JPS6040984A - Approaching matter detecting apparatus - Google Patents

Approaching matter detecting apparatus

Info

Publication number
JPS6040984A
JPS6040984A JP58149866A JP14986683A JPS6040984A JP S6040984 A JPS6040984 A JP S6040984A JP 58149866 A JP58149866 A JP 58149866A JP 14986683 A JP14986683 A JP 14986683A JP S6040984 A JPS6040984 A JP S6040984A
Authority
JP
Japan
Prior art keywords
angle
optical axis
theta
center line
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58149866A
Other languages
Japanese (ja)
Inventor
Akira Matsubara
松原 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP58149866A priority Critical patent/JPS6040984A/en
Publication of JPS6040984A publication Critical patent/JPS6040984A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To reduce the change of a detecting distance, by bringing the angle formed by the optical axis of one of a light emitting element and a light receiving element and the center line crossing the center point of a line connecting both elements at right angles to a specific range when the angle formed by the aforementioned center line and the optical axis of the other element is set to -theta. CONSTITUTION:When the center line crossing the center point of a straight line connecting a light emitting element T and a light receiving element R at right angles is set to CT, an approaching matter detecting apparatus is constituted so that the angle -theta formed by the optical axis O' of the light emitting element T and the center line CT comes to the incident angle to matter. In this case, the angle (light receiving angle) formed by the optical axis O' and the center line CT is set to a range of theta-20 deg.-theta-10 deg. or theta+10 deg.-theta+20 deg.. By this constitution, an error generated by the characteristics (shape, color and material quality) of the approaching objective matter from the aspect of a detecting distance can be made small as possible.

Description

【発明の詳細な説明】 本発明は、近距離の物体を光学的に検出する近接物体検
出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nearby object detection device that optically detects objects at a short distance.

自動車の走行方向で運転席からの死角に入る近接物体を
光学的に検知する方法には、従来第1図のように発光素
子Tと受光素子Rを上下に10〜20cm程度離して検
出装置DETの外壁に設け゛ζ自動車の直前または゛直
後を監視するものがある。
Conventionally, a method of optically detecting a nearby object that enters the blind spot from the driver's seat in the driving direction of a car uses a detection device DET with a light emitting element T and a light receiving element R separated vertically by about 10 to 20 cm, as shown in Fig. 1. There is a device installed on the outside wall of the vehicle to monitor the area directly in front of or behind the vehicle.

この場合、発光素子Tと受光素子Rの水平方向の半値角
θHは第2図(a)のように広く、垂直方向の半値角θ
Vは(blのように狭く設定されるのが一般的である。
In this case, the horizontal half-value angle θH between the light-emitting element T and the light-receiving element R is wide as shown in FIG. 2(a), and the vertical half-value angle θ
V is generally set as narrow as (bl).

第1図の検出装置DETの特徴は、素子Rの光軸0と素
子Tの光軸○′が、素子R,7間を結ぶ直線に対して同
し角度をもって交叉するように対称構造とした点である
。このようにすると、画素子R,Tの指向性の重なる交
叉領域ARI (斜線部)内にある物体からの反射光を
他の領域の物体からの反射光に比べ感度良く受光できる
ので、例えば装置DETから40〜60cmという範囲
に設定した領域AR+内の物体(障害物)を容易に判断
できる。
The feature of the detection device DET shown in Fig. 1 is that it has a symmetrical structure so that the optical axis 0 of element R and the optical axis ○' of element T intersect at the same angle with respect to the straight line connecting elements R and 7. It is a point. In this way, the reflected light from the object in the intersection area ARI (hatched area) where the directivity of the pixel elements R and T overlap can be received with higher sensitivity than the reflected light from objects in other areas. Objects (obstacles) within the area AR+ set within a range of 40 to 60 cm from DET can be easily determined.

ところが、目標物が金属の様に光沢があると正反射成分
が強いために、第1図P点のように設定領域A RI外
でも装置DETの正1面に位置したやきは強い反射光を
生、し、実質的に物体検知領域が設定領域AR+より拡
大されてしまう不都合が生じる。つまり、かかる検出装
置を用いた近接警報装置では、衝突可能性のある物体に
対してたり警報を発すればよいからである。
However, if the target object is shiny like metal, the specular reflection component will be strong, so even outside the set area ARI, as shown at point P in Figure 1, a grill located on the front side of the device DET will receive strong reflected light. However, there is a problem in that the object detection area is actually expanded beyond the setting area AR+. In other words, in a proximity warning device using such a detection device, it is sufficient to issue a warning against an object that may collide with the object.

ところで、第3図に示すように物体の反射11.ll性
には差があり、例えば白い布やダン2jζ−ルは大部分
が拡散成分であるのに対し、アルミ板のような金属は正
反射成分が強いことが判る。同図の特性は物体に対し照
射する光の入射角が一10°で、その入射光強度が4.
08dBmの場合の反射光強度を、横軸に受光角度をと
って示しである。アルミ板のように正反射成分の強い物
体からの反射光強度は、受光素子を発光素子と対称的に
+10゜に置いたときが最も高い。受光素子を+10’
より負側に移動させても正側に移動さセても反射光強度
は弱まる。これに対し白い布やダンボールのように散乱
成分の強い物体からの反射光強度は受光素子の位置によ
らず略一定である。
By the way, as shown in FIG. 3, reflection 11. It can be seen that there are differences in the reflection characteristics; for example, white cloth and cardboard have mostly diffuse components, whereas metals such as aluminum plates have strong specular reflection components. The characteristics in the figure are that the incident angle of the light irradiating the object is 110 degrees, and the incident light intensity is 4.
The reflected light intensity in the case of 08 dBm is shown with the light reception angle plotted on the horizontal axis. The intensity of reflected light from an object with a strong specular reflection component, such as an aluminum plate, is highest when the light-receiving element is placed at +10 degrees symmetrically with the light-emitting element. Light receiving element +10'
The reflected light intensity weakens whether it is moved further to the negative side or to the positive side. On the other hand, the intensity of reflected light from objects with strong scattering components, such as white cloth or cardboard, is approximately constant regardless of the position of the light receiving element.

この場合、拡散光成分に注目すると、物体による反射光
の強さにあまり差のない範囲が存在することが判る。こ
の例のように発光素子から物体−の入射角を一10°と
したとき、受光素子の光軸を該物体に対し一10°〜0
“或いは20°ん30°顛けた範囲がそれである。一般
に入射角が一〇であれば十〇にアルミ板等による正反射
のピークが現われるが、そのβ−20”〜θ−10°の
範囲或いはθ+10°〜θ+20°の範囲では第3図と
同様の受光特性になる。
In this case, if we pay attention to the diffused light component, we can see that there is a range in which there is not much difference in the intensity of light reflected by objects. As in this example, when the angle of incidence from the light emitting element to the object is -10°, the optical axis of the light receiving element is set between -10° and 0° with respect to the object.
"Or the range beyond 20° to 30°. Generally speaking, if the incident angle is 10, a peak of regular reflection from an aluminum plate, etc. will appear at 100°, but the range from β-20" to θ-10° Alternatively, in the range of θ+10° to θ+20°, the light receiving characteristics are similar to those shown in FIG. 3.

本発明はこの点に着目して拡散光を受光することにより
、物体の変化に対して検出距離の変化が小さい近接物体
検知装置を構成しようとするものである。
The present invention focuses on this point and attempts to construct a nearby object detection device in which the detection distance changes little with respect to changes in the object by receiving diffused light.

本発明は、発光素子と受光素子の光軸を交叉させて画素
子の指向特性の交叉領域に存在する物体を光学的に検出
する反射型の近接物体検出装置において、該発光素子と
受光素子とを結ぶ線の中点に直交する中心線に対し一方
の素子の光軸なす角を一θとしたとき、他方の素子の光
軸と該中心線のなす角を概ねθ〜20°〜θ−10’あ
るいはθ+10°〜θ+20°の範囲に設定してなるこ
とを特徴とするが、以下図示の実施例を参照しながらこ
れを詳細に説明する。
The present invention provides a reflection-type close object detection device that optically detects an object existing in a region where the directional characteristics of a pixel element intersect by intersecting the optical axes of the light emitting element and the light receiving element. When the angle formed by the optical axis of one element is 1 θ with respect to the center line perpendicular to the midpoint of the line connecting 10' or in the range of θ+10° to θ+20°, which will be described in detail below with reference to the illustrated embodiment.

第4図は本発明の一実施例を示す説明図で、各部の記号
は第1図と同様である。発光素子1゛と受光素子Rを結
ぶ直線の中点に直交する中心線をCTとしたとき、発光
素子Tの光軸O′と中心線Cとのなす角−θが該物体へ
の入射角となる。第1図の例では、このとき受光素子R
の光軸0と中1C,’+線CTとのなす角(受光角)を
+θに設定してむするが、本例ではこの受光角をβ−2
0°〜θ−1O°或イハθ+10°〜θ+20°の範囲
に設定する。AR2はこのときの物体検知設定領域で2
ちる。
FIG. 4 is an explanatory diagram showing one embodiment of the present invention, and the symbols of each part are the same as in FIG. 1. When CT is the center line perpendicular to the midpoint of the straight line connecting the light emitting element 1' and the light receiving element R, the angle -θ between the optical axis O' of the light emitting element T and the center line C is the angle of incidence on the object. becomes. In the example of FIG. 1, at this time the light receiving element R
The angle (acceptance angle) between the optical axis 0 and the center 1C,'+ line CT is set to +θ.
It is set in the range of 0° to θ-10° or θ+10° to θ+20°. AR2 is 2 in the object detection setting area at this time.
Chiru.

第5図は自動車の後部バンパBNPに検出装置DETを
取り付けた具体例で、Aは発光強度力く零になる境界線
、Bは発光強度の半値幅Gこ相当′J−る境界線、Cは
受光感度が零となる境界線である。
Figure 5 shows a specific example in which the detection device DET is attached to the rear bumper BNP of a car, where A is the boundary line where the emission intensity becomes zero, B is the boundary line corresponding to the half width G of the emission intensity, and C is the boundary line where the light receiving sensitivity becomes zero.

第6図はこの詳細図で、I(60)〜I (40)はそ
れぞれ距離60CI11〜40−cmにおりる物体への
入射強度である。第7図(al−受光素子Rの1h向特
性、fblは発光素子Tの指向特性をそれぞれ簡略化し
て示しである。
FIG. 6 is a detailed view of this, where I(60) to I(40) are the intensities incident on the object at distances of 60 CI11 to 40 cm, respectively. FIG. 7 (al-1h direction characteristic of light receiving element R, fbl is a simplified directional characteristic of light emitting element T, respectively.

目標物が十分大きいと、距@ffi(m)離れた物体か
らの反射光を受光した受光素子Rの検出電圧■(vol
t)は で表わされる。ここでFは物体に入射する有効な光の総
エネルギで、第6図の斜線部の面積に相当する。つまり
、l = 0.5 mでF=Foとすれば、12−Q、
 (i mではF=0.IFoであり、またj2= O
If the target object is sufficiently large, the detection voltage of the light receiving element R that has received the reflected light from the object at a distance of @ffi (m) (vol.
t) is expressed as. Here, F is the total energy of effective light incident on the object, and corresponds to the area of the shaded part in FIG. In other words, if l = 0.5 m and F = Fo, then 12-Q,
(In i m, F = 0.IFo, and j2 = O
.

4mではF=5Foである。そこでβ−0,5mの物体
の検出電圧を■0とすれば+11式よりJ = 0.4
mではV = 7.8 V o、12−0.6 mでは
V=0.08Voとなる。
At 4m, F=5Fo. Therefore, if the detection voltage of the object at β-0.5 m is 0, J = 0.4 from the +11 formula.
At m, V = 7.8 Vo, and at 12-0.6 m, V = 0.08 Vo.

このことから、同一物体でも距離が0.4mから0.6
mへ変化するに従い、検出電圧に約100倍の変化が生
ずることが判る。見方を変えれば、距%]It 0.4
 mから0.6 mの間の任意の点で、100倍の検出
電圧の差がある異なる物体に対しても、その検出電圧か
ら距離を判定したとしてもその結果が距RO,4m〜0
.6mの間に収まることを意味し、物体の特性による検
出距離の差の減少に役立つ。
From this, it can be seen that even for the same object, the distance is from 0.4 m to 0.6 m.
It can be seen that as the value changes to m, the detected voltage changes approximately 100 times. If you look at it from a different perspective, the distance% ] It 0.4
Even if the distance is determined from the detected voltage for different objects with a 100 times difference in detection voltage at any point between m and 0.6 m, the result will be the distance RO, 4 m to 0.
.. This means that the detection range is within 6 m, which helps reduce the difference in detection distance due to the characteristics of the object.

尚、発光素子Tと受光素子Rの配置関係は逆であっても
よい。また各素子の指向特性を絞るに従い周囲の影響を
回避する度合いが増大する。
Note that the arrangement relationship between the light emitting element T and the light receiving element R may be reversed. Furthermore, as the directional characteristics of each element are narrowed down, the degree to which surrounding influences can be avoided increases.

以上述べたように本発明によれば、近接した目標物体の
特性(形状、色、材質)によって生ずる検出距離上の誤
差を極力小さくすることができる。
As described above, according to the present invention, errors in detection distance caused by the characteristics (shape, color, material) of a nearby target object can be minimized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の近接物体検出装置の説明1ff+、第2
図はその受光および発光素子の指向’l・?+性図、第
3図は本発明の原理説明図、第4図は本発明の一実施例
を示す説明図、第5図はその具体例の説明図、第6図は
要部詳細図、第7図は受光および発光素子の指向特性図
である。 図中、Tは発光素子、0′はその光軸、it受光素子、
0はその光軸、AR2は指向特性の交叉領域、CTは中
心線である。 出 願 人 富士通テン株式会社 代理人弁理士 青 柳 稔 第1図 第2図 第3図 第4図 ・ □快尤角度 第5図 第7図 (al 第6図 目 ■
Figure 1 shows an explanation of a conventional nearby object detection device.
The figure shows the orientation of the light receiving and light emitting elements. Figure 3 is an explanatory diagram of the principle of the present invention, Figure 4 is an explanatory diagram showing an embodiment of the present invention, Figure 5 is an explanatory diagram of a specific example thereof, Figure 6 is a detailed diagram of the main part, FIG. 7 is a directional characteristic diagram of the light receiving and light emitting elements. In the figure, T is the light emitting element, 0' is its optical axis, it light receiving element,
0 is the optical axis, AR2 is the intersection area of the directional characteristics, and CT is the center line. Applicant Fujitsu Ten Ltd. Representative Patent Attorney Minoru Aoyagi Figure 1 Figure 2 Figure 3 Figure 4 □Kai-like angle Figure 5 Figure 7 (al Figure 6 ■

Claims (1)

【特許請求の範囲】[Claims] 発光素子と受光素子の光軸を交叉させて画素子の指向特
性の交叉領域に存在する物体を光学的に検出する反射型
の近接物体検出装置において、該発光素子と受光素子と
を結ぶ線の中点に直交する中心線に対し一方の素子の光
軸なず角を−θとしたとき、他方の素子の光軸と該中心
線のなす角を概ねθ〜20°〜θ−10°あるいはθ+
10゜〜θ+20°の範囲に設定してなることを動機と
する近接物体検出装置。
In a reflection type close object detection device that optically detects an object existing in the intersection area of the directional characteristics of the pixel element by intersecting the optical axes of the light emitting element and the light receiving element, a line connecting the light emitting element and the light receiving element is used. When the angle between the optical axis of one element and the center line perpendicular to the midpoint is -θ, the angle between the optical axis of the other element and the center line is approximately θ~20°~θ−10° or θ+
A nearby object detection device that is set in the range of 10° to θ+20°.
JP58149866A 1983-08-17 1983-08-17 Approaching matter detecting apparatus Pending JPS6040984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58149866A JPS6040984A (en) 1983-08-17 1983-08-17 Approaching matter detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58149866A JPS6040984A (en) 1983-08-17 1983-08-17 Approaching matter detecting apparatus

Publications (1)

Publication Number Publication Date
JPS6040984A true JPS6040984A (en) 1985-03-04

Family

ID=15484362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58149866A Pending JPS6040984A (en) 1983-08-17 1983-08-17 Approaching matter detecting apparatus

Country Status (1)

Country Link
JP (1) JPS6040984A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269234A (en) * 1988-09-02 1990-03-08 Mold Resin:Kk Artificial wooden board material made of frp and manufacture thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465075A (en) * 1977-11-01 1979-05-25 Giken Trading Co Method of conting number of passing persons
JPS57120875A (en) * 1981-01-19 1982-07-28 Suteo Tsutsumi Method for monitoring rear of vehicle
JPS5866810A (en) * 1981-10-17 1983-04-21 Mazda Motor Corp Obstacle detector for automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5465075A (en) * 1977-11-01 1979-05-25 Giken Trading Co Method of conting number of passing persons
JPS57120875A (en) * 1981-01-19 1982-07-28 Suteo Tsutsumi Method for monitoring rear of vehicle
JPS5866810A (en) * 1981-10-17 1983-04-21 Mazda Motor Corp Obstacle detector for automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269234A (en) * 1988-09-02 1990-03-08 Mold Resin:Kk Artificial wooden board material made of frp and manufacture thereof

Similar Documents

Publication Publication Date Title
JP5484976B2 (en) Optical scanning device and distance measuring device
US10502812B2 (en) Movable body which allows detection of axial deviation of axis of surroundings detector
WO2019136854A1 (en) Laser radar and operation method therefor
JPH06230135A (en) Method and apparatus for detecting obstacle
US10812782B2 (en) Obstacle warning apparatus for vehicle
US11340063B2 (en) Infrared-based road surface monitoring system and method, and automobile
EP3206073B1 (en) Scanning optical system and radar
JP2001319290A (en) Method and device for judging vehicle kind
JP4321142B2 (en) Sign recognition device
CN115267738A (en) Laser radar
JPS6040984A (en) Approaching matter detecting apparatus
JPH0833769B2 (en) Self-propelled vehicle steering position detection device
JP2001059724A (en) Optical axis detecting device
JP3690260B2 (en) Vehicle distance measurement method
CN112379670B (en) Laser radar visual angle expanding device for robot and robot
JPS61283887A (en) Laser radar for vehicle
JP7347314B2 (en) Sensors and sensor systems
CN111722206B (en) Laser radar light path joint debugging system
JP2001075645A (en) Method and equipment for detecting position of mobing object
CN210390983U (en) Autonomous vehicle
JPH04249706A (en) Distance detecting apparatus
JP2017125765A (en) Object detection device
JPH02181807A (en) Detector for steering position of self-travelling vehicle
JPS61149876A (en) Transmitter for signal for range measurement
JPH11183608A (en) Detecting apparatus for position of object