JPS6040670A - Outside circumferential welding method of patch in saddle type welding - Google Patents

Outside circumferential welding method of patch in saddle type welding

Info

Publication number
JPS6040670A
JPS6040670A JP14745083A JP14745083A JPS6040670A JP S6040670 A JPS6040670 A JP S6040670A JP 14745083 A JP14745083 A JP 14745083A JP 14745083 A JP14745083 A JP 14745083A JP S6040670 A JPS6040670 A JP S6040670A
Authority
JP
Japan
Prior art keywords
welding
nozzle
face
axis
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14745083A
Other languages
Japanese (ja)
Inventor
Yoji Nakada
中田 陽次
Yoshikazu Miyagi
義和 宮城
Nobuhiko Matsui
松井 信彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP14745083A priority Critical patent/JPS6040670A/en
Publication of JPS6040670A publication Critical patent/JPS6040670A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/032Seam welding; Backing means; Inserts for three-dimensional seams

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To prevent undercut and decrease in strength and to perform automatically multi- layer welding at a high speed by maintaining the specified angle and distance of a torch with and from the outside circumferential end face of a patch, determining the upsetting position of multi-layer welding and controlling the torch. CONSTITUTION:Multi-layer welding is executed while the specified angle and distance of a torch axis with and from the outside circumferential end face of a patch 4 are maintained by controlling the angle theta of inclination with respect to the central axis of a nozzle 7 and the X-axis moving in the direction perpendicular to the central axis. The displacement DELTAZ in the central axial direction of the nozzle where the weld beads of the 2nd and succeeding layers exist between the weld beads of the 1st layer is measured. The measured value DELTAZ is then integrated with the tangential trigonometric function tanbeta of the angle beta at which the outside circumferential end face 6 directed by the welding torch 7 inclines with respect to the central axis of the nozzle 7. The position further from the nozzle 7 in the X-axis direction as compared with the upsetting position of welding set nearer the face 6 of the 1st layer by as much as the length corresponding to the integrated value X is set in the upsetting position of welding near the face 6 in the weld beads of the 2nd and succeeding layers, then welding is executed.

Description

【発明の詳細な説明】 本発明は大径管の母管と小径管のノズルとを軸直角に交
差させ、その交差部分に形成される3次元の相貫曲線に
沿った鞍形溶接線を溶接した後、この接合部分を補強す
るため添設した当板をさらに溶接(以下鞍形溶接と称す
)する溶接方法に関し、特に当板の外周端面を自動溶接
する場合の多層余盛り溶接を精度良く行な1)せる当板
外周溶接方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention intersects the main pipe of a large-diameter pipe and the nozzle of a small-diameter pipe at right angles to the axis, and creates a saddle-shaped weld line along a three-dimensional intersecting curve formed at the intersection. Regarding the welding method in which the attached plate is further welded to reinforce the joint after welding (hereinafter referred to as saddle welding), the precision of multi-layer excess welding is particularly important when automatically welding the outer peripheral edge of the plate. 1) Provides a method for welding the outer periphery of a backing plate that can be easily performed.

前記鞍形溶接を行なう場合、当板の外周端面はノズルの
中心軸方向にレベル差(高低差)が存しているのと、円
筒面の母管に対し銘々直交差するように端面を形成して
いることによって、溶接ト−チで外周端面を一様に溶接
仕上げしようとすると、トーチ軸の傾斜角度を前記端面
に対し一定の角度が保たれるように制御する必要かあり
、さらに、この部分の溶接は多層余盛り溶接であって外
周端面寄りでの溶接反転位置が近過ぎるとアンダカット
を生じ、遠過ぎると溶接強度が低下するので確実な位置
制御を行なう必要があり、このように可成り複雑でかつ
高度の制御を行なわねばならないので、従来はこれに適
応し得る自動溶接装置がないために専ら熟練技術者によ
る手溶接に依存しており、生産性ならびに加工コストの
面で問題があった。
When carrying out the saddle welding described above, there is a level difference (height difference) in the direction of the center axis of the nozzle on the outer peripheral end surface of the plate, and the end surface is formed so as to be orthogonal to the cylindrical main pipe. When attempting to uniformly weld the outer peripheral end face with a welding torch, it is necessary to control the inclination angle of the torch axis so that a constant angle is maintained with respect to the end face, and furthermore, The welding in this area is a multilayer weld, and if the welding reversal position near the outer peripheral end face is too close, an undercut will occur, and if it is too far, the welding strength will decrease, so it is necessary to perform reliable position control. Conventionally, there is no automatic welding equipment that can be used for this purpose, so manual welding by skilled technicians has been relied upon, resulting in low productivity and processing costs. There was a problem.

かかる実状に鑑みて本発明は成されたものであって、そ
の目的とするところは、前記当板の外周端面に対する溶
接トーチの角度一定保持と、多層余盛り溶接の溶接反転
位置確定とについての制御手段を実現せしめてなること
により、この種の溶接の自動化の推進ならびに溶接精度
の向」二安定化を果さしめる点に存する。
The present invention has been made in view of the above circumstances, and its purpose is to maintain a constant angle of the welding torch with respect to the outer peripheral end surface of the plate and to determine the welding reversal position in multi-layer welding. By realizing a control means, it is possible to promote automation of this type of welding and to achieve stable welding accuracy.

しかして本発明は、特に段形溶接について溶接1・−チ
を、前記ノズルの中心軸に対し成す傾斜角度(θ)と、
この中心軸に直角の方向に移動するX軸とについて制御
することにより、前記外周端面に対する1−−チ軸の角
度と距離とを一定に保持しながら多層余盛り溶接を行な
うに際して、第2層日以降の溶接ビードが第1層目の溶
接ヒートとの間に存するノズル中心軸方向の変位(Δ2
)を測定すると共に、この測定値(Δ2)と、溶接1−
−チが指向する外周端面がノズルの中心軸に対する傾き
角ψ)の正接三角函数(h11β)との積算を行なって
、この積算値(2)に相当する長さだけ第1層目の外周
端面寄りに設定している溶接反転位置に比して、ノズル
からX軸方向に遠去かってなる位置を、第2層目以降の
溶接ヒートにおける外周端面寄りの溶接反転位置に設定
して、前記溶接1・−チをこの溶接反転位置で反転せし
める溶接方法を特徴とするものであって、外周端面に対
する距離、角度を一定に保持しながら溶接反転位置につ
いても外周端面との距離を一定に保持する自動制御が可
能となり、ここニ所期の目的を達成し得るに至つtコも
のである。
Therefore, the present invention particularly relates to step welding, in which the angle of inclination (θ) of the welds 1 and 1 with respect to the central axis of the nozzle,
By controlling the X-axis that moves in a direction perpendicular to the central axis, the second layer can be Displacement in the nozzle center axis direction between the weld bead and the first layer weld heat after
), and this measured value (Δ2) and welding 1-
- The outer circumferential end face of the first layer is multiplied by the tangent trigonometric function (h11β) of the inclination angle ψ with respect to the central axis of the nozzle, and the outer circumferential end face of the first layer is Compared to the welding reversal position which is set closer to the welding reversal position, a position farther away from the nozzle in the X-axis direction is set as the welding reversal position closer to the outer peripheral end surface in the welding heat of the second layer and thereafter, and the welding is performed by 1. This is characterized by a welding method in which the joint is reversed at this welding reversal position, and while the distance and angle to the outer peripheral end face are held constant, the distance from the outer peripheral end face is also maintained constant at the welding reversal position. Automatic control is now possible, which makes it possible to achieve the two desired objectives.

以下、本発明の実施例を添伺図面によって説明する。Embodiments of the present invention will be described below with reference to accompanying drawings.

第1図は本発明方法の実施に係る溶接ロボットと溶接対
象のワークとを略示した図であるが、ワークは大径管の
母管(1)と小径管のノズル(2)とを軸直角に交差さ
せて接合したもので、母管(1)からノズル(2)が直
交して分岐された構造をなし、前記交差部分に形成され
る相貫曲線に沿った鞍形溶接線(3)を前記溶接ロボッ
トによって自動溶接して一体化されるものである。
FIG. 1 is a diagram schematically showing a welding robot and a workpiece to be welded according to the method of the present invention. The workpiece has a main pipe (1) of a large diameter pipe and a nozzle (2) of a small diameter pipe The nozzle (2) is orthogonally branched from the main pipe (1) and the nozzle (2) is joined at right angles, and the saddle-shaped weld line (3 ) are automatically welded and integrated by the welding robot.

」二記ワークはさらに接合部分を補強するために、ノズ
ル(2)の周りの母管(1)表面に当板(4)を添設せ
しめているが、該当板(4)は鞍形溶接線(3)に対し
合同形をなす内周端面(5)及び相似形をなす外周端面
(6)を同心に有して前記母管(1)の表面に添接し得
る形の曲面輪状を成していて、第1図の配置状態での鳥
観した形状はノズルと同心な円環となり、前記内周端面
(5)とノズル(2)周面との間及び前記外周端面(6
)と母管(1)局面との間を夫々溶接せしめる。
In order to further strengthen the joint part, the second workpiece has a plate (4) attached to the surface of the main pipe (1) around the nozzle (2), but the plate (4) is saddle-welded. A curved ring shape having an inner peripheral end surface (5) concentric with the line (3) and an outer peripheral end surface (6) having a similar shape concentrically can be attached to the surface of the main pipe (1). 1, the bird's-eye view of the arrangement shown in FIG.
) and the surface of the main pipe (1) are welded.

前記溶接ロボットはノズル(2)の中心軸を略々中心と
してその周りに公回転させるRo軸と、ノズル(2)の
中心軸に平行に昇降動させる2軸と、該2軸に直交して
ノズル(2)の周面に対し接離し得る水平方向に直線動
させるX軸との3軸を有する本体の先端部に溶接I・−
チ(7)を備えていて、さらにこの溶接トーチ(7)の
トーチ軸をノズル(2)の中心軸に対しなす傾斜角度(
のが変えられるように俯仰方向の揺動可能となしたS軸
を先端部に有している。
The welding robot has an Ro axis that revolves around the center axis of the nozzle (2), two axes that move up and down parallel to the center axis of the nozzle (2), and two axes that are orthogonal to the two axes. Welding I-
The welding torch (7) is provided with an inclination angle (
The distal end has an S axis that can be swung in the vertical direction so that the position can be changed.

この溶接ロボットによって鞍形溶接線(3)、当板(4
)の内周端面(5)及び外周端面(6)を溶接する場合
には、RO軸、z軸、X軸及びS軸を操作して溶接1−
−チ(7)を各溶接線に正しく指向せしめて自動的。
With this welding robot, the saddle-shaped welding line (3), the contact plate (4)
), when welding the inner circumferential end surface (5) and outer circumferential end surface (6), operate the RO axis, z axis, X axis, and S axis to perform welding 1-
- Automatically direct the tip (7) to each weld line correctly.

連続的に溶接を行なわせることが可能であるが、特に前
記外周端面(6)に添う溶接は前述した如く該端面が母
管(1)の局面に直交差していることから、溶接1−−
チ(7)の傾斜角度(のけ移動に応じて時々刻々変更す
る必要がある。
Although it is possible to perform welding continuously, welding along the outer circumferential end surface (6) is particularly difficult since the end surface intersects perpendicularly to the curved surface of the main pipe (1) as described above.
The inclination angle of the tip (7) (needs to be changed from time to time according to the sliding movement).

そこで、当板(4)の外周端面の位置で溶接トーチ(7
)が指向している個所よりも僅かに前方となる位置に、
倣いスタイラス(8)を当接しながらX軸については倣
い制御、zIIIllIは鞍形の計算制御を行ない、R
,軸については単位回転角度毎に位置テークを記憶部に
記憶せしめて、溶接時にはその位置テークを各動作軸に
ついて出力するようにする。
Therefore, the welding torch (7
) in a position slightly in front of the point where it is pointing.
While contacting the copying stylus (8), copying control is performed on the X axis, zIIIllI performs saddle shape calculation control, and R
, axes, the position take is stored in the storage section for each unit rotation angle, and the position take is output for each operating axis during welding.

この教示再生に合わせて溶接トーチ(7)の傾斜角度(
のを制御することが必要であるが、外周端面(6)のう
ち頂点部(イ)に対して設定した傾斜角度(θoX第2
図参照)と、母管(1)の半径@)と、ノズル(2)の
中心からその中心i11+に直交する方向に外周端面(
6)に至る距離(L)とは、予じめ決まっている不変値
であるので、これを制御装置の記憶部に基票値として読
み出し可能に夫々記憶せしめる一方、几0軸の回転角度
、すなわち、溶接!・−チ(7)が前記頂点部(イ)を
基点としてノズル(2)の中心軸まイつりに公回転する
回転角度(ω)(第4図参照)を適宜の回転角検出器に
より検出せしめて、この検出値ωと各記憶値00、R,
Lとから溶接トーチ(7)の傾斜角度(θ)を決定して
制御せしめる。
The inclination angle of the welding torch (7) (
It is necessary to control the inclination angle (θoX second
(see figure), the radius @) of the main pipe (1), and the outer peripheral end face (
Since the distance (L) leading to 6) is a predetermined and unchanging value, it is stored as a reference value in the storage unit of the control device so as to be readable, and the rotation angle of the zero axis, Namely, welding!・Detect the rotation angle (ω) (see Fig. 4) at which the chi (7) orbits around the central axis of the nozzle (2) with the apex part (a) as the base point (see Fig. 4) using an appropriate rotation angle detector. At least, this detected value ω and each stored value 00, R,
The inclination angle (θ) of the welding torch (7) is determined from L and controlled.

第3図において、頂点部(イ)以外の任意の位置の外周
端面(6)について考えると、該端面ば母管(1ンの局
面に直交しているので、この延長線は当然母管(1)の
中心(0)に交わるものである。
In Fig. 3, considering the outer circumferential end face (6) at any position other than the apex (A), this end face is perpendicular to the surface of the main pipe (1), so naturally this extension line is the main pipe (1). 1) intersects with the center (0).

そこでノズル(2)の中心軸(この中心軸は母管(1)
の中心(0)を通っている)と前記端面(6)と母管(
1)の中心(0)とを結ぶ線とが成す角ψ)すなわち外
周端面(6)が前記中心軸に対する傾き角ψ)だけ頂点
部(イ)から離れた溶接個所(ハ)の外周端面(6)に
指向している溶接1−−チ(7)の傾斜角度(のは第3
図から明らかなように 0−Oo+β ・・・(1) となる。
Therefore, the central axis of the nozzle (2) (this central axis is the main pipe (1)
passing through the center (0) of), the end surface (6) and the main pipe (
1) and the line connecting the center (0) of the welding point (C), the outer peripheral end face ( 6) The inclination angle of welding 1--chi (7) (is the third
As is clear from the figure, 0-Oo+β (1).

上記溶接個所ぐ勺が頂点部(イ)に対してノズル(2)
中心軸方向の高低レベル差を2とすると、cosβ−」
二が仁 ・・・(2) ■ の式が成立する。
The nozzle (2) is attached to the apex (a) of the welding point above.
If the height difference in the direction of the central axis is 2, then cosβ-''
Two is jin...(2) The formula ■ holds true.

一方、2については、第3図及び第4図から明らかなよ
うに 2=几−JR2−L25in2 (IJ −(3)とな
る。
On the other hand, regarding 2, as is clear from FIGS. 3 and 4, 2=几-JR2-L25in2 (IJ-(3)).

(1) 、 (2)両式より J( が得られる。From both formulas (1) and (2) J( is obtained.

従って(1)、(4)両式から 几 となる。Therefore, from both equations (1) and (4), 几 becomes.

そこで、溶接トーチ(7)のトーチ軸の傾斜角度(のを
式(5)が成立するように順次制御することによって、
溶接1〜−チ(7)のトーチ軸が当板(4)の外周端面
(6)に対しなす角度を常に一定に保持させることか可
能である。
Therefore, by sequentially controlling the inclination angle of the torch axis of the welding torch (7) so that equation (5) holds true,
It is possible to always maintain the angle that the torch axis of welding 1 to 1 (7) makes with the outer peripheral end surface (6) of the contact plate (4) constant.

しかして外周端面(6)に添った溶接は第5図に示すよ
うに多層余盛り溶接であって、各溶接層についてウィー
ビングさせる必要があるが、ウィービングさせるX軸の
位置については、初めの第1層目の基準点となる溶接反
転位置(A1)、すなわち、外周端面(6)寄りの反転
位置は、教示のため倣いスタイラス(8)で溶接前に倣
わせた際に記憶されている位置テークに基づけば良いの
で問題はない。
However, the welding along the outer circumferential end surface (6) is a multilayer welding as shown in Fig. 5, and it is necessary to weave each welding layer, but the position of the X axis for weaving is The welding reversal position (A1) that serves as the reference point for the first layer, that is, the reversal position closer to the outer peripheral end surface (6), is the position stored when tracing with the tracing stylus (8) for teaching before welding. There is no problem as long as it is based on the take.

しかし乍ら、第2層目以降のウィービングの基準点とな
る同様の溶接反転位置(A2 )(A8 )・・・は、
第5図から明らかな如く、2輔、X軸方向のそれぞれに
関して位置が異なってくる。
However, similar welding reversal positions (A2) (A8), etc., which serve as reference points for weaving from the second layer onwards, are as follows:
As is clear from FIG. 5, the two positions differ in each of the X-axis directions.

このうちの2軸方向の変位は、アーク電流値が一定とな
るよう制御することで第1層目のヒートと平行に制御さ
れるので、第1層目に対する高さの変位(Δ2)はその
位置により知ることができる。
Of these, the displacement in two axial directions is controlled in parallel to the heat of the first layer by controlling the arc current value to be constant, so the height displacement (Δ2) with respect to the first layer is This can be determined by location.

一方、X軸方向の変位(X)は、 ゴz−1nβ ・・・(6) から、 X−Δz×し0β ・・・(7) となるので、第2R目の前記反転位置(A2)は、第1
層目に比べてxl−ΔZ+X1anβ だけノズル(2
)の中心軸からX軸方向に遠去かった位置に設定すれば
よいことがわかる。
On the other hand, the displacement (X) in the X-axis direction is as follows: Goz-1nβ (6), then X-Δz×0β (7), so the 2nd R-th inversion position (A2) is the first
The nozzle (2
) can be set at a position far away from the central axis in the X-axis direction.

同様に第3層目の反転位置(八3)は、X2−ΔZ 2
 X fallβとなり、さらに遠い位置で反転させる
ようになる。
Similarly, the inversion position (83) of the third layer is X2-ΔZ2
X fall β, and it will be reversed at a further distant position.

このように、第2層目以降の反転位置は、溶接ビードか
第1層目の溶接ビートとの間に存するノズル(2)中心
軸方向の変位(Δ2)と、溶接トーチ(7)が指向する
外周端面(6)かノズル(2)の中心軸に対する傾き角
ψ)の正接三角函数(+、Inβ)との積算値(X)に
相当する長さだけ、第1層目の溶接反転位置(AI)に
比してノズル(2)からX軸方向に遠去かってなる位置
に設定されるものである。
In this way, the reversal position for the second and subsequent layers is determined by the displacement (Δ2) in the central axis direction of the nozzle (2) between the weld bead and the weld bead of the first layer, and the orientation of the welding torch (7). The welding reversal position of the first layer is moved by the length corresponding to the integrated value (X) of the tangent trigonometric function (+, Inβ) of the inclination angle ψ) with respect to the outer peripheral end face (6) or the central axis of the nozzle (2). (AI) is set at a position farther away from the nozzle (2) in the X-axis direction.

かくして、変位(Δ2)と傾き角ψ)とあ2つの変数が
測定されると、余盛りの各層の溶接反転位置を正確に設
定できる。
In this way, when the displacement (Δ2) and the inclination angle ψ) and the other two variables are measured, the welding reversal position of each layer of the extra layer can be accurately set.

なお、傾き角ψ)は前記(2)式から明らかであるが、
β−0゜、−11士 凡 により、R,Zの値からめられる。
Incidentally, the tilt angle ψ) is clear from the above equation (2), but
It can be determined from the values of R and Z by β-0° and -11.

つづいて本発明の効果を挙げると、下記の通りである。Next, the effects of the present invention are as follows.

本溶接に先立つ教示の際に記憶した当板(4)の外周端
面(6)のX軸、2軸情報を基準として、多層余盛溶接
における第2層目以降の層の溶接ビードが、前記2軸情
報として記憶されてなる第1層溶接ビード反転位置(4
)との間に存するノズル(2)中心軸方向の変位(Δ2
)と、溶接トーチ(7)が指向する外周端面(6)がノ
ズル(2)中心軸に対する傾き角qJ)との2つの値か
ら、余盛溶接の各層における外周端面(6)寄りの溶接
反転位置を正確にめて溶接l・−ヂ(7)の位置制御が
可能であるので、従来人手によって行なっていたのと同
等の当板外周余盛溶接を自動的に処理することが可能で
あり、しかも溶接反転位置を当板の外周端面に対し適正
な距離に保持し得ることによって、アンターカットある
いは溶接強度の低下などの不都合が全く生じない高精度
の溶接が行なえる効果を奏する。
Based on the X-axis and two-axis information of the outer peripheral end surface (6) of the contact plate (4) memorized during the teaching prior to main welding, the weld bead of the second and subsequent layers in multilayer reinforcement welding is determined as described above. 1st layer weld bead inversion position (4) stored as 2-axis information
) in the central axis direction of nozzle (2) (Δ2
) and the inclination angle qJ) of the outer circumferential end surface (6) toward which the welding torch (7) is oriented with respect to the nozzle (2) center axis. Since it is possible to precisely control the position of the weld l. Furthermore, since the welding reversal position can be maintained at an appropriate distance from the outer circumferential end surface of the plate, highly accurate welding can be performed without any disadvantages such as undercut or reduction in welding strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に係る溶接ロホツ]・ならびにワ
ークの概要図、第2図は前記ワークの頂点部に添う縦断
面部分図、第3図は同じく頂点部以外の設定位置に添う
縦断面部分図、第4図は前記ワークの平面図、第5図は
第1図における当板部分の拡大図である。 (1)・・・母管、(2)・・・ノズル、(3)・・・
鞍形溶接線、 (4)・・・当板、(5)・・内周端面
、 (6)・外周端面、(7)・・・溶接トーチ。
Fig. 1 is a schematic diagram of a welding process according to the present invention and a workpiece, Fig. 2 is a partial longitudinal cross-sectional view along the apex of the workpiece, and Fig. 3 is a longitudinal cross-section along a setting position other than the apex. 4 is a plan view of the workpiece, and FIG. 5 is an enlarged view of the contact plate portion in FIG. 1. (1)...Main pipe, (2)...Nozzle, (3)...
Saddle-shaped welding line, (4)...Welding plate, (5)...Inner circumferential end face, (6)...Outer circumferential end face, (7)...Welding torch.

Claims (1)

【特許請求の範囲】[Claims] 1大径管の母管(1)と小径管のノズル(2)とを軸直
角に交差させ、その交差部分に形成される相貫曲線に沿
った鞍形溶接線(3)を溶接後、この鞍形溶接線(3)
に対して合同形をなす内周端面(5)と相似形をなす外
周端面(6)とを同心に有して前記母管(1)の表面に
添接し得る当板(4)を、前記ノズル(2)周の母管(
1)表面に添設させて、前記内周端面(5)及び前記外
周端面(6)を溶接トーチ(7)によって自動溶接する
鞍形溶接において、前記溶接トーチ(7)を、前記ノズ
ル(2)の中心軸に対し成す傾斜角度(のと、この中心
軸に直角の方向に移動するX軸とについて制御すること
により、前記外周端面(6)に対する1・−チ軸の角度
と距離とを一定に保持しながら多層余盛り溶接を行なう
に際して、第2層目以降の溶接ビードが第1層目の溶接
ビー1くとの間に存するノズル(2)中心軸方向の変位
(A2)を測定すると共に、この測定値(A2)と、溶
接トーチ(7)が指向する外周端面(6)がノズル(2
)中心軸に対する傾き角ψ)の正接三角函数(t、1n
β)との積算を行なって、この積算値(X)に相当する
長さだけ第1層目の外周端面(6)寄りに設定している
溶接反転位置(A1)に比して、ノズル(2)からX軸
方向に遠去かってなる位置を、第2層目以降の溶接ヒー
トにおける外周端面(6)寄りの溶接反転位置に設定し
て、前記溶接トーチ(7)をこの溶接反転位置で反転せ
しめることを特徴とする当板外周溶接方法。
1 The main pipe (1) of the large diameter pipe and the nozzle (2) of the small diameter pipe are crossed at right angles to the axis, and after welding a saddle-shaped weld line (3) along the interpenetration curve formed at the intersection, This saddle-shaped weld line (3)
A contact plate (4) that can be attached to the surface of the main pipe (1) and has an inner circumferential end surface (5) that is congruent with the outer circumferential end surface (5) and an outer circumferential end surface (6) that is similar to the main tube concentrically, The main pipe around the nozzle (2) (
1) In saddle welding in which the inner peripheral end face (5) and the outer peripheral end face (6) are automatically welded by a welding torch (7) attached to the surface, the welding torch (7) is attached to the nozzle (2). By controlling the inclination angle formed with respect to the central axis of When performing multi-layer overfill welding while holding the position constant, measure the displacement (A2) in the direction of the center axis of the nozzle (2) where the weld beads of the second and subsequent layers exist between the weld beads of the first layer. At the same time, this measured value (A2) and the outer peripheral end surface (6) toward which the welding torch (7) is directed are determined by the nozzle (2).
) tangent trigonometric function (t, 1n
β) and the nozzle ( 2) is set as a welding reversal position near the outer peripheral end face (6) in the welding heat of the second and subsequent layers in the X-axis direction, and the welding torch (7) is set at this welding reversal position. A method for welding the outer periphery of the plate, which is characterized by inverting the outer periphery of the plate.
JP14745083A 1983-08-11 1983-08-11 Outside circumferential welding method of patch in saddle type welding Pending JPS6040670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14745083A JPS6040670A (en) 1983-08-11 1983-08-11 Outside circumferential welding method of patch in saddle type welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14745083A JPS6040670A (en) 1983-08-11 1983-08-11 Outside circumferential welding method of patch in saddle type welding

Publications (1)

Publication Number Publication Date
JPS6040670A true JPS6040670A (en) 1985-03-04

Family

ID=15430623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14745083A Pending JPS6040670A (en) 1983-08-11 1983-08-11 Outside circumferential welding method of patch in saddle type welding

Country Status (1)

Country Link
JP (1) JPS6040670A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116605A (en) * 2013-12-20 2015-06-25 株式会社鷺宮製作所 Brazing structure
CN110091037A (en) * 2019-04-30 2019-08-06 江苏海力风电设备科技股份有限公司 Offshore wind farm tower elastic support reinforced welding new process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116605A (en) * 2013-12-20 2015-06-25 株式会社鷺宮製作所 Brazing structure
CN110091037A (en) * 2019-04-30 2019-08-06 江苏海力风电设备科技股份有限公司 Offshore wind farm tower elastic support reinforced welding new process

Similar Documents

Publication Publication Date Title
CN110153534B (en) Multilayer and multi-path robot welding path planning method and system suitable for welding deformation
CN108857152A (en) Total space pose based on recombination laser structure light detects visual sensor device
US5624588A (en) Method of controlling robot for use in arc welding
US10556290B2 (en) System for coordinated stationary tracking with root path memory clocking for cylindrical welding
JP6568169B2 (en) Welding robot programming device and welding robot programming method
JPS6037273A (en) Manipulator type welding apparatus
JP2019513557A (en) Method, system and apparatus for determining search parameters for weld seam point calibration
JPH1094874A (en) Automatic welding method for tube joint
JPS6040670A (en) Outside circumferential welding method of patch in saddle type welding
CN110560976B (en) Steel coil welding method and system
CN104625314A (en) Portable pipe cutting device based on crawling mechanism
JPH06155027A (en) Automatic welding equipment for square steel pipe
JP2797444B2 (en) Multi-round welding method for pipes
JPS58122179A (en) Teaching playback robot for arc welding
CN106493205A (en) A kind of bearing calibration of heating firelock head and device
JP2709911B2 (en) Intersecting pipe welding method
JPH06328385A (en) Attitude control of visual sensor of industrial robot
JPS6040669A (en) Outer peripheral welding method of patch in saddle type welding
JPH11320092A (en) Nozzle automatic welding method
JPH0659545B2 (en) Automatic welding method
JPS6258826B2 (en)
JPS61226179A (en) Multilayer straddling automatic welding method
CN116060737B (en) Saddle line welding seam automatic welding method for riding type T-shaped joint
CN111983037B (en) Method for coupling tube joint welding seam and phased array probe by using mechanical assistance
JPS63194874A (en) Automatic welding controller for saddle type piping weld zone