下に止めるといつた目標は達成できなく
なる。そこで、本発明の精製法の実施に当つては、一次
水添の温度を制御するほか、必要により循環水素中の硫
化水素濃度を調節するなり、原料供給速度を変更するな
り、あるいはこれら三者を相関的に組み合わせて最適の
条件を見出すなりして、好ましい操業を継続すべきこと
が結論される。
At temperatures below this range, hydrogenation is insufficient overall, while at temperatures that are too high, hydrogenation is almost complete, but the aromatic nuclei are also attacked, reducing the amount of alcohol to less than 1%. If you stop, you will not be able to achieve your goals. Therefore, in carrying out the purification method of the present invention, in addition to controlling the temperature of the primary hydrogenation, it is necessary to adjust the hydrogen sulfide concentration in the circulating hydrogen, change the raw material supply rate, or all three. It is concluded that favorable operations should be continued by finding the optimal conditions by correlating the factors.

それにより、精製を所期の高レベルに行なうとともに、
芳香族成分のロスおよび水素消費を最少限におえ、かつ
消費エネルギーの節約が期待できる。本発明の精製法に
おける一次水添の操業条件について補足すれば、温度を
50〜200℃、原料油供給速度を0.8〜5/Hrの
範囲とすべきことのほか、水素/原料油の割合は、モル
比で0.01〜5、通常は0.4〜2.0の範囲とする
。圧力は、水素添加反応であるから当然に加圧が有利で
あるが、経験によれば、圧力の大小は本発明にかかわる
前記の温度式にほとんど影響しないので、実際上採用で
きる範囲、たとえば10〜80k9/CItGからえら
べばよく、通常は30〜60kg/C7lfGが適当で
あろう。実施例1〜4および比較例1〜4パラジウム触
媒を用いた一次水添において、なるべく高率で行なおう
とするスチレンの側鎖への水素添加すなわちエチルベン
ゼンへの転化と、可能な限り避けたいベンゼン核への水
素添加すなわちシクロヘキサンへの転化とが、触媒温度
、循環硫化水素濃度および原料油供給速度によつてどの
よに変化するかを次の実験例をもつて示し、本発明で採
用した前記の式を裏付ける。
This allows refining to the desired high level, and
Loss of aromatic components and hydrogen consumption can be minimized, and energy consumption can be expected to be saved. In addition to the operating conditions for primary hydrogenation in the refining method of the present invention, the temperature should be in the range of 50 to 200°C and the feedstock oil supply rate should be in the range of 0.8 to 5/Hr. The ratio is in a molar ratio of 0.01 to 5, usually 0.4 to 2.0. Pressurization is naturally advantageous since it is a hydrogenation reaction, but according to experience, the magnitude of the pressure has almost no effect on the above-mentioned temperature equation related to the present invention. It is sufficient to select from ~80k9/CItG, and usually 30-60kg/C7lfG is appropriate. Examples 1 to 4 and Comparative Examples 1 to 4 In the primary hydrogenation using a palladium catalyst, hydrogenation to the side chain of styrene, that is, conversion to ethylbenzene, which is to be performed at a high rate as possible, and benzene, which is to be avoided as much as possible. The following experimental example shows how the hydrogenation of the core, that is, the conversion to cyclohexane, changes depending on the catalyst temperature, circulating hydrogen sulfide concentration, and feedstock feed rate. This confirms the formula.

スチレン類/ベンゼンニ20/80(容積比)の混合物
を原料として、アルミナ担持パラジウム触媒を充顛した
反応器に硫化水素含有水素とともに供給し、水素/原料
油=1/1(モル比)、圧力60k9/DGlおよび表
に記した条件で水素添加を行なつた。
A mixture of styrenes/benzene 20/80 (volume ratio) was used as a raw material, and it was supplied together with hydrogen containing hydrogen sulfide to a reactor filled with an alumina-supported palladium catalyst, hydrogen/feedstock oil = 1/1 (molar ratio), and pressure Hydrogenation was carried out at 60k9/DGl and under the conditions listed in the table.

各実施例および比較例の条件は、第2図のグラフにも示
してある。反応生成物をガスクロトグラフイーにより分
析し、転化率を算出した。
The conditions of each example and comparative example are also shown in the graph of FIG. The reaction product was analyzed by gas chromatography and the conversion rate was calculated.

その結果を、あわせて表に示す。実施例5 ジエン価2\イオウ含有240ppmの分解ガソリンを
原料油とし、その供給速度をm=1/Hrと一定した条
件下に、アルミナ担持パラジウム触媒による一次水添を
行なつた。
The results are also shown in the table. Example 5 A cracked gasoline with a diene number of 2\sulfur content of 240 ppm was used as a raw material oil, and primary hydrogenation was carried out using an alumina-supported palladium catalyst under conditions where the feed rate was kept constant at m = 1/Hr.

循環水素ガス中の硫化水素濃度は、X= 550ppm(容積)であつたから、採用すべき触媒層
入口の温度範囲は、前記の式から(132±10)゜C
と算出された。
Since the hydrogen sulfide concentration in the circulating hydrogen gas was X = 550 ppm (volume), the temperature range at the inlet of the catalyst layer to be adopted was (132 ± 10) °C from the above formula.
It was calculated that

そこで、温度T=130℃として操業したところ、生成
物のジエン価は08以下に低下しており、ベンゼン核へ
の水素添加は痕跡程度(イ).1%以下)しか認められ
なかつた。
Therefore, when the operation was carried out at a temperature of T=130°C, the diene number of the product decreased to 0.8 or less, and hydrogenation to the benzene nucleus was only a trace (a). 1% or less).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の芳香族炭化水素の精製法を説明する
ためのフローチャートである。 第2図は、本発明の精製法において採用すべき一次水添
の触媒層入口温度Tの中心値の、硫化水素濃度との関係
を、種々の原料油供給速度に応じてあられたグラフであ
る。1・・・・・・分留塔、2・・・・・・一次水添、
3・・・・・・二次水添。
FIG. 1 is a flow chart for explaining the aromatic hydrocarbon purification method of the present invention. FIG. 2 is a graph showing the relationship between the central value of the catalyst bed inlet temperature T for primary hydrogenation to be adopted in the refining method of the present invention and the hydrogen sulfide concentration, depending on various feedstock oil supply rates. . 1... Fractionation column, 2... Primary hydrogenation,
3...Secondary hydrogenation.

Claims (1)

【特許請求の範囲】 1 C_6〜C_8芳香族炭化水素を主体とする原料油
を、まず、パラジウム触媒用いる比較的低温の接触水素
添加処理(一次水添)にかけ、その中のジオレフィンお
よびスチレン類に水素添加することによつてこれらを除
去し、ついで、周期律表第VIB族元素(Cr、Mo、
W)および鉄族元素(Fe、Co、Ni)からなる群か
ら選んだ少なくとも一種の触媒を用いる比較的高温の接
触水素添加処理(二次水添)にかけ、含有されている有
機イオウ化合物を硫化水素に変えたのち芳香族成分を分
離回収し、二次水添の反応生成物から分離された硫化水
素を含む水素ガスを、そのまま、または硫化水素の一部
を除去しただけで一次水添工程に循環させ、新たに補給
される水素とともに接触水素添加に使用することからな
るC_6〜C_8芳香族炭化水素の精製法において、一
次水添に供給される全水素中の硫化水素濃度X(容積p
pm)、一次水添への原料油供給速度m(触媒容積あた
り容積、毎時、および一次水添の触媒層入口の温度T(
℃)のうちのいずれか二つを測定し、その測定値と他の
一つとの間に下式の関係が成立するように他の一つを制
御して実施することを特徴とする方法。 T=(2−1/m)(30X+600)^1^/^2±
10(ただし、0.8≦m≦5、50≦T≦200の範
囲内)2 原料油して熱分解ガソリンを使用する特許請
求の範囲第1項の精製法。 。3 前記の式による一次水添温度が50〜200℃の
範囲になるように、あらかじめXを限界値内にコントロ
ールして実施する特許請求の範囲第1項の精製法。
[Claims] 1. A feedstock oil mainly composed of C_6 to C_8 aromatic hydrocarbons is first subjected to relatively low-temperature catalytic hydrogenation treatment (primary hydrogenation) using a palladium catalyst to remove diolefins and styrenes therein. These are then removed by hydrogenation of the elements of Group VIB of the periodic table (Cr, Mo,
W) and at least one catalyst selected from the group consisting of iron group elements (Fe, Co, Ni) is subjected to relatively high temperature catalytic hydrogenation treatment (secondary hydrogenation) to sulfurize the contained organic sulfur compounds. After converting into hydrogen, the aromatic components are separated and recovered, and the hydrogen gas containing hydrogen sulfide separated from the reaction product of the secondary hydrogenation can be used as is or with only a portion of the hydrogen sulfide removed. In the method for refining C_6 to C_8 aromatic hydrocarbons, which consists of circulating the hydrogen into the hydrogen and using it in catalytic hydrogenation together with freshly replenished hydrogen, the hydrogen sulfide concentration X (volume p) in the total hydrogen supplied to the primary hydrogenation is
pm), feedstock oil supply rate m to primary hydrogenation (volume per catalyst volume, per hour, and temperature T (
℃), and controlling the other one so that the following relationship is established between the measured value and the other one. T=(2-1/m)(30X+600)^1^/^2±
10 (within the range of 0.8≦m≦5, 50≦T≦200) 2. The refining method according to claim 1, which uses pyrolysis gasoline as the raw material oil. . 3. The purification method according to claim 1, wherein X is controlled in advance within a limit value so that the primary hydrogenation temperature according to the above formula is in the range of 50 to 200°C.
JP12696780A 1980-09-12 1980-09-12 Aromatic hydrocarbon purification method Expired JPS6041644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12696780A JPS6041644B2 (en) 1980-09-12 1980-09-12 Aromatic hydrocarbon purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12696780A JPS6041644B2 (en) 1980-09-12 1980-09-12 Aromatic hydrocarbon purification method

Publications (2)

Publication Number Publication Date
JPS5750930A JPS5750930A (en) 1982-03-25
JPS6041644B2 true JPS6041644B2 (en) 1985-09-18

Family

ID=14948322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12696780A Expired JPS6041644B2 (en) 1980-09-12 1980-09-12 Aromatic hydrocarbon purification method

Country Status (1)

Country Link
JP (1) JPS6041644B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032927U (en) * 1989-05-31 1991-01-11

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19710762A1 (en) * 1997-03-14 1998-09-17 Basf Ag Processes for cleaning material flows
DE19840372A1 (en) * 1998-09-04 2000-03-09 Basf Ag Catalyst and process for cleaning material flows

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH032927U (en) * 1989-05-31 1991-01-11

Also Published As

Publication number Publication date
JPS5750930A (en) 1982-03-25

Similar Documents

Publication Publication Date Title
CN112912472B (en) Method for producing aviation fuel
EP3017021B1 (en) Method of producing aromatics and light olefins from a hydrocarbon feedstock
JP5746057B2 (en) Method for obtaining pure aromatic compounds from hydrocarbon fractions containing aromatic compounds
CA1089389A (en) Process for preparing aromatics from naphta
KR101603392B1 (en) Process for the production of olefins
EP0504510B1 (en) Combination process for hydrogenation and isomerization of benzene and paraffin-containing feedstocks
US2671754A (en) Hydrocarbon conversion process providing for the two-stage hydrogenation of sulfur containing oils
CN101450885B (en) Method for separating carbon 5 fraction by one-stage extraction and rectification
US7531704B2 (en) Isomerization of benzene-containing feedstocks
CN103429712B (en) Process for increasing benzene and toluene production
CA2628361C (en) Isomerization of benzene-containing feedstocks
FI95808B (en) Method for splitting hydrotreated hydrocarbon effluents
CN106488897B (en) Process for producing xylene
EP2296810A2 (en) A process for producing paraffinic hydrocarbons from feedstocks comprising glycerides and/or fatty acids
CA2625905C (en) Isomerization of benzene-containing feedstocks
US7534925B2 (en) Isomerization of benzene-containing feedstocks
WO2008002359A1 (en) Integrated process for removing benzene from gasoline and producing cyclohexane
EP2714851B1 (en) Multi-stage hydrocracking process for the hydroconversion of hydrocarbonaceous feedstocks
EP0794241A2 (en) Process for dearomatization of petroleum distillates
JP2017511829A (en) A method for converting high-boiling hydrocarbon feeds to lighter-boiling hydrocarbon products.
JPH08157399A (en) Production of aromatic hydrocarbon
JPS6041644B2 (en) Aromatic hydrocarbon purification method
JP4597128B2 (en) Naphtha catalytic reforming method
US3146187A (en) Catalytic hydrogenation of benzene
JPS6140716B2 (en)