JPS604125B2 - Manufacturing method of high purity silicon tetrafluoride - Google Patents

Manufacturing method of high purity silicon tetrafluoride

Info

Publication number
JPS604125B2
JPS604125B2 JP2011381A JP2011381A JPS604125B2 JP S604125 B2 JPS604125 B2 JP S604125B2 JP 2011381 A JP2011381 A JP 2011381A JP 2011381 A JP2011381 A JP 2011381A JP S604125 B2 JPS604125 B2 JP S604125B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
reaction
sif3
gas
sif4
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2011381A
Other languages
Japanese (ja)
Other versions
JPS57135711A (en
Inventor
豊三 大塚
直道 木次
輝雄 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2011381A priority Critical patent/JPS604125B2/en
Priority to GB8119767A priority patent/GB2079262B/en
Priority to FR8112956A priority patent/FR2488238B1/en
Priority to US06/279,614 priority patent/US4382071A/en
Priority to DE3125989A priority patent/DE3125989C2/en
Priority to IT22716/81A priority patent/IT1137189B/en
Publication of JPS57135711A publication Critical patent/JPS57135711A/en
Publication of JPS604125B2 publication Critical patent/JPS604125B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は電子材料、太陽電池素子等のアモルファス・シ
リコン半導体を製造するに適した高純度四弗化珪素の製
造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high purity silicon tetrafluoride suitable for producing amorphous silicon semiconductors for electronic materials, solar cell elements, etc.

四弗化珪素は酸化珪素と弗化水素の反応により{1)式
より得られることは公知であり、又湿式リン酸製造時に
もリン鉱石の硫酸分解により生成することも周知である
が、反応で生成する水、或はその他の水分が存在する場
合容易に加水分解して■式の如く珪弗酸と珪酸ゲルを生
成することも亦良く知られている。
It is well known that silicon tetrafluoride can be obtained by the reaction of silicon oxide and hydrogen fluoride according to the formula {1), and it is also well known that it is produced by the sulfuric acid decomposition of phosphate rock during wet phosphoric acid production. It is also well known that in the presence of water produced by or other moisture, it is easily hydrolyzed to produce silicic acid and silicic acid gel as shown in formula (2).

Si02十4HF→SiF4十2日20
{1}$iF4十2日20→2日2SiF6十Si0
2 ■従って■式の反応を抑えるため高温に維
持し水の凝縮を防ぐか或は硫酸の様な水を吸収する媒体
で発生ガスを洗浄し日20とSiF4を分離する方法が
採られている。
Si02 14HF → SiF4 12th 20
{1} $iF4 12th 20 → 2nd day 2SiF6 10Si0
2. Therefore, in order to suppress the reaction of formula (■), methods are used to separate SiF4 and SiF4 by maintaining the temperature at a high temperature to prevent water condensation, or by washing the generated gas with a water-absorbing medium such as sulfuric acid. .

本発明者等は酸化珪素原料として非晶質又は結晶質の酸
化珪素を硫酸中に懸濁分散させ、これに弗酸又は無水弗
化水素を添加し四弗化珪素を発生させると同時に反応で
生成する水は直ちに媒体の硫酸中に吸収させSiF4を
単離させる方法に於て、得られた四弗化珪素中に不純物
としてへキサフロロジシロキサンが往々にして混在する
ことを見出した。
The present inventors suspended and dispersed amorphous or crystalline silicon oxide in sulfuric acid as a silicon oxide raw material, added hydrofluoric acid or anhydrous hydrogen fluoride to this, and simultaneously reacted to generate silicon tetrafluoride. It has been found that in a method in which SiF4 is isolated by immediately absorbing the generated water in a medium of sulfuric acid, hexafluorodisiloxane is often mixed as an impurity in the obtained silicon tetrafluoride.

へキサフロロジシロキサン(SiF3−○−SiF3)
がSiF4中に混在する場合には、グロー放電等により
アモルファスシリコン薄膜を製造時にシリコンの結合格
子内にシロキサン結合が入り込み、光軍特性に著しい悪
影響を及ぼすものである。本発明の目的はへキサフロロ
ジシロキサンの極めて少ない高純度のSiF4を得るこ
とにある。
Hexafluorodisiloxane (SiF3-○-SiF3)
If SiF4 contains siloxane bonds, the siloxane bonds will enter the bond lattice of silicon during the production of an amorphous silicon thin film due to glow discharge, etc., and this will have a significant adverse effect on the optical characteristics. The object of the present invention is to obtain highly pure SiF4 containing extremely little hexafluorodisiloxane.

へキサフロロジシロキサンの生成機構は必ずしも明確で
はないがSj02とHFの反応が次の様に逐次反応とし
て進むものと推測される。あiF4十日20一SjF3
一0−SiF3十公花 {8}‘5ー、{6)の反応
で生成する日20は媒体硫酸中に吸収されSiF4が生
成するが硫酸濃度は漸次低下する。
Although the formation mechanism of hexafluorodisiloxane is not necessarily clear, it is presumed that the reaction between Sj02 and HF proceeds as a sequential reaction as follows. AiF4 Toka 201 SjF3
10-SiF3 Jugonghua {8}'5-, The day 20 produced in the reaction of {6) is absorbed into the sulfuric acid medium and produces SiF4, but the sulfuric acid concentration gradually decreases.

一方【7)の反応も職の反応と競走して生起し、又、一
旦生成したSiF4が硫酸中に吸収された日20又は硫
酸濃度に対応する水蒸気圧分に相当する水と反応い8)
の様にへキサフロロシロキサンを生成するものと思われ
る。本発明者らは上記の知見に基づき、あらかじめ得ら
れた四弗化珪素ガス(ヘキサフロロシロキサン若干量含
む)を各種濃度の硫酸水溶液に接触させ、ヘキサフロロ
ジシロキサンの生成量が硫酸濃度により著しく影響され
ることをガスの赤外吸収スペクトルを観察することによ
り確認した。すなわち、SiF4の赤外吸収スペクトル
は1031肌‐1に最強、391、1191、1294
「1827、2057肌‐1に強い吸収を持ち、SiF
3一○−SiF3は839、1205仇‐1に強い、9
84、1032、1040、1242、12粥幼‐1、
に中位の吸収を持つスペクトルを示すが「SjF4の2
057狐‐1(Si一F伸縮)、SiF3−0−SiF
3の839弧‐1(Si−Fの伸縮)は夫々独立して存
在するため、この波数での吸収の大きさを比較すること
によりSiF4中のSiF3一〇一SiF3量を推測す
ることが可能である。かかる手段により各種硫酸濃度に
おけるSjF3一○一SiF3量を測定したところ「硫
酸濃度85%以上では原料SjF4中のSiF3−○−
SjF3量は殆んど変化しないのに対し80%以下では
急激に増加することが確認された。第1表、第1図、は
SiF4の2057功‐1の赤外吸収ピークとSiF3
−○−SiF3の839肌‐1の赤外吸収ピークの比の
変化を硫酸濃度に対して示したものである(SiF4流
速一定、温度室温、日よ04トラップ250の‘)。第
1表 各種硫酸濃度と(SiF3)20生成量原料Si
Rガス中の(SiF3)20ピーク比ム。
On the other hand, the reaction [7] also occurs in competition with the chemical reaction, and once SiF4 is absorbed into sulfuric acid, it reacts with water corresponding to the water vapor pressure corresponding to the sulfuric acid concentration8).
It is thought that hexafluorosiloxane is produced as shown in the figure. Based on the above findings, the present inventors brought silicon tetrafluoride gas (containing a small amount of hexafluorosiloxane) obtained in advance into contact with aqueous sulfuric acid solutions of various concentrations, and found that the amount of hexafluorodisiloxane produced was significantly different depending on the sulfuric acid concentration. This was confirmed by observing the infrared absorption spectrum of the gas. That is, the infrared absorption spectrum of SiF4 is strongest at 1031 skin-1, 391, 1191, 1294
"1827, 2057 has strong absorption to skin-1, and SiF
31○-SiF3 is strong against 839, 1205 enemy-1, 9
84, 1032, 1040, 1242, 12 porridge-1,
shows a spectrum with medium absorption, but “2 of SjF4
057 Fox-1 (Si-F expansion/contraction), SiF3-0-SiF
Since the 839 arc-1 of 3 (stretching and contraction of Si-F) exists independently, it is possible to estimate the amount of SiF3 101 SiF3 in SiF4 by comparing the magnitude of absorption at this wave number. It is. When the amount of SjF3-○-SiF3 at various sulfuric acid concentrations was measured using this method, it was found that "at sulfuric acid concentration of 85% or more, SiF3-○- in the raw material SjF4
It was confirmed that while the amount of SjF3 hardly changes, it increases rapidly below 80%. Table 1 and Figure 1 show the infrared absorption peak of 2057-1 of SiF4 and SiF3
-○- The change in the ratio of the infrared absorption peak of 839 skin-1 of SiF3 is shown with respect to the sulfuric acid concentration (SiF4 flow rate constant, temperature at room temperature, day 04 trap 250'). Table 1 Various sulfuric acid concentrations and (SiF3)20 production amount Raw material Si
(SiF3)20 peak ratio in R gas.

夕(1−T,/〆TO)839伽‐1ノ〃。夕(1‐T
ーノr。)2057化け1二〇,101′/〇,848
=〇,119本発明者らは、さらに以上の結果を基礎と
して反応系での硫酸濃度の影響を確認するため次のよう
な実験をおこなった。■95%硫酸中にSj02/日2
S04モル比が0.33になる様に酸化珪素原料を混合
懸濁させ無水弗酸をSi02に対して当量反応させ、反
応終了後の硫酸濃度を測定したところ85%であり、こ
の間に発生したSjF4中にはほとんどSiF3一○−
SiF3が存在しないことを見出した。■Si02と日
2S04のモル比が0.5になる様に混合したものに、
Si02に対して当量のHFを添加反応させた場合に発
生したSjF4ガスを液体N2温度のトラップ中に貯め
、これを気化させたガスをNaCIを窓板とする100
助長のセルで赤外吸収スペクトルをとりSiF3−0−
SiF3の微少なピークが存在することを確認した。こ
の時の最終硫酸濃度は80.3%であった。■90%日
2S04中にSj02/比S04モル比が0.7となる
様にSi02を添加し、無水弗酸と反応させた場合無水
弗酸の添加と共にSjF4が生成するが反応開始時と、
反応終了では発生ガス中のSiF3一○−SiF3の生
成量が非常に異なり、反応の進行につれて増加すること
を確認した。この場合の最終硫酸濃度は73%であった
。第2図はSi02/比S04モル比0.7、日2S0
4濃度90%の場合の反応開始時と終了時の生成ガスの
赤外吸収スペクトルを示したものである。
Evening (1-T, /〆TO) 839 佽-1ノ〃. Evening (1-T
No r. ) 2057 ghost 120,101'/〇,848
=〇,119 Based on the above results, the present inventors further conducted the following experiment to confirm the influence of the sulfuric acid concentration in the reaction system. ■Sj02/day2 in 95% sulfuric acid
The silicon oxide raw materials were mixed and suspended so that the S04 molar ratio was 0.33, and anhydrous hydrofluoric acid was reacted in an equivalent amount with Si02.The sulfuric acid concentration after the reaction was measured and was 85%, indicating that the amount of sulfuric acid generated during this time was 85%. Most of SjF4 contains SiF3-
It was found that SiF3 does not exist. ■Si02 and Ni2S04 are mixed so that the molar ratio is 0.5,
The SjF4 gas generated when an equivalent amount of HF is reacted with Si02 is stored in a trap at a liquid N2 temperature, and the gas is vaporized using a 100° C.
SiF3-0-
It was confirmed that a minute peak of SiF3 existed. The final sulfuric acid concentration at this time was 80.3%. ■90% day 2 When Si02 is added so that the Sj02/ratio S04 molar ratio is 0.7 during S04 and reacted with hydrofluoric anhydride, SjF4 is generated with the addition of hydrofluoric anhydride, but at the start of the reaction,
It was confirmed that at the end of the reaction, the amount of SiF3--SiF3 produced in the generated gas was very different and increased as the reaction progressed. The final sulfuric acid concentration in this case was 73%. Figure 2 shows the Si02/ratio S04 molar ratio 0.7, day 2S0
4 shows the infrared absorption spectra of the produced gas at the start and end of the reaction when the concentration is 90%.

これらの結果からへキサフロロジシロキサンの生成は棚
式に依るものが圧倒的に多いことが判り、媒体硫酸濃度
は80%以上、好ましくは85%以上であることがへキ
サフロロジシロキサンを生成させない条件であることを
確認し、本発明に到達した。すなわち、本発明は結晶質
または非晶質の酸化珪素と弗化水素を硫酸を媒体として
接触反応させ四弗化珪素を製造するに際し、媒体硫酸濃
度が80%以上に維持されることを特徴とする高純度四
弗化珪素の製造法である。本発明においては、反応濃度
は特に限定されないが、反応を室温で行なった場合、無
水弗酸の添加と共に反応液温は上昇し、65〜70℃迄
上昇する。又圧力は特に重要ではないが出来る丈減圧に
ならない様に水銀柱2〜3肋のプラス氏下が良い。本発
明方法を実施する場合の具体的対応としては媒体硫酸濃
度を80%以下にしない様な方策を採ることが肝心であ
り、例えば聡%或はそれ以上の濃硫酸又は発煙硫酸を反
応の途中別途添加し硫酸濃度の低下を補うことも可能で
あり、又所定濃度の硫酸中にSiQを均一に分散懸濁さ
せたスラリーを連続的に反応器に導入し、同時に無水弗
酸、又は無水弗酸を所定濃度の硫酸に吸収させた混酸を
当量反応器に導入し連続的にSjF4を発生させ、かつ
媒体硫酸濃度を85%以上に一定に保つことも亦可能で
ある。
These results show that the production of hexafluorodisiloxane is overwhelmingly based on the shelf method, and the medium sulfuric acid concentration must be 80% or more, preferably 85% or more to produce hexafluorodisiloxane. The present invention was achieved by confirming that the conditions do not allow this. That is, the present invention is characterized in that when producing silicon tetrafluoride through a contact reaction between crystalline or amorphous silicon oxide and hydrogen fluoride using sulfuric acid as a medium, the concentration of sulfuric acid in the medium is maintained at 80% or more. This is a method for producing high-purity silicon tetrafluoride. In the present invention, the reaction concentration is not particularly limited, but when the reaction is carried out at room temperature, the reaction solution temperature increases with the addition of hydrofluoric anhydride to 65 to 70°C. The pressure is not particularly important, but it is best to keep it below 2 to 3 degrees of mercury to avoid excessive decompression. When carrying out the method of the present invention, it is important to take measures to prevent the concentration of sulfuric acid in the medium from becoming less than 80%. It is also possible to add sulfuric acid separately to compensate for the decrease in sulfuric acid concentration. Alternatively, a slurry in which SiQ is uniformly dispersed and suspended in sulfuric acid at a predetermined concentration is continuously introduced into the reactor, and at the same time, anhydrous hydrofluoric acid or anhydrous fluoric acid is added. It is also possible to introduce a mixed acid obtained by absorbing an acid into sulfuric acid at a predetermined concentration into an equivalent reactor to continuously generate SjF4, and to keep the medium sulfuric acid concentration constant at 85% or more.

本発明で用い得る酸化珪素原料としては珪砂、石英、水
晶粉末等の結晶質の酸化珪素や、シリカゲル又はその粉
末、フェロシリコンダスト、或は化学工業製品の製造工
程中から副生する酸化珪素等の非晶質の酸化珪素が挙げ
られる。又発表原料としては弗化水素酸、無水弗化水素
「弗化水素ガス、がいづれも用い得るが、媒体硫酸濃度
を80%以上に維持するためには出来るだけ水分を含ま
ないものであることが望ましい。又取扱の面からも弗化
水素ガス又はこれを硫酸に吸収させた涙酸として用いる
ことは有利である。本発明を実施例により更に詳細に述
べる。実施例 1 内側をポリエチレンで被覆した内容積5その密閉型反応
器に95%日2S04600夕と結晶質の酸化珪素であ
るSi0299%を含む微粉砕蛙砂189夕を混合スラ
リーとした。
Examples of silicon oxide raw materials that can be used in the present invention include crystalline silicon oxide such as silica sand, quartz, and crystal powder, silica gel or its powder, ferrosilicon dust, and silicon oxide by-produced during the manufacturing process of chemical industrial products. Examples include amorphous silicon oxide. Hydrofluoric acid and anhydrous hydrogen fluoride (hydrogen fluoride gas) can both be used as raw materials for presentation, but in order to maintain the medium sulfuric acid concentration at 80% or higher, they must contain as little water as possible. Also, from the viewpoint of handling, it is advantageous to use hydrogen fluoride gas or lacrimal acid absorbed in sulfuric acid.The present invention will be described in more detail with reference to Examples.Example 1 Inside coated with polyethylene A mixed slurry of 189 ml of finely ground frog sand containing 95% 2S04,600 ml and 999% Si, which is crystalline silicon oxide, was placed in the closed reactor.

この時のSj02/日よ○4モル比は0.534である
。このスラリーを2仇pmで燈拝しつ)、98%日2S
Qで脱湿した空気を10Z′minの流量で約5時間反
応器を含めた反応系全体に流し、反応系内の空気と置換
した後、空気を止め、弗化水素ガスを40タ′Hrの割
合で反応器中に吹き込み反応を開始した。反応器内液温
は反応開始前20qCであり、反応開始と共に上昇を始
め1時間後には6ず0に達し以後はほゞ平衡状態を保っ
た。反応は6時間経線し、この間発生したガスは−15
0℃の耐圧冷却トラップ中に固体として橘集した。後に
このトラップを室温に保ち全量ガス化させ、これをNa
CI窓板を持つ100助長の気体セルに採取し日立製作
所製EPI−G21型赤外分光々度計を用いて赤外吸収
スペクトルを測定した結果へキサフロロジシロキサンの
839弧‐1の吸収ピークがSiF4の2057肌‐1
の吸収ピークに対し0.0頚屋度の高純度のSiF4ガ
スであることを確認した。この条件での反応器中の最終
硫酸濃度は81%であった。実施例 2 結晶質の酸化珪素であるSj02純度99.8%の水晶
粉末200夕を95%日よ○41000汐rに添加混合
したスラリーを内容積8その密閉型反応器に入れ外部よ
り加熱して液温60ooに保ちつ)麓梓を行なうと共に
反応系全体をN2ガスで置換した後、弗化水素ガスを6
0夕/Hrの割合で該スラリー中に導入し反応を開始し
た。
At this time, the Sj02/day ○4 molar ratio is 0.534. This slurry is heated at 2pm), 98% day 2S
The air dehumidified in Q was flowed through the entire reaction system including the reactor for about 5 hours at a flow rate of 10 Z'min, and after replacing the air in the reaction system, the air was stopped and the hydrogen fluoride gas was heated for 40 T'Hr. The reaction was started by blowing into the reactor at a rate of . The temperature of the liquid in the reactor was 20 qC before the start of the reaction, and started to rise with the start of the reaction, reaching 6.0 qC after 1 hour, and maintained an almost equilibrium state thereafter. The reaction lasted for 6 hours, and the gas generated during this time was -15
It was collected as a solid in a pressure-resistant cooling trap at 0°C. Later, this trap is kept at room temperature and the entire amount is gasified, and this is converted into Na
The absorption peak of 839 arc-1 of hexafluorodisiloxane was obtained by measuring the infrared absorption spectrum using a Hitachi EPI-G21 model infrared spectrophotometer using a 100% gas cell with a CI window plate. is SiF4 2057 skin-1
It was confirmed that the SiF4 gas was of high purity with an absorption peak of 0.0. The final sulfuric acid concentration in the reactor under these conditions was 81%. Example 2 A slurry prepared by adding 200% of SJ02 crystal powder, which is crystalline silicon oxide, with a purity of 99.8% to 41,000 liters of 95% water was placed in a closed reactor with an internal volume of 8 and heated from the outside. After the liquid temperature was maintained at 60 oo, and the entire reaction system was replaced with N2 gas, the hydrogen fluoride gas was replaced with 60 oo.
It was introduced into the slurry at a rate of 0 pm/Hr to start the reaction.

弗化水素ガスの添加開始と共に液温が上昇するため外部
より冷却し反応温度を70〜8000の範囲に抑えなが
ら5時間反応をつゞけこの間発生したガスを全量液体窒
素で冷却した耐圧トラップ中に貯えた後、トラップを徐
々に昇温させトラップ中の固体SiF4を全量ガス化さ
せた後このガスの赤外吸収スペクトルよりSiF4の2
057伽‐1と(SiF3)20の839伽‐1の吸収
比をとると0.04であり、(SiF3)20の極めて
少ないSiF4ガスであることを確認した。この時の反
応器の最終日2S04濃度は85%であった。実施例
3 90%日夕04 100重量部中にNaぶiF6よりN
a3AIF6を製造する過程で創生する非晶質の徴粉末
達酸2の重量部(Si02成分93%)を懸濁させたス
ラリーとHF:日よ○4:日20重量比が28.6:6
7.8:3.6から成る硫酸−発酸濠酸をスラリ−と混
酸の重量比が1:0.75の割合で内側をポリエチレン
で覆った内容積3その密閉型反応器に連続的に注入し渡
洋反応させると共に反応終了液を反応器底部より取り除
き同時に連続的にSip4ガスを発生させることにより
反応系中の媒体硫酸濃度を85〜87%の範囲に維持さ
せた。
As the liquid temperature rises as the addition of hydrogen fluoride gas begins, it is cooled externally to keep the reaction temperature within the range of 70 to 8,000 ℃, allowing the reaction to continue for 5 hours. During this time, the entire amount of gas generated is placed in a pressure trap cooled with liquid nitrogen. After storing the gas at
The absorption ratio of 839ka-1 between 057ka-1 and (SiF3)20 was 0.04, confirming that it was SiF4 gas with extremely low content of (SiF3)20. At this time, the 2S04 concentration in the reactor on the last day was 85%. Example
3 90% Sunshine 04 N from NabuiF6 in 100 parts by weight
A slurry in which parts by weight (Si02 component 93%) of the amorphous powder produced in the process of manufacturing AIF6 is suspended and HF: 4: 20 weight ratio is 28.6: 6
7.8:3.6 sulfuric acid-oxygen acid was continuously added to a closed reactor with an inner volume of 3 covered with polyethylene at a weight ratio of slurry and mixed acid of 1:0.75. The medium sulfuric acid concentration in the reaction system was maintained in the range of 85 to 87% by injecting the reactor and carrying out the reaction across the ocean, removing the reaction-completed liquid from the bottom of the reactor, and simultaneously generating Sip4 gas continuously.

この発生ガスを98%日2S04洗浄トラップを通し未
反応のHFを吸収除去した後耐圧容器中に圧縮充填した
後、NaCI窓板を有する100助長の気体セルで日立
製作所EPI−G21型赤外分光々度計で赤外吸収スペ
クトルを測定した結果へキサフロロジシロキサンの83
9肌‐1の吸収は極めて小さく、高純度SiF4ガスで
あることを確認した。
This generated gas was passed through a 98% day 2S04 cleaning trap to absorb and remove unreacted HF, then compressed and filled into a pressure container, and then subjected to infrared spectrometry using a Hitachi EPI-G21 type gas cell with a 100% NaCI window plate. The result of measuring the infrared absorption spectrum with a multimeter was 83 of hexafluorodisiloxane.
The absorption of 9Hada-1 was extremely small, confirming that it was a high purity SiF4 gas.

【図面の簡単な説明】[Brief explanation of drawings]

添付の図面のうち第1図はSiF4の2057弧‐1の
赤外吸収ピークとSiF3−○−SiF3の839伽‐
1の赤外吸収ピークの比の変化と硫酸濃度との関係を示
すグラフであり、第2図はSi02/日2SQモル比0
.7、日2S04濃度90%の場合の反応開始時と終了
時の生成ガスの赤外吸収スペクトルを示す。 オ1図氷2図
Of the attached drawings, Figure 1 shows the infrared absorption peak of 2057 arc-1 of SiF4 and the 839 arc-1 of SiF3-○-SiF3.
FIG. 2 is a graph showing the relationship between the change in the ratio of the infrared absorption peak of 1 and the sulfuric acid concentration.
.. 7. Day 2 Shows the infrared absorption spectra of the produced gas at the start and end of the reaction when the S04 concentration is 90%. 1 diagram ice 2 diagram

Claims (1)

【特許請求の範囲】[Claims] 1 酸化珪素と弗化水素を硫酸を媒体として接触反応さ
せ四弗化珪素を製造するに際し、媒体硫酸濃度を80%
以上に維持することを特徴とする高純度四弗化珪素の製
造法。
1 When silicon oxide and hydrogen fluoride are subjected to a contact reaction using sulfuric acid as a medium to produce silicon tetrafluoride, the concentration of sulfuric acid in the medium is 80%.
A method for producing high-purity silicon tetrafluoride, characterized by maintaining the above-mentioned purity.
JP2011381A 1980-07-02 1981-02-16 Manufacturing method of high purity silicon tetrafluoride Expired JPS604125B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011381A JPS604125B2 (en) 1981-02-16 1981-02-16 Manufacturing method of high purity silicon tetrafluoride
GB8119767A GB2079262B (en) 1980-07-02 1981-06-26 Process of preparing silicon tetrafluoride by using hydrogen fluoride gas
FR8112956A FR2488238B1 (en) 1980-07-02 1981-07-01 PROCESS FOR THE PREPARATION OF SILICON TETRAFLUORIDE USING HYDROGEN GAS FLUORIDE
US06/279,614 US4382071A (en) 1980-07-02 1981-07-01 Process of preparing silicon tetrafluoride by using hydrogen fluoride gas
DE3125989A DE3125989C2 (en) 1980-07-02 1981-07-01 Process for the production of silicon tetrafluoride using gaseous hydrogen fluoride
IT22716/81A IT1137189B (en) 1980-07-02 1981-07-02 SILICON TETRAFLUORIDE PREPARATION PROCESS USING GASEOUS FLUORIDIC ACID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011381A JPS604125B2 (en) 1981-02-16 1981-02-16 Manufacturing method of high purity silicon tetrafluoride

Publications (2)

Publication Number Publication Date
JPS57135711A JPS57135711A (en) 1982-08-21
JPS604125B2 true JPS604125B2 (en) 1985-02-01

Family

ID=12018059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011381A Expired JPS604125B2 (en) 1980-07-02 1981-02-16 Manufacturing method of high purity silicon tetrafluoride

Country Status (1)

Country Link
JP (1) JPS604125B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7666379B2 (en) 2001-07-16 2010-02-23 Voltaix, Inc. Process and apparatus for removing Bronsted acid impurities in binary halides
BRPI0813442A8 (en) * 2007-06-19 2015-12-01 Zakrytoe Aktsionernoe Obschestvo Solar Si METHOD FOR PRODUCTION OF POLYCRYSTALLINE SILICON FROM A SOLUTION OF HYDROSILICOFLUORIDIC ACID, AND INSTALLATION FOR PRODUCTION OF POLYCRYSTALLINE SILICON FROM A SOLUTION OF FLUOROSILICIC ACID IN THE FORM OF A POWDER WITH SPHERICAL-SHAPED PARTICLES
KR101140076B1 (en) * 2007-08-23 2012-04-30 오브스체스트보 에스 오그라니체노이 오트베츠트벤노스츄 '솔라르 씨' Method for producing polycrystalline silicon
KR101168942B1 (en) * 2010-04-27 2012-08-02 주식회사 케이씨씨 Method of preparing silicon tetrafluoride by using crystalline silica
KR101183367B1 (en) * 2010-07-22 2012-09-14 (주)후성 Method for producing silicon tetrafluoride and appartus used therefor

Also Published As

Publication number Publication date
JPS57135711A (en) 1982-08-21

Similar Documents

Publication Publication Date Title
GB2079262A (en) Process of preparing silicon tetrafluoride by using hydrogen fluoride gas
FI75330C (en) FOERFARANDE FOER FRAMSTAELLNING AV KISELTETRAFLUORID.
Ward et al. The preparation and properties of bis-disilanyl sulphide and tris-disilanylamine
JPS604125B2 (en) Manufacturing method of high purity silicon tetrafluoride
CN102344126B (en) Synthesis method and synthesis container of phosphorus-silicon-cadmium polycrystal
TWI465398B (en) Fabricating method of fluorine compounds
AU2006288190B2 (en) Isotope enrichment method
JPS604127B2 (en) Purification method of silicon tetrafluoride gas
KR900007836B1 (en) Process for preparation of ultrapure thorium fluorido
JPS62501286A (en) Method for producing ultra-high purity heavy metal fluoride
US3674431A (en) Generation of silicon tetrafluoride
CN102134078A (en) Method for closed-loop production of silicon tetrafluoride by utilizing sulfuric acid and quartz sand
JP2003160324A (en) Production method for silicon tetrafluoride
JP7303301B2 (en) Method for producing hydrogen fluoride
JPS5815032A (en) Manufacturing apparatus for tantalum pentoxide
Schumb et al. HEXAFLUORODISILANE1
RU2388692C2 (en) Method for synthesis of highly pure silane (versions)
US3183061A (en) Xenon tetrafluoride and process of making same
JPH0692247B2 (en) Method for producing magnesium silicofluoride
CN102515170A (en) Method for preparing tetrafluorosilane by fluorosilicic acid process
JP3123698B2 (en) Manufacturing method of fluorinated silane
JPH0336764B2 (en)
JPH06293510A (en) Production of high silica hydrosilicofluoric acid
CN110282630A (en) A method of ocratation is produced by raw material of fluosilicate
JPS6242849B2 (en)