JPS6041017B2 - Ceramic sintered body for cutting tools and its manufacturing method - Google Patents

Ceramic sintered body for cutting tools and its manufacturing method

Info

Publication number
JPS6041017B2
JPS6041017B2 JP53071240A JP7124078A JPS6041017B2 JP S6041017 B2 JPS6041017 B2 JP S6041017B2 JP 53071240 A JP53071240 A JP 53071240A JP 7124078 A JP7124078 A JP 7124078A JP S6041017 B2 JPS6041017 B2 JP S6041017B2
Authority
JP
Japan
Prior art keywords
tin
powder
sintered body
volume
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53071240A
Other languages
Japanese (ja)
Other versions
JPS54161612A (en
Inventor
義広 山本
健次 桜井
博 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP53071240A priority Critical patent/JPS6041017B2/en
Priority to US06/037,606 priority patent/US4204873A/en
Priority to DE2919370A priority patent/DE2919370C2/en
Publication of JPS54161612A publication Critical patent/JPS54161612A/en
Publication of JPS6041017B2 publication Critical patent/JPS6041017B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites

Description

【発明の詳細な説明】 本発明は切削工具用セラミック暁結体とその製法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic compact for cutting tools and a method for producing the same.

詳しくは耐熱衝撃性に優れた新規組成セラミック暁結体
とその製法に関するものである。切削工具用セラミック
孫絹体のうち切削速度が20仇h/min以上で使用で
きるのは、現在までのところアルミナ(AI203)を
主成分とする暁緒体に限られているが、フライス切削な
どで欠損しやすいのが欠点である。
More specifically, the present invention relates to a novel composition of ceramic crystals with excellent thermal shock resistance and a method for producing the same. Among ceramic grains for cutting tools, the only ones that can be used at cutting speeds of 20 h/min or higher are currently made of ceramic grains whose main component is alumina (AI203), but they can be used for milling, etc. The disadvantage is that it is easily damaged.

そこで従来よりAI203にTIC,WC,Mo2Cな
どの炭化物、TIN,ZrN,TICNなどの窒化物若
しくは、炭窒化物、又はTiB2などのホウ化物を添加
し高強度化するこが種々試みられてきた。しかしながら
これらのものは、未だ熱衝撃に弱く、フライス切削など
では欠損しやすいという欠点があった。この欠点はこれ
らのセラミックの熱伝導率が小さいことに起因する。前
記したN203の添加物のうち、WCは熱伝導率が0.
4&al/肌seで○と一番大きく、これを添加すれば
セラミック糠絹体の熱伝導率は大幅に大きくなり、耐熱
衝撃性がアップするはずであるが、実際には熱伝導率0
.0心al/肌sec℃のTICを添加した場合とほと
んど変りがない。そこで本発明者らはAI203一WC
系のセラミック孫結体について鋭意検討した結果、かか
るセラミック擬結体中には0.5山以下の微細な空孔が
発生しやすいこと、WCの一部のCがAI203と反応
し結晶中にもろいW2Cを生じること、N203の粒成
長が激しいことなどの理由により、強度低下が生じ、耐
熱衝撃性がアップせず、他の熱伝導率の低い添加物と同
程度の効果しか得られないことが判明した。本発明者ら
はかかる知見に塞き、更に研究を進めたところ、山20
3のみならずTINの一定量を添加すると、有害な気孔
を含まず結晶粒径が2ム以下の耐熱衝撃性に優れたセラ
ミック嬢縞体が得られ、このセラミックで切削チップを
作り、フライス加工を行うと従来のAI203一炭(窒
)化物系工具の2倍以上の耐欠損性能を示すことを見出
し本発明を完成した。すなわち本発明の要旨は、次の山
20360〜95容量%と、残部容量比5/95〜95
/5のWCとTINとからなり、しかも平均結晶粒径が
2仏以下である切削工具用セラミック競給体とその製法
にある。
Therefore, various attempts have been made to increase the strength of AI203 by adding carbides such as TIC, WC, and Mo2C, nitrides such as TIN, ZrN, and TICN, or borides such as carbonitride or TiB2. However, these materials still have the disadvantage that they are susceptible to thermal shock and are easily damaged during milling. This drawback is due to the low thermal conductivity of these ceramics. Among the N203 additives mentioned above, WC has a thermal conductivity of 0.
4&al/hada se has the largest ○, and adding this will greatly increase the thermal conductivity of the ceramic bran silk body and improve its thermal shock resistance, but in reality, the thermal conductivity is 0.
.. There is almost no difference from the case where TIC of 0 core/skin sec°C is added. Therefore, the inventors have developed AI203-WC.
As a result of intensive studies on the ceramic substructures of the system, it was found that fine pores of 0.5 peaks or less are likely to occur in such ceramic pseudostructures, and that some C in WC reacts with AI203 and forms in the crystals. Due to reasons such as the formation of brittle W2C and the intense grain growth of N203, strength decreases, thermal shock resistance does not improve, and the effect is only comparable to that of other additives with low thermal conductivity. There was found. Based on this knowledge, the present inventors conducted further research and found that Mt.
When not only 3 but also a certain amount of TIN is added, a ceramic striped body with excellent thermal shock resistance, which does not contain harmful pores and has a crystal grain size of 2 μm or less, can be obtained, and this ceramic can be used to make cutting chips and milling. The present invention was completed based on the discovery that the tool exhibits more than twice the fracture resistance of the conventional AI203 monocarbon (nitride) tool. In other words, the gist of the present invention is that the following mountain is 20360~95% by volume and the remaining capacity ratio is 5/95~95.
The present invention provides a ceramic competitive body for a cutting tool, which is composed of WC/5 and TIN, and has an average crystal grain size of 2 French or less, and a method for manufacturing the same.

以下に本発明を詳細に説明するに、本発明隣縞体は、A
I203,WC,TINの3成分からなり、山203が
60〜95容量%、好ましくは65〜90容量%、特に
好ましくは85〜87容量%を占め、残部をWCとTI
Nとで占めていることが必要である。
The present invention will be explained in detail below. The adjacent striped bodies of the present invention are A
Consisting of three components, I203, WC, and TIN, the peak 203 occupies 60 to 95% by volume, preferably 65 to 90% by volume, particularly preferably 85 to 87% by volume, and the remainder is WC and TI.
It is necessary that it be occupied by N.

この根拠は本発明らによる次の実験結果より明白である
。(実験 1) 純度99.9%平均粒径0.7〆のQ−山203粉末に
、純度99.0%平均粒径0.6仏炭素量6.18%の
WC粉末、純度99.0%平均粒径1.1ム窒素量21
.2%のTIN粉末、及びWC粉末とTIN粉末の合計
量の0.亀量基部の炭素粉末を添加し、常法により4q
時間混合した。
The basis for this is clear from the following experimental results by the present inventors. (Experiment 1) Q-Yama 203 powder with a purity of 99.9% and an average particle size of 0.7, and WC powder with a purity of 99.0% and an average particle size of 0.6 and a carbon content of 6.18%, and a purity of 99.0. % Average particle size 1.1 μm Nitrogen amount 21
.. 2% of TIN powder and 0.0% of the total amount of WC powder and TIN powder. Add carbon powder based on the amount of weight, and add 4q by the usual method.
Mixed for an hour.

ただしWC粉末とTIN粉末の容量比は1/1.1/1
0,10/1と一定にした。混合後原料を黒鉛型に充て
んし、温度1800℃、圧力200k9/仇、15分間
ホットプレスした。ホットプレス体を127×127×
4.8肋のSNP432チップにダイヤモンド砥石で研
削し、次の条件でフライス切削による欠損テストを行な
った。切削速度:177m/mjn 切込み :1.仇舷 送 り :0.3肌/刃 カッター:NFLO駅(1刃で使用) エンゲージ角:20o 被削物 :クロムモリブデン鋼(HRC39〜41)の
100×10仇仇面テスト方法:欠損する迄の切削回教
を比較。
However, the volume ratio of WC powder and TIN powder is 1/1.1/1
It was kept constant at 0.10/1. After mixing, the raw materials were filled into a graphite mold and hot pressed at a temperature of 1800°C and a pressure of 200k9/cm for 15 minutes. Hot press body 127x127x
A SNP432 chip with 4.8 ribs was ground with a diamond grindstone, and a chipping test was conducted by milling under the following conditions. Cutting speed: 177m/mjn Depth of cut: 1. Side feed: 0.3 skin/blade Cutter: NFLO station (used with one blade) Engagement angle: 20o Workpiece: 100 x 10 side of chrome molybdenum steel (HRC39-41) Test method: Until breakage Compare the cutting of Islam.

1の司繰り返し、その平均値を求 める。Repeat step 1 and find the average value. Melt.

テストの結果を第1図に示す。The test results are shown in Figure 1.

これらの結果より明らかなように、AI203が95客
;%より多いとWCとTINを添加した効果が表われな
いし、また6畔容量%より少ないと、粒子の小さい繊密
な嫌絹体が得られず、強度の充分な焼緒体が得られない
。AI203の残部、すなわち40〜5容量%は、WC
とTINの2成分が占めている。
As is clear from these results, if AI203 is more than 95%, the effect of adding WC and TIN will not appear, and if it is less than 6%, a delicate silk-resistant body with small particles will be obtained. Therefore, it is not possible to obtain a sintered body with sufficient strength. The remainder of AI203, i.e. 40-5% by volume, is WC
It is dominated by two components: and TIN.

これらのWC,TINの容量比は5/95〜95/5、
好ましくは1/2〜2/1、特に好ましくは〜/10〜
10/9であることが必要である。この根拠は次の実験
2の結果より明白である。(実験 2) Q−山203粉末86容量%に、種々の容量比のWC粉
末およびTin粉末を合計で14容量%炭素粉末をWC
とTINの合計重量%を添加する以外は実験1と同様に
して競結しフライス欠損テストを行なった。
The capacity ratio of these WC and TIN is 5/95 to 95/5,
Preferably 1/2 to 2/1, particularly preferably ~/10 to
It needs to be 10/9. The basis for this is clear from the results of Experiment 2 below. (Experiment 2) WC powder and Tin powder at various volume ratios were added to 86 volume % of Q-Yama 203 powder for a total of 14 volume % of carbon powder.
Competitive binding and milling chipping tests were conducted in the same manner as in Experiment 1, except that the total weight percent of TIN and TIN were added.

結果を第2図に示す。この結果よりり明らかなように、
WCとTINの容量比は本発明の所定比でないと、WC
とTIN2成分の相乗効果が発揮されず、強度の充分な
晩結体が得られない。
The results are shown in Figure 2. As is clear from this result,
If the capacitance ratio of WC and TIN is not the predetermined ratio of the present invention, WC
The synergistic effect of the two components of TIN and TIN is not exhibited, and a late set with sufficient strength cannot be obtained.

もし仮に塊鯖体の組成がAI203とWCの2成分のみ
であったならば、第2図においてTIN/(WC十TI
N)か○の場合に相当し欠損する迄の切削回数が23回
と非常に少ない。同様に暁結体の組成がAI203とT
INの2成分のみであったならば、第2図においてTI
N/(WC+TIN)が1の場合に相当し欠損する迄の
切削回数が39回と少ない。AI203,WC,TIN
と3成分であると始めて相乗効果により欠損する迄の切
削回数が増加するのである。なお本発明競給体ではWC
が有害成分であるW2Cを有する場合があるがW2Cの
量が一定量以下ならば本発明暁給体の性質にほとんど影
轡を与えない。
If the composition of the mackerel body were only two components, AI203 and WC, in Fig. 2, TIN/(WC + TI
This corresponds to case N) or ○, and the number of cuttings required before chipping is 23, which is very small. Similarly, the composition of the Akatsuki body is AI203 and T
If there were only two components of IN, then in Figure 2, TI
This corresponds to the case where N/(WC+TIN) is 1, and the number of cuttings before chipping is as small as 39. AI203, WC, TIN
When the three components are used, the number of cuttings required until chipping increases due to a synergistic effect. In addition, in the competitive body of the present invention, WC
may contain W2C, which is a harmful component, but if the amount of W2C is below a certain amount, it will hardly affect the properties of the present invention.

本発明者らはW2CとWCの量比を測定するのに、Cr
Ka線を用いたX線回折における強度比lw2c(M)
/lwc川,)を測定し、次の実験3の結果より強度比
が0.5以下ならば充分切削工具に用いることができる
。(実験 3) 炭素粉末を0.亀重量%でなく、種々の量添加する以外
は実験2と同様にして暁結しフライス欠損テストを行な
い、その際X線回折における強度比を測定した。
The present inventors used Cr to measure the ratio of W2C to WC.
Intensity ratio lw2c (M) in X-ray diffraction using Ka rays
/lwc river, ), and from the results of the following Experiment 3, if the strength ratio is 0.5 or less, it can be used for cutting tools. (Experiment 3) Carbon powder was added to 0. A breakout and milling chipping test was conducted in the same manner as in Experiment 2, except that various amounts were added instead of % by weight, and the intensity ratio in X-ray diffraction was measured.

(X線回折の方法) サンプル形状 127×127×4.8肋条 件 C
岬暮極 Niフイルタ− 3歌V‐2肌A 時定数 (T.C.)=低ec 回転速度(G.S.)=10/min スリット幅=1一1一0.3 結果を第3図に示す。
(X-ray diffraction method) Sample shape 127 x 127 x 4.8 Rib conditions C
Misakigoku Ni filter 3 songs V-2 skin A Time constant (T.C.) = low ec Rotation speed (G.S.) = 10/min Slit width = 1-1-0.3 Results are shown in 3rd page As shown in the figure.

これによりlw2c(,m)/lwC(,,.)が0.
50.5以下ならば欠損に強いセラミック競絹体である
ことがわかる。本発明燐結体は上記のN203,WC,
TINよりなり、しかも平均結晶粒径が2山以下である
ことが必要である。
As a result, lw2c(,m)/lwC(,,.) is 0.
If it is 50.5 or less, it can be seen that the ceramic competitive silk body is resistant to defects. The phosphorus bodies of the present invention include the above N203, WC,
It is necessary that the crystal grain be made of TIN and have an average crystal grain size of two peaks or less.

以下の実施例、比較例より明らかなようになるが2〃以
上になると競縞体がもろくなりフライス切削に耐えるこ
とができなくなる。さて以上の本発明焼絹体を製造する
には、まず山203,WC,TINの成分を所定の組成
比に選び調製する。次いでこの混合原料粉末を高温高圧
により暁結体する。競結は通常黒鉛型による一藤ホット
プレス、または熱間静水圧プレスで行なわれる。その際
の温度は1600〜1900q○、時間は5〜30分間
、圧力は一般に高い程良好な雛絹体が得られるが、普通
ホットプレスでは100〜300k9/仇、熱間静水圧
プレスでは500〜2000kg/ので行われる。大量
の処理で均一に繊密な糠結体を得るには、熱間静水圧プ
レスが適している。本発明の製法では、上記工程におい
て混合原料粉末を調製する際に、炭素粉末を原料粉末中
のWCとTINとの合計100重量部に対して0.05
重量部以上の割合で添加混合することを特徴とする。
As will become clear from the following Examples and Comparative Examples, when the number of stripes exceeds 2, the competitive stripe becomes brittle and cannot withstand milling. To manufacture the above-described sintered silk body of the present invention, first, the components of the mountain 203, WC, and TIN are selected and prepared in a predetermined composition ratio. Next, this mixed raw material powder is subjected to compaction at high temperature and high pressure. Bonding is usually carried out using a graphite mold using an Itto hot press or a hot isostatic press. The temperature at that time is 1600 to 1900 q○, the time is 5 to 30 minutes, and generally the higher the pressure, the better the chick silk can be obtained. It is carried out at 2000 kg/. Hot isostatic pressing is suitable for obtaining uniformly dense bran aggregates in large quantities. In the manufacturing method of the present invention, when preparing the mixed raw material powder in the above step, 0.05% carbon powder is added to 100 parts by weight of WC and TIN in the raw material powder.
It is characterized in that it is added and mixed in a proportion of not less than parts by weight.

炭素粉末を添加するのは、凝結過程で大量のWCがW2
Cに変化するのを防止するためであり、大量のW2Cが
生成すると、前述のように強度が損われるからである。
本発明者らは次の実験4により、炭素粉末の添加量は一
定範囲であることが必要であることを見出した。(実験
4) Q−AI203粉末71容量%、WC粉末16容量%T
IN粉末12容量%組成の原料粉末に、およびQ−山2
03粉末93容量%、WC粉末4容量%、TIN粉末3
容量%組成の原料粉末に種々の塁の炭素粉末(カーボン
ブラック)を添加する以外は、実験1と同様にして蛾結
しフライス切削における欠損テストを行なった。
Adding carbon powder is because a large amount of WC is added to W2 during the coagulation process.
This is to prevent W2C from changing to C, and if a large amount of W2C is generated, the strength will be impaired as described above.
The present inventors found through the following Experiment 4 that the amount of carbon powder added needs to be within a certain range. (Experiment 4) Q-AI203 powder 71% by volume, WC powder 16% by volumeT
IN powder 12% by volume raw material powder, and Q-mountain 2
03 powder 93% by volume, WC powder 4% by volume, TIN powder 3
A defect test in moth cutting and milling was conducted in the same manner as in Experiment 1, except that carbon powder (carbon black) of various bases was added to the raw material powder having a volume percent composition.

結果を第4図に示す。第4図より明らかなように、WC
とTINの合計量10の重さ部に対して0.05重量部
より少ないと、lw2c(,。,)/lwc(,,.)
が0.5より大きくなり(つまりW2Cの発生が大とな
る)、フラィス削りに耐えることができない暁絹体しか
得られない。炭素粉末添加革が多くなるとW2Cは発生
しなくなるが、AI203,WCの結晶粒径が大きくな
る額向がある。そのため炭素粉末添加量の上限は、平均
結晶粒径が2r以下である範囲より適宜決定され、例え
ば実験4の前者の原料粉末の場合には上限は0.8重量
部であり、後者の原料粉末の場合には上限は0.乳重量
部である。なお炭素粉末としては具体的にカーボンブラ
ック、アセチレンブラックなどが使用されるが、製造過
程中の原料などから混入炭素がある場合にはその分減ら
して添加すればよい。以上の本発明方法により製造され
た新規な本発明切削工具用セラミック競縞体は、耐熱衝
鱗性に優れ、このセラミック嫌鯖体を用いた切削工具用
は従釆品の2倍以上の耐欠損性能を示す。
The results are shown in Figure 4. As is clear from Figure 4, WC
If the total amount of and TIN is less than 0.05 parts by weight for 10 parts by weight, lw2c(,.,)/lwc(,,.)
becomes larger than 0.5 (that is, the generation of W2C becomes large), and only the Akatsuki silk body that cannot withstand milling is obtained. When the amount of carbon powder added leather increases, W2C does not occur, but there is a tendency for the crystal grain size of AI203 and WC to increase. Therefore, the upper limit of the amount of carbon powder added is appropriately determined from the range where the average crystal grain size is 2r or less. For example, in the case of the former raw material powder in Experiment 4, the upper limit is 0.8 parts by weight, and the upper limit is 0.8 parts by weight for the latter raw material powder. In this case, the upper limit is 0. Parts by weight of milk. Specifically, carbon black, acetylene black, etc. are used as the carbon powder, but if there is carbon mixed in from raw materials during the manufacturing process, it may be added in a reduced amount. The novel ceramic striation body for cutting tools of the present invention manufactured by the above-described method of the present invention has excellent heat-shock resistance, and the resistance of cutting tools using this ceramic striation resistance is more than twice that of conventional products. Shows deficit performance.

その理由はN203にWCおよびTINを所定量添加し
た為に、AI203にWCのみを添加した際に生ずる前
記強度低下が起らないからと考えられる。これは次の実
施例、比較例でも明らかになるがWCとTINの両者を
添加すると、有害な気孔が発生せず、また結晶粒径も大
きくならず思いもよらなかった相乗効果をもたらすもの
と考えられる。以下に本発明を実施例および比較例に基
き、更に詳細に説明するが、本発明はその要旨を越えな
い限り以下の実施例により限定されるものではない。
The reason for this is thought to be that because a predetermined amount of WC and TIN were added to N203, the strength reduction that occurs when only WC is added to AI203 does not occur. This will become clear in the following Examples and Comparative Examples, but when both WC and TIN are added, harmful pores are not generated and the crystal grain size does not increase, resulting in an unexpected synergistic effect. Conceivable. EXAMPLES The present invention will be explained in more detail below based on Examples and Comparative Examples, but the present invention is not limited to the following Examples unless the gist thereof is exceeded.

実施例1および比較例1 実験1で用いたと同一のAI203粉末、WC粉末TI
N粉末とカーボンブラックを表1に記載の組成で配合し
、ステンレス製ボールミル中に配合物0.5k9、超合
金ボール5k9、アセトン0.4X9を入れ4餌時間ボ
ールミルした。
Example 1 and Comparative Example 1 The same AI203 powder and WC powder TI used in Experiment 1
N powder and carbon black were blended in the composition shown in Table 1, and the blend 0.5k9, superalloy balls 5k9, and acetone 0.4X9 were placed in a stainless steel ball mill and ball milled for 4 feeding hours.

その後アセトンを縄散させテスト用素地とした。この素
地を黒鉛型に詰め、圧力200kg/の、温度1700
〜1900qCで18分間ホットプレスした。ホットプ
レスの形状は、13.5×13.5×5.3側であった
。ホットプレス体を実験1と同様の方法でフライス欠損
テストを行なつ*た。結果を表1に示す。なお比較のた
め表1に示す種々の組成でホットプレスし同様にフライ
ス欠損テストを行なった。
After that, acetone was sprinkled on the material to prepare a test material. This base material was packed into a graphite mold, and the pressure was 200 kg/, and the temperature was 1700.
Hot pressed at ~1900qC for 18 minutes. The shape of the hot press was 13.5 x 13.5 x 5.3 sides. The hot pressed body was subjected to a milling defect test in the same manner as in Experiment 1. The results are shown in Table 1. For comparison, various compositions shown in Table 1 were hot-pressed and similarly subjected to a milling chipping test.

表 I*1 炭素に}量 WC粉末とTIN粉末の合計量10の重量部に対する量
(重量部)*2 W2C/WC IW2c(,o,)/IWc(,,.)を略してW2C
/WCと記載する。
Table I*1 Amount for carbon} Amount (parts by weight) based on the total amount of WC powder and TIN powder 10 parts by weight *2 W2C/WC IW2c(,o,)/IWc(,,.) is abbreviated as W2C
It is written as /WC.

表1の結果より明らかなように、各成分が本発明の範囲
内にある試料M.1〜4は、いずれかの成分が範囲を外
れた試料M.5,6に比較すると格段に優れたフライス
欠損寿命を示す。
As is clear from the results in Table 1, sample M. 1 to 4 are samples M.1 in which any component was out of range. Compared to No. 5 and No. 6, it shows a much superior milling chipping life.

また成分が本発明と異なる試料地.7〜12もフライス
欠損寿命が劣る。特に山203一WC−TIC系の試料
M.10が、山203−WC−TIN系の本発明に比し
劣ることにより、TICの代りにTINを添加すると予
想できない効果をもたらすことが判る。実施例2および
比較例2 実施例1および比較例2で製造したチップを用い次の条
件で切削テストを行ない、VB=0.4帆なるまでの切
削工具の寿命を測定した。
Also, a sample material whose components are different from those of the present invention. Nos. 7 to 12 also have inferior milling chip life. In particular, the sample M.2031 WC-TIC system. It can be seen that the addition of TIN in place of TIC brings about an unexpected effect, since TIN is inferior to the Yama 203-WC-TIN system of the present invention. Example 2 and Comparative Example 2 A cutting test was conducted using the chips manufactured in Example 1 and Comparative Example 2 under the following conditions, and the life of the cutting tool until VB=0.4 was measured.

結果を表2に示す。被削材:ねずみ鋳鉄 FC20 切削速度:500/min、200/min切込み :
1.仇舷送 り :0.3側/rev 工具形状:−5,一7,5,7,15,15,08表
2*3 試料舷. 使用した試料No.,の配合組成は実施例1および比較
例1に同じ。
The results are shown in Table 2. Work material: Gray cast iron FC20 Cutting speed: 500/min, 200/min Depth of cut:
1. Overboard: 0.3 side/rev Tool shape: -5, 17, 5, 7, 15, 15, 08 table
2*3 Sample side. Sample No. used. The blending composition of , is the same as in Example 1 and Comparative Example 1.

表2より本発明暁縞体は切削工具用として寿命が長いこ
とが明白である。
From Table 2, it is clear that the dawn stripe of the present invention has a long life as a cutting tool.

【図面の簡単な説明】 第1図は実験1の結果を示し、AI2Qの容量と欠損す
る迄の切削回数との関係を示すグラフ、第2図は実験2
の結果を示し、WCとTINの容量比と欠損する迄の切
削回数との関係を示すグラフ、第3図は実験3の結果を
示し、lw丈(,o,)/lwc(,,.)と欠損する
迄の切削回数との関係を示すグラフ、第4図は実験4の
結果を示し、炭素粉末の添加量とlw2c(,m)/l
wc(.,.)との関係を示すグラフである。 イ・・・・・・WC粉末とTIN粉末の容量比が1/1
の場合。 口・・・・・・WC粉末とTIN粉末の容量比が1/1
0の場合。ハ・・・・・・WC粉末とTIN粉末の客革
比が10/1の場合。二……AI20371容量%、W
C16容量%、TINI済容量%の場合。木……N20
393容量%、WC傘容量%、TIN済容量%の場合。
第′図第2図 第5図 築ム図
[Brief explanation of the drawings] Figure 1 shows the results of Experiment 1, a graph showing the relationship between the capacity of AI2Q and the number of cuttings until chipping, and Figure 2 shows the results of Experiment 2.
Figure 3 shows the results of Experiment 3, and is a graph showing the relationship between the capacity ratio of WC and TIN and the number of cuts until chipping. Figure 4 shows the results of Experiment 4, where the amount of carbon powder added and lw2c(,m)/l
It is a graph showing the relationship with wc(.,.). A: Capacity ratio of WC powder and TIN powder is 1/1
in the case of. Mouth: Capacity ratio of WC powder and TIN powder is 1/1
If 0. C...When the ratio of WC powder to TIN powder is 10/1. 2...AI20371 capacity%, W
In the case of C16 capacity%, TINI completed capacity%. Tree...N20
For 393 capacity%, WC umbrella capacity%, and TIN capacity%.
Figure 'Figure 2 Figure 5 Construction diagram

Claims (1)

【特許請求の範囲】 1 Al_2O_360〜95容量%と、残部が容量比
5/95/5のWCとTiNとからなり、しかも平均結
晶粒径が2μ以下である切削工具用セラミツク焼結体。 2 残部が容量比1/2〜2/1のWCとTiNとから
なる特許請求の範囲第1項に記載の切削工具用セラミツ
ク焼結体。3 Al_2O_385〜87容量%と、残
部が容量比9/10〜10/9のWCとTiNとからな
る特許請求の範囲第1項に記載の切削工具用セラミツク
焼結体。 4 Al_2O_360〜95容量%と、残部が容量比
5/95〜95/5のWCとTiNとからなる原料粉末
に、炭素粉末を前記原料粉末中のWCとTiNとの合計
量100重量部に対して0.05重量部以上の割合で添
加混合し、高温高圧により焼結することを特徴とする平
均結晶粒径が2μ以下である切削工具用セラミツク焼結
体の製法。 5 Al_2O_360〜95容量%と、残部が容量比
1/2〜2/1のWCとTiNとからなる原料粉末を使
用する特許請求の範囲第4項に記載の切削工具用セラミ
ツク焼結体の製法。 6 Al_2O_385〜87容量%と、残部が容量比
9/10〜10/9のWCとTiNとからなる原料粉末
を使用する特許請求の範囲第4項に記載の切削工具用セ
ラミツク焼結体の製法。 7 焼結を温度1600〜1900℃、圧力100〜3
00kg/cm^2、5〜30分間でホツトプレスする
ことにより行う特許請求の範囲第4項ないし第6項のい
ずれかに記載の切削工具用セラミツク焼結体の製法。
[Scope of Claims] 1. A ceramic sintered body for a cutting tool, consisting of 360 to 95% by volume of Al_2O_, with the remainder being WC and TiN in a volume ratio of 5/95/5, and having an average crystal grain size of 2 μm or less. 2. The ceramic sintered body for a cutting tool according to claim 1, wherein the remainder is composed of WC and TiN with a volume ratio of 1/2 to 2/1. 3. The ceramic sintered body for a cutting tool according to claim 1, comprising 385 to 87% by volume of Al_2O_, and the balance being WC and TiN with a volume ratio of 9/10 to 10/9. 4 Al_2O_360 to 95% by volume and the balance is a raw material powder consisting of WC and TiN with a volume ratio of 5/95 to 95/5, and carbon powder is added to 100 parts by weight of the total amount of WC and TiN in the raw material powder. 1. A method for producing a ceramic sintered body for cutting tools having an average crystal grain size of 2 μm or less, which comprises adding and mixing 0.05 parts by weight or more of the above ingredients and sintering at high temperature and pressure. 5. A method for producing a ceramic sintered body for a cutting tool according to claim 4, which uses raw material powder consisting of 360 to 95% by volume of Al_2O_ and the balance being WC and TiN in a volume ratio of 1/2 to 2/1. . 6. A method for manufacturing a ceramic sintered body for a cutting tool according to claim 4, which uses raw material powder consisting of 385 to 87% by volume of Al_2O_ and the balance being WC and TiN with a volume ratio of 9/10 to 10/9. . 7 Sintering at a temperature of 1600-1900℃ and a pressure of 100-3
A method for producing a ceramic sintered body for a cutting tool according to any one of claims 4 to 6, which is carried out by hot pressing at 00 kg/cm^2 for 5 to 30 minutes.
JP53071240A 1978-06-13 1978-06-13 Ceramic sintered body for cutting tools and its manufacturing method Expired JPS6041017B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP53071240A JPS6041017B2 (en) 1978-06-13 1978-06-13 Ceramic sintered body for cutting tools and its manufacturing method
US06/037,606 US4204873A (en) 1978-06-13 1979-05-10 Sintered ceramic body for cutting tools
DE2919370A DE2919370C2 (en) 1978-06-13 1979-05-14 Ceramic molding for machining and process for its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53071240A JPS6041017B2 (en) 1978-06-13 1978-06-13 Ceramic sintered body for cutting tools and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS54161612A JPS54161612A (en) 1979-12-21
JPS6041017B2 true JPS6041017B2 (en) 1985-09-13

Family

ID=13454967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53071240A Expired JPS6041017B2 (en) 1978-06-13 1978-06-13 Ceramic sintered body for cutting tools and its manufacturing method

Country Status (3)

Country Link
US (1) US4204873A (en)
JP (1) JPS6041017B2 (en)
DE (1) DE2919370C2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617979A (en) * 1979-07-20 1981-02-20 Ngk Spark Plug Co Ceramic sintered body for cutting tool
SE417818B (en) * 1979-09-03 1981-04-13 Sandvik Ab CERAMIC ALLOY EXTREMELY COMPREHENSIVE ALUMINUM OXIDE AND NITRIDES AND / OR CARBON NITRIDES OF ONE OR MULTIPLE METALS OF GROUP IV B, V B AND WE B OF THE PERIODIC SYSTEM AND ONE OR MORE ...
WO1981001144A1 (en) * 1979-10-26 1981-04-30 Minnesota Mining & Mfg Wear resistant ceramic materials
WO1981001143A1 (en) * 1979-10-26 1981-04-30 Minnesota Mining & Mfg Ceramic compositions
US4366254A (en) * 1980-04-17 1982-12-28 The Valeron Corporation High toughness ceramic cutting tool
US4396724A (en) * 1981-05-26 1983-08-02 General Electric Co. Ceramic composition
US4452906A (en) * 1981-05-26 1984-06-05 Burden Stephen J Ceramic composition
JPS57205364A (en) * 1981-06-08 1982-12-16 Ngk Spark Plug Co Manufacture of cutting tool ceramics
US5383945A (en) * 1984-01-19 1995-01-24 Norton Company Abrasive material and method
US4855264A (en) * 1986-11-20 1989-08-08 Minnesota Mining And Manufacturing Company Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
US4957886A (en) * 1986-11-20 1990-09-18 Minnesota Mining And Manufacturing Company Aluminum oxide/aluminum oxynitride/group IVB metal nitride abrasive particles derived from a sol-gel process
US4770673A (en) * 1987-10-09 1988-09-13 Corning Glass Works Ceramic cutting tool inserts
KR920006806B1 (en) * 1990-02-24 1992-08-20 쌍용양회공업 주식회사 Preparation method of calcined body made by al2o3-ticx
DE4119183C2 (en) * 1990-12-07 1994-02-24 Starck H C Gmbh Co Kg Sintered composite abrasive article, process for its preparation and its use
CA2275468A1 (en) * 1997-10-23 1999-05-06 Shinzou Mitomi Alumina-base ceramic sinter and process for producing the same
US9845268B2 (en) * 2016-05-23 2017-12-19 Kennametal Inc. Sintered ceramic bodies and applications thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2939796A (en) * 1957-11-15 1960-06-07 Stora Kopparbergs Bergslags Ab Sintered hard alloys
JPS589137B2 (en) * 1975-02-14 1983-02-19 ダイジエツトコウギヨウ カブシキガイシヤ Cemented carbide for cutting
DE2741295C2 (en) * 1977-09-14 1989-12-14 Fried. Krupp Gmbh, 4300 Essen Ceramic molded body

Also Published As

Publication number Publication date
US4204873A (en) 1980-05-27
DE2919370A1 (en) 1979-12-20
JPS54161612A (en) 1979-12-21
DE2919370C2 (en) 1983-08-04

Similar Documents

Publication Publication Date Title
JPS6041017B2 (en) Ceramic sintered body for cutting tools and its manufacturing method
US4388085A (en) Abrasion resistant articles based on silicon nitride
JPS61201751A (en) High hardness sintered body and its manufacture
US3737289A (en) Carbide alloy
EP0035777A1 (en) Abrasion resistant silicon nitride based articles
JPS58185477A (en) High speed cutting ceramic for cutting tool
US4497228A (en) Method of machining cast iron
JPS6159391B2 (en)
JPS6156067B2 (en)
JPS6016390B2 (en) Manufacturing method of tough ceramic tool material
US2942971A (en) Process of making cemented carbide products
JPS6041020B2 (en) Alumina ceramic with high strength and hardness
JP2757469B2 (en) Tungsten carbide based cemented carbide end mill
JP2502322B2 (en) High toughness cermet
JPH0723263B2 (en) Cutting tool made of aluminum oxide based ceramics
JP2626006B2 (en) Cutting tips made of cubic boron nitride-based ultra-high pressure sintered material capable of cutting difficult-to-cut materials
JPH04144968A (en) High hardness titanium boride-based ceramics
JPS6031604B2 (en) Throw-away tip for milling made of super hard alloy
JPH01191760A (en) Tungsten carbon-based cutting tool made of sintered hard alloy for cutting of ti alloy
RU2808850C1 (en) Method for producing sintered carbide inserts for cutting tools based on tungsten carbide
EP0043583A1 (en) Abrasion resistant articles based on silicon nitride
JPH0328388B2 (en)
JPS6157381B2 (en)
JPS61143551A (en) Tough sintered hard alloy
JPS61243139A (en) Manufacture of sintered hard alloy