JPS604161Y2 - optical filter - Google Patents

optical filter

Info

Publication number
JPS604161Y2
JPS604161Y2 JP1978010799U JP1079978U JPS604161Y2 JP S604161 Y2 JPS604161 Y2 JP S604161Y2 JP 1978010799 U JP1978010799 U JP 1978010799U JP 1079978 U JP1079978 U JP 1079978U JP S604161 Y2 JPS604161 Y2 JP S604161Y2
Authority
JP
Japan
Prior art keywords
central axis
transmission body
light
convergent
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978010799U
Other languages
Japanese (ja)
Other versions
JPS54115954U (en
Inventor
功郎 小林
敦史 植木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP1978010799U priority Critical patent/JPS604161Y2/en
Publication of JPS54115954U publication Critical patent/JPS54115954U/ja
Application granted granted Critical
Publication of JPS604161Y2 publication Critical patent/JPS604161Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Communication System (AREA)

Description

【考案の詳細な説明】 この考案は光フアイバ通信における特定の波長の光を選
択するための光フィルタに関する。
[Detailed Description of the Invention] This invention relates to an optical filter for selecting light of a specific wavelength in optical fiber communication.

光フアイバ通信方式は、従来の電気ケーブルを用いた通
信方式に比較していくつかのすぐれた特長を持っている
ので、様々な分野に適用可能な通信方式として期待され
ている。
Optical fiber communication systems have several superior features compared to conventional communication systems using electric cables, and are therefore expected to be a communication system that can be applied to a variety of fields.

中でも光ファイバが光の波長の広い範囲にわたって低損
失であることを利用して、一本の光フアイバ中に波長の
異なる複数の光ビームを伝搬させる光波長多重通信方式
は、伝送容量を増大させたり、新しい回線の増設を容易
にさせたりする等の点で、光フアイバ通信方式の有用性
を増すものとして期待され、実用化へ向けて研究開発が
進められている。
Among them, the optical wavelength division multiplexing communication method, which takes advantage of the fact that optical fiber has low loss over a wide range of light wavelengths and propagates multiple light beams with different wavelengths in a single optical fiber, increases transmission capacity. It is expected that this method will increase the usefulness of optical fiber communication systems in terms of making it easier to install new lines and adding new lines, and research and development is progressing toward practical application.

光波長多重通信方式を実現するためには、いくつかの基
本的な光回路や光部品が必要であり、その中に、特定の
波長の光を選択的にとりだすための光フィルタがある。
In order to implement an optical wavelength division multiplexing communication system, several basic optical circuits and optical components are required, including an optical filter for selectively extracting light of a specific wavelength.

これは主として受信機の中で用いられ、ある波長のチャ
ンネルへ他の波長のチャンネルの光がもれるのを防ぐた
めに用いられる。
This is primarily used in receivers to prevent light from one wavelength channel from leaking into another wavelength channel.

この光フィルタの光学的特性としては、通過させたい波
長の光透過率(あるいは反射率)が高いことと、それ以
外の波長の光を除去する度合が大きいこと等が要求され
る。
The optical properties of this optical filter include high light transmittance (or reflectance) for wavelengths that are desired to be passed, and a high degree of removal of light at other wavelengths.

従来、このような光フィルタとしては、誘電体の多層膜
からなる干渉フィルタや、これと、通過させたい光の波
長以外で吸収の大きい色ガラスフィルタとを組み合せた
フィルタ等が知られている。
Conventionally, as such optical filters, interference filters made of dielectric multilayer films, filters that combine this with colored glass filters that have large absorption at wavelengths other than the wavelength of light that is desired to pass, and the like are known.

このような従来のフィルタでは、望むところの光風外の
波長の光をよく除去するため、すなわちフィルタ特性を
急峻するためには、誘電体の層の数を多くしなければな
らず、誘電体層の吸収、散乱による損失の増加や、製造
工数の増加にともなう価格の上昇が避けがたい。
In such conventional filters, in order to effectively remove light of wavelengths outside the desired optical wind, that is, to sharpen the filter characteristics, the number of dielectric layers must be increased. It is inevitable that losses due to absorption and scattering will increase, and prices will rise due to increased manufacturing man-hours.

また、原理的には層数を増すことによりフィルタ特性を
かなり急峻にできるはずであるが、実際には各層の厚み
や、その屈折率等の設計値からのずれが避けられず、あ
る程度以上急峻な特性のフィルタは得にくいという問題
点がある。
In addition, in principle, it should be possible to make the filter characteristics considerably steeper by increasing the number of layers, but in reality, deviations from the design values such as the thickness of each layer and its refractive index are unavoidable, and the filter characteristics become steeper than a certain point. The problem is that it is difficult to obtain a filter with such characteristics.

さらに、層数が多い場合には上述のずれ等のために透過
波長の設定値からのずれも大きくなる等、フィルタの製
造に対してはかなりの困難が生ずる。
Furthermore, when the number of layers is large, the deviation of the transmission wavelength from the set value becomes large due to the above-mentioned deviation, etc., which causes considerable difficulty in manufacturing the filter.

勿論、比較的製造が容易なそれ程急峻でない特性のフィ
ルタを複数個縦続的に接続して、急峻なフィルタ特性を
得ることもできるが、その場合には部品数の増大による
価格の上昇が避けられない。
Of course, it is also possible to obtain steep filter characteristics by cascading multiple filters with less steep characteristics, which are relatively easy to manufacture, but in that case, an increase in price due to an increase in the number of parts can be avoided. do not have.

この考案の目的は、フィルタ特性が急峻にして、製作が
容易、かつ小形で経済的な光フィルタを提供するにある
The purpose of this invention is to provide an optical filter that has steep filter characteristics, is easy to manufacture, and is small and economical.

この考案によれば、中心軸にほぼ垂直な第1および第2
の端面を有し、前記中心軸に垂直な面内で前記中心軸か
ら周辺に向って徐々に減少する屈折率分布を有し、前記
中心軸方向の長さが光ビームの蛇行ピッチPに対して(
1/4+172n) P (nは零を含む正の整数)に
選定され、互いの前記中心軸をほぼ一直線上に合わせて
縦続的に設置された第1および第2の集束性光伝送体と
、前記第1の集束性光伝送体の前記第2の端面と前記第
2の集束性光伝送体の前記第1の端面の間に挿入された
波長依存性のある反射膜と、前記第1の集束性光伝送体
の前記第1の端面と前記第2の集束性光伝送体の前記第
2の端面の少なくとも一方の近傍に設置され、該端面上
で前記中心軸が該端面と交わる中心点に対してほぼ等距
離を有し、かつその中心点を通る直線上に共に存在しな
いように選定された2点の間を光学的に接続する光導波
手段とによって構成された光フィルタが得られる。
According to this invention, the first and second
has a refractive index distribution that gradually decreases from the central axis toward the periphery in a plane perpendicular to the central axis, and the length in the central axis direction is relative to the meandering pitch P of the light beam. hand(
1/4+172n) P (n is a positive integer including zero), and first and second convergent optical transmission bodies are installed in cascade with their central axes aligned substantially on a straight line; a wavelength-dependent reflective film inserted between the second end face of the first convergent light transmitting body and the first end face of the second convergent light transmitting body; A center point located near at least one of the first end surface of the convergent light transmission body and the second end surface of the second convergence light transmission body, and on the end surface, the central axis intersects with the end surface. An optical waveguide means optically connects two points selected such that they are approximately equidistant from each other and are not located on a straight line passing through the center point. .

以下に図面を参照してこの考案による光フィルタを詳し
く説明する。
The optical filter according to this invention will be described in detail below with reference to the drawings.

まず、第1図はこの考案の第1の実施例の斜視図をあら
れす。
First, FIG. 1 shows a perspective view of the first embodiment of this invention.

図において、1および2は、中心軸Aに垂直な断面内の
屈折率n (r)が、中心軸Aからの距離をr1中心軸
A上での屈折率を馬、正の定数をaとおいたとき、近似
的に であられされる性質を有するそれぞれ第1および第2の
集束性光伝送体であり、それぞれ中心軸Aにほぼ垂直な
端面10,11および12,13が形成されている。
In the figure, 1 and 2 indicate that the refractive index n (r) in a cross section perpendicular to the central axis A is the distance from the central axis A, r is the refractive index on the central axis A, and a is a positive constant. They are first and second convergent light transmitting bodies, respectively, which have a property that is approximated when the light beams are in contact with each other, and have end surfaces 10, 11 and 12, 13, respectively, which are substantially perpendicular to the central axis A.

その中心軸A方向の長さはどちらも次式で決まる光ビー
ム蛇行ピッチPの約174に設定されている。
Both lengths in the direction of the central axis A are set to about 174, which is the optical beam meandering pitch P determined by the following equation.

この実施例では、第1および第2の集束性光伝送体1お
よび2として、直径1.8肋のガラス丸棒にイオン交換
によりほぼ(1)式であられされる屈折率分布をつけた
ものを用いた。
In this embodiment, the first and second focusing optical transmitters 1 and 2 are glass round rods with a diameter of 1.8 ribs, which are provided with a refractive index distribution approximately expressed by the formula (1) by ion exchange. was used.

この場合の中心軸上の屈折率および定数aはそれぞれn
0= 1.63. a=0.12mm−”となり、光
ビーム蛇行ピッチは約181mとなった。
In this case, the refractive index and constant a on the central axis are each n
0=1.63. a=0.12 mm-'', and the meandering pitch of the light beam was about 181 m.

従って、第1および第2の集束性光伝送体の長さを4.
5mmとした。
Therefore, the lengths of the first and second convergent light transmitters are set to 4.
It was set to 5 mm.

第1の集束性光伝送体1の端面11と、第2の集束性光
伝送体2の端面12の間にはZnSとMf2の交互層か
らなる誘電体多層膜の干渉フィルタ膜3を蒸着により形
成した。
Between the end face 11 of the first convergent optical transmitter 1 and the end face 12 of the second convergent optical transmitter 2, an interference filter film 3 made of a dielectric multilayer film consisting of alternating layers of ZnS and Mf2 is deposited by vapor deposition. Formed.

図示のように、中心軸A方向をZ軸に定せ、第1の集束
性光伝送体1の端面10上にX。
As shown in the figure, the direction of the central axis A is set to the Z axis, and the direction X is placed on the end surface 10 of the first convergent optical transmission body 1.

y軸を、第2の集束性光伝送体2の端面13上にxi、
yl軸をそれぞれ決める。
The y-axis is xi on the end surface 13 of the second focusing optical transmission body 2,
Determine the yl axis.

X軸とX1軸、y軸とy1軸はそれぞれ平行である。The X axis and the X1 axis, and the y axis and the y1 axis are parallel to each other.

第1の集束性光伝送体1の端面10上の(Xl y)
= (−0,5,o)の位置に端部を近接させて入射光
ファイバ21を、端面10上の(Xl y) = (o
t−0,5)の位置に端部を近接させて出射光ファイバ
22をそれぞれz軸に平行に設置した。
(Xly) on the end surface 10 of the first convergent optical transmission body 1
= (Xly) = (o)
The output optical fibers 22 were respectively installed parallel to the z-axis with their ends close to the positions t-0, 5).

おおで、座標軸上の寸法の単位は閣、以下同様とする。The unit of dimensions on the coordinate axes is kaku, and the same shall apply hereinafter.

さらに、第2の集束性光伝送体2の端面13上の(xl
、 yl)= (+0.5. 0)と(x”t y’)
= (ot +0.5)の位置を光学的に結ぶ光導波手
段として、結合光ファイバ23をその両端部が2軸に平
行になるように設置した。
Furthermore, (xl
, yl) = (+0.5. 0) and (x"t y')
As an optical waveguide for optically connecting the positions of = (ot +0.5), a coupling optical fiber 23 was installed so that its both ends were parallel to the two axes.

第2図は、上記のように構成された光フィルタをX、X
lおよび2軸を含む面で切った断面図、第3図は同じ<
yty’および2軸を含む面で切った断面図をそれぞれ
あられす。
FIG. 2 shows the optical filter configured as described above at X,
A cross-sectional view taken along a plane including l and two axes, Figure 3 is the same <
yty' and a cross-sectional view taken along a plane containing the two axes.

これらの図を併用して光ビームの動きを説明すると、ま
ず、入射光ファイバ21を通じて伝搬光すを第1の集束
性光伝送体1へ入射させると、これはうねりながら第1
の蛇行光ビームCとなって干渉フィルタ膜3へ斜めに入
射し、そこを透過して第2の集束性光伝送体2中をやは
りうねりながら進み、結合光ファイバ23へ入射して結
合光ビームdとなる。
To explain the movement of a light beam using these figures together, first, when a propagating light beam is made to enter the first convergent light transmission body 1 through the input optical fiber 21, it will undulate as it enters the first convergent light transmission body 1.
becomes a meandering light beam C, which enters the interference filter film 3 obliquely, passes therethrough, travels in the second convergent light transmitter 2 while also undulating, and enters the coupling optical fiber 23, becoming a coupled light beam. d.

結合光ビームdは、結合光ファイバ23により第2の集
束性光伝送体2へ、出射した位置から見て90°回転し
た角度で入射し、第2の蛇行光ビームeとなつて進み、
干渉フィルタ膜3へ斜めに入射し、そこを通過した後に
第1の集束性光伝送体1中をやはりうねりながら進んで
出射光ファイバ22へ結合し、伝搬光fとなる。
The combined light beam d enters the second convergent light transmission body 2 through the combined optical fiber 23 at an angle rotated by 90 degrees when viewed from the emitted position, and travels as a second meandering light beam e,
The light enters the interference filter film 3 obliquely, and after passing through there, it travels in the first convergent light transmission body 1 while also winding, and is coupled to the output optical fiber 22, becoming propagating light f.

このように、光ビームは干渉フィルタ膜3を2回通過す
るので、出射光ファイバ22から出射する光ビームのス
ペクトルは、同じような特性のフィルタを2個通過した
場合と等価な成分をもつことが判る。
In this way, since the light beam passes through the interference filter film 3 twice, the spectrum of the light beam emitted from the output optical fiber 22 has components equivalent to those obtained when the light beam passes through two filters with similar characteristics. I understand.

周知のように、集束性光伝送体では光ビームの径はその
光ビーム蛇行ピッチPの172の周期で周期的に変化す
る。
As is well known, in a convergent optical transmission medium, the diameter of the light beam changes periodically at a period of 172 times the meandering pitch P of the light beam.

従って、この実施例では入射光ファイバ21、出射光フ
ァイバ22と結合光ファイバ23との間の第1、第2の
集束性光伝送体1.2の長さの和は光ビーム蛇行ピッチ
の約172になるので、ビーム径は第1の集束性光伝送
体1の端面10と第2の集束性光伝送体2の端面13と
でほぼ等しくなる。
Therefore, in this embodiment, the sum of the lengths of the first and second convergent optical transmission bodies 1.2 between the input optical fiber 21, the output optical fiber 22, and the coupling optical fiber 23 is approximately the meandering pitch of the optical beam. 172, the beam diameters at the end face 10 of the first convergent light transmitter 1 and the end face 13 of the second convergent light transmitter 2 are approximately equal.

このために光ビームは入射光ファイバ21から結合光フ
ァイバ23および出射光ファイバ22に効率良く結合さ
れ、最小挿入損失の小さな光フィルタが得られる。
Therefore, the light beam is efficiently coupled from the input optical fiber 21 to the coupling optical fiber 23 and the output optical fiber 22, and an optical filter with a small minimum insertion loss can be obtained.

ここに用いられてる干渉フィルタ膜3は、第1の集束性
光伝送体1の端面11に直接、蒸着法により形成される
が、単体としてはそれほど急峻なフィルタ特性を要求さ
れないために通常の制御性を損なわない程度の層数で良
く、製作は容易であり、かつ安価であった。
The interference filter film 3 used here is formed directly on the end face 11 of the first focusing light transmitting body 1 by vapor deposition, but since it is not required to have very steep filter characteristics as a single film, it is not necessary to use normal control. The number of layers may be as long as it does not impair properties, and production is easy and inexpensive.

なお、上記の実施例においては、入射光ファイバ21の
端部と結合光ファイバ23の一方の端部をy軸、X1軸
、2軸を含む面内に設置し、結合光ファイバ23のもう
一方の端部と出射光ファイバ22の端部をy軸、y1軸
、2軸を含む面内に設置した。
In the above embodiment, the end of the input optical fiber 21 and one end of the coupling optical fiber 23 are installed in a plane including the y-axis, the X1 axis, and the second axis, and the other end of the coupling optical fiber 23 is and the end of the output optical fiber 22 were placed in a plane including the y-axis, y1-axis, and y-axis.

これによって、第1の蛇行光ビームCと第2の蛇行光ビ
ームeは、第1および第2の集束性光伝送体1および2
中の直交した面内を進む。
As a result, the first meandering light beam C and the second meandering light beam e are transmitted to the first and second convergent light transmitters 1 and 2.
Proceed in orthogonal planes inside.

そして、干渉フィルタ膜3の透過波長以外の光は、干渉
フィルタ膜3で反射されて反射光ビームgとなるが、こ
れは出射光ファイバ22へ結合することはなく、そのた
めにフィルタ特性が損なわれることはない。
Light with a wavelength other than the wavelength transmitted by the interference filter film 3 is reflected by the interference filter film 3 and becomes a reflected light beam g, but this is not coupled to the output optical fiber 22, which impairs the filter characteristics. Never.

ただし、第1および第2の蛇行光ビームCおよびeのそ
れぞれが通過する面がなす角度は、この実施例のように
90°に限られることはなく、反射光ビームgが出射光
ファイバ22へ結合しない範囲であれば、小さく、ある
いは反対に大きくとも良い。
However, the angle formed by the plane through which each of the first and second meandering light beams C and e passes is not limited to 90° as in this embodiment, and the reflected light beam g is directed to the output optical fiber 22. It may be small or, conversely, large, as long as it does not combine.

第4図は、この考案の第2の実施例をす斜視図である。FIG. 4 is a perspective view of a second embodiment of this invention.

この実施例においては、第1の実施例の結合光ファイバ
23のかわりに、中心軸A1方向に光ビームの蛇行ピッ
チPの約174の長さをもった第3の集束性光伝送体4
の一方の端面15に反射膜5を組み合わせたものを用い
たものである。
In this embodiment, instead of the coupling optical fiber 23 of the first embodiment, a third convergent optical transmission body 4 having a length of approximately 174 times the meandering pitch P of the light beam in the direction of the central axis A1 is used.
A reflective film 5 is combined on one end surface 15 of the reflector.

前記第1の実施例の場合と比較して説明すると、第2の
集束性光伝送体2の端面13上において、前に結合光フ
ァイバ23の両端部が設置されていた位置を結ぶ線上の
中心点o1すなわち(Xl。
To explain this in comparison with the case of the first embodiment, on the end surface 13 of the second convergent optical transmission body 2, the center on the line connecting the positions where both ends of the coupling optical fiber 23 were previously installed. Point o1 ie (Xl.

3/’)= (0,25,0,25)の点を中心軸A1
が通るように、第3の集束性光伝送体4がその端面14
を第2の集束性光伝送体2の端面13に近接させて固定
されている。
3/') = (0, 25, 0, 25) point as central axis A1
The third converging light transmitting body 4 has its end face 14 so that
is fixed in close proximity to the end surface 13 of the second convergent optical transmission body 2.

第1の集束性光伝送体1、入射光ファイバ21および出
射光ファイバ22等の位置関係は第1の実施例の場合と
ほぼ同様である。
The positional relationship of the first convergent light transmission body 1, the input optical fiber 21, the output optical fiber 22, etc. is almost the same as in the first embodiment.

この構造によれば、第1の蛇行光ビームCは、中心軸A
1に対してずれた位置から第3の集束性光伝送体4へ入
射するので、やはりその中を蛇行して入射結合光ビーム
d□となって進み、さらに反射膜5で反射されて、反射
結合ビームd2となって第2の集束性光伝送体2へ入射
し、第2の蛇行光ビームeとなる。
According to this structure, the first meandering light beam C has a central axis A
Since the light enters the third convergent light transmitter 4 from a position shifted from that of the light beam 1, it also meanderes through it as an incident coupled light beam d□, is further reflected by the reflective film 5, and becomes a reflected light beam. It becomes a combined beam d2 and enters the second convergent light transmission body 2, and becomes a second meandering light beam e.

第3の集束性光伝送体4の長さは光ビーム蛇行ピッチP
の174にとっであるので、入射結合光ビームd1と反
射結合光ビームらとが往復で通過する中心軸N方向の長
さは光ビーム蛇行ピッチPの1/2になり、第3の集束
性光伝送体4の端面14で光ビーム径が入射光と同じに
保たれる。
The length of the third convergent optical transmission body 4 is the optical beam meandering pitch P
174, the length in the central axis N direction through which the incident coupled light beam d1 and the reflected coupled light beams pass back and forth is 1/2 of the light beam meandering pitch P, and the third focusing property The diameter of the light beam at the end face 14 of the optical transmission body 4 is kept the same as that of the incident light.

したがって、前に述べたように第1の集束性光伝送体1
の端面10と第2の集束性光伝送体2の端面13との間
でも光ビーム径が保存されているから、光ビームは入射
光ファイバ21から出射光ファイバ22に効率良く結合
され、最小挿入損失の小さな光フィルタが得られる。
Therefore, as mentioned before, the first convergent light transmission body 1
Since the diameter of the light beam is maintained between the end face 10 of the second convergent optical transmission body 2 and the end face 13 of the second convergent optical transmission body 2, the light beam is efficiently coupled from the input optical fiber 21 to the output optical fiber 22, and the minimum insertion An optical filter with low loss can be obtained.

この考案は上記の実施例の他にいくつかの変形が考えら
れる。
This invention can be modified in several ways in addition to the embodiments described above.

例えば、上記の実施例においては、干渉フィルタ膜3を
光ビームが2回通過するようにしが、さらに急峻なフィ
ルタ特性を得るために、もつと多数回の光ビームがフィ
ルタ膜を通過するようにしても良い。
For example, in the above embodiment, the light beam passes through the interference filter film 3 twice, but in order to obtain even steeper filter characteristics, the light beam may pass through the filter film many times. It's okay.

それには、第1の集束性光伝送体1の端面10における
出射光ファイバ22のもう一方の端部を再び端面10の
y軸およびy軸上以外で、中心軸から0.5mm離れた
位置へ結合し、第2の集束性光伝送体2の端面13の対
応する位置へ別の光ファイバの端部を結合することによ
り、干渉フィルタ膜3を光ビームが3回通過するように
なることができる。
To do this, move the other end of the output optical fiber 22 at the end surface 10 of the first convergent optical transmission body 1 to a position other than the y-axis and the y-axis of the end surface 10 and 0.5 mm away from the central axis. By coupling the end of another optical fiber to the corresponding position on the end face 13 of the second converging light transmission body 2, the light beam can pass through the interference filter film 3 three times. can.

さらに上記の実施例においては、光ビームを折り返すた
めの光導波手段として、光ファイバや集束性光伝送体等
を用いたが、これらに限られることはなく、誘電体層等
による光導波路や、小形のプリズム等の全反射を利用し
たものも用いることができる。
Furthermore, in the above embodiments, an optical fiber, a convergent optical transmission body, etc. were used as the optical waveguide means for folding back the light beam, but the invention is not limited to these, and an optical waveguide using a dielectric layer, etc. A small prism that utilizes total reflection can also be used.

また、干渉フィルタ膜としては、中心透過型の他に短波
長透過型や長波長透過型等のフィルタ膜を用いることが
できる。
Furthermore, as the interference filter film, in addition to the central transmission type, a short wavelength transmission type or a long wavelength transmission type filter film can be used.

入射光ファイバ21や出射光ファイバ22は必ずしも必
要ではなく、直接光源や受光器を近接して設置しても良
い。
The input optical fiber 21 and the output optical fiber 22 are not necessarily required, and a direct light source and a light receiver may be installed in close proximity.

集束性光伝送体の長さは光ビーム蛇行ピッチPの174
に限られず、その奇数倍であっても良いし、これらの長
さよりもやや短くしても光フアイバ位置を調整すること
により支障なく用いることができる。
The length of the convergent optical transmission body is 174 of the optical beam meandering pitch P.
The length is not limited to , but may be an odd multiple of the length, or even if the length is slightly shorter than these lengths, it can be used without any problem by adjusting the optical fiber position.

以上の説明によって明らかなように、この考案によれば
、小形の集束性光伝送体を主要な構成要素としているた
めに、フィルタ全体が小形トなり、安価に製作できる。
As is clear from the above description, according to this invention, since the main component is a small converging light transmission body, the entire filter is small and can be manufactured at low cost.

また、光導波手段を介して集束性光伝送体間に挿入され
たフィルタ膜に角度を変えて何回も繰返し光ビームを通
すことができるから、フィルタ膜自身それ程良い特性を
もっていなくとも、結果的には急峻なフィルタ特性が容
易に得られる点において大きな効果がある。
In addition, since the light beam can be passed through the filter film inserted between the focusing light transmitters via the optical waveguide over and over again by changing the angle, even if the filter film itself does not have very good characteristics, the results can be improved. In other words, it has a great effect in that steep filter characteristics can be easily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の第1の実施例を示す斜視図、第2図
は、第1図におけるx、 xiおよび2軸を含む面の断
面図、第3図は、同じく第1図におけるy、ylおよび
z軸を含む面の断面図、第4図はこの考案の第2の実施
例を示す斜視図である。 図において、1.2.4は集束性光伝送体、3は干渉フ
ィルタ膜、5は反射膜、10〜15は端面、21〜23
は光ファイバである。
FIG. 1 is a perspective view showing the first embodiment of this invention, FIG. 2 is a cross-sectional view of a plane including x, xi, and two axes in FIG. 1, and FIG. , yl and z axes, and FIG. 4 is a perspective view showing a second embodiment of this invention. In the figure, 1.2.4 is a focusing optical transmitter, 3 is an interference filter film, 5 is a reflective film, 10 to 15 are end faces, and 21 to 23
is an optical fiber.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 中心軸にほぼ垂直な第1および第2の端面を有し、前記
中心軸に垂直な面内で前記中心軸から周辺に向って徐々
に減少する屈折率分布を有し、前記中心軸方向の長さが
光ビームの蛇行ピッチPに対して(1/4+172n)
P (nは零を含む正の整数)に選定され、互いの前
記中心軸をほぼ一直線上に合わせて縦続的に設置された
第1および第2の集束性光伝送体と、前記第1の集束性
光伝送体の前記第2の端面と前記第2の集束性光伝送体
の前記第1の端面の間に挿入された波長依存性のある反
射膜と、前記第1の集束性光伝送体の前記第1の端面と
前記第2の集束性光伝送体の前記第2の端面の少なくと
も一方の近傍に設置され、該端面上で前記中心軸が該端
面と交わる中心点に対してほぼ等距離を有し、かつその
中心点を通る直線上に共に存在しないように選定された
2点の間を光学的に接続する光導波手段とによって構成
された光フィルタ。
has first and second end surfaces substantially perpendicular to the central axis, has a refractive index distribution that gradually decreases from the central axis toward the periphery in a plane perpendicular to the central axis, and has a refractive index distribution that gradually decreases from the central axis toward the periphery; The length is (1/4+172n) with respect to the meandering pitch P of the light beam.
P (n is a positive integer including zero) and are installed in series with their central axes aligned substantially in a straight line; a wavelength-dependent reflective film inserted between the second end face of the convergent light transmission body and the first end face of the second convergence light transmission body; and the first convergent light transmission body. installed in the vicinity of at least one of the first end surface of the body and the second end surface of the second convergent light transmission body, and approximately relative to the center point on the end surface where the central axis intersects with the end surface. 1. An optical waveguide that optically connects two points that are equidistant and that are selected so that they are not located on a straight line passing through their center points.
JP1978010799U 1978-02-02 1978-02-02 optical filter Expired JPS604161Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978010799U JPS604161Y2 (en) 1978-02-02 1978-02-02 optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978010799U JPS604161Y2 (en) 1978-02-02 1978-02-02 optical filter

Publications (2)

Publication Number Publication Date
JPS54115954U JPS54115954U (en) 1979-08-14
JPS604161Y2 true JPS604161Y2 (en) 1985-02-05

Family

ID=28824047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978010799U Expired JPS604161Y2 (en) 1978-02-02 1978-02-02 optical filter

Country Status (1)

Country Link
JP (1) JPS604161Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185719A (en) * 1985-02-12 1986-08-19 グラマン エアロスペ−ス コ−ポレ−シヨン Repetition type optical filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS423212Y1 (en) * 1964-04-16 1967-02-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS423212Y1 (en) * 1964-04-16 1967-02-25

Also Published As

Publication number Publication date
JPS54115954U (en) 1979-08-14

Similar Documents

Publication Publication Date Title
CA1067734A (en) Optical couplers for multimode optical fiber transmission line
CA1146389A (en) Light coupling and branching device using light focusing transmission body
US4296995A (en) Optical fiber beam splitter couplers employing coatings with dichroic properties
US3870396A (en) Optical coupler
US4693544A (en) Optical branching device with internal waveguide
US4673270A (en) Channel add/drop filter-coupler
CN103080797B (en) Multicore optical fiber
KR0175074B1 (en) Optical weveguide device
EP0206577A2 (en) Optical fiber coupler
EP0683410B1 (en) Optical fiber light coupling interface with an enlarged incident surface
US7577328B2 (en) Optical reflector, optical system and optical multiplexer/demultiplexer device
US4600267A (en) Optical distributor
JP2001512846A (en) Single mode optical waveguide coupling element
JPS59226301A (en) Single-mode lightwave guide fiber
US4006964A (en) Integrated optical waveguide having a filter
JPS604161Y2 (en) optical filter
US4178066A (en) Ray-path equalizer for signal-transmission system using multimode light guides
US5574809A (en) Optical fiber type part for optical systems
AU620904B2 (en) Optical bandpass filter
JPS62141506A (en) Optical demultiplexer and multiplexer
Love et al. Generalized Fresnel power transmission coefficients for curved graded-index media
JPH0651113A (en) Optical band pass filter module
JPS6051088B2 (en) optical distribution circuit
JPS6055801B2 (en) optical circuit element
JPS606802Y2 (en) optical distribution circuit