JPH11320092A - Nozzle automatic welding method - Google Patents

Nozzle automatic welding method

Info

Publication number
JPH11320092A
JPH11320092A JP14064898A JP14064898A JPH11320092A JP H11320092 A JPH11320092 A JP H11320092A JP 14064898 A JP14064898 A JP 14064898A JP 14064898 A JP14064898 A JP 14064898A JP H11320092 A JPH11320092 A JP H11320092A
Authority
JP
Japan
Prior art keywords
nozzle
welding
axis
shaft
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14064898A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kamo
鴨  和彦
Shoji Kushimoto
彰司 櫛本
Hiroshi Yasukura
宏 安倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14064898A priority Critical patent/JPH11320092A/en
Publication of JPH11320092A publication Critical patent/JPH11320092A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To equalize a groove shape at each position on a weld line, to facilitate the automation of welding, and to enable a volumetric inspection such as a radiographic test and an ultrasonic test. SOLUTION: The method is such that it is intended for the butt welding of a nozzle performed by providing a groove 3a, 3b on both the tube body 1 and the nozzle 2 to be welded to the tube body; that a welding equipment WE is used which operates by catching a welding position by means of a cylindrical coordinate system loaded on the head 4 of the nozzle 2; that the welding equipment is provided with a rotary shaft 6 rotating on the axial line of the nozzle 2, a radial direction shaft 7 movable along the radial direction of the nozzle 2, an axial direction shaft 8 movable along the axial direction of the nozzle 2, and an inclined shaft 9 arranged in inclination against the axial direction shaft 8; that the radial direction shaft 7, the axial direction shaft 8 and the inclined shaft 9 are operated synchronously with the rotary shaft 6; and that a welding torch 13 is moved based on the three-dimensionally curved welding line determined on calculation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管本体に管台を溶
接にて取付ける場合に適用される管台自動溶接方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nozzle automatic welding method applied when a nozzle is attached to a pipe body by welding.

【0002】[0002]

【従来の技術】図8及び図9は従来の管台溶接方法を説
明するためのそれぞれ縦断面図及び横断面図である。こ
の従来の管台溶接方法では、管本体1上に溶接される単
純な短管状の管台2を溶接対象とし、管本体1に開けら
れている貫通孔1aに中心を合わせて管本体1の外表面
上に管台2を載置し、すみ肉溶接によって管本体1に管
台2を接合するという方法が採用されている。
8 and 9 are a longitudinal sectional view and a transverse sectional view, respectively, for explaining a conventional nozzle welding method. In this conventional nozzle stub welding method, a simple short tubular nozzle 2 to be welded on the tube main body 1 is to be welded, and the center of the tube main body 1 is aligned with the through hole 1a opened in the tube main body 1. A method is adopted in which the nozzle 2 is placed on the outer surface and the nozzle 2 is joined to the pipe body 1 by fillet welding.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の管
台溶接方法は、管台2が接合される管本体1の外表面が
曲面をなしているため、すみ肉溶接部の各位置によっ
て、開先形状が異なり、自動溶接化が困難であり、か
つ、放射線透過試験及び超音波探傷試験等の体積検査を
適用できないという問題点があった。
However, in the above conventional nozzle welding method, the outer surface of the pipe body 1 to which the nozzle 2 is joined has a curved surface. There is a problem that the groove shape is different, automatic welding is difficult, and volume inspections such as a radiation transmission test and an ultrasonic inspection test cannot be applied.

【0004】本発明は、上記従来の問題点に鑑みなされ
たものであって、その目的とするところは、溶接線上の
各位置で開先形状が同一になり、自動溶接化が容易であ
って、かつ、放射線透過試験及び超音波探傷試験等の体
積検査を適用できる管台自動溶接方法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to make a groove shape identical at each position on a welding line, thereby facilitating automatic welding. Another object of the present invention is to provide a nozzle automatic welding method to which a volume inspection such as a radiation transmission test and an ultrasonic inspection test can be applied.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、管本体と該管本体に溶接される管台との
突合わせ溶接を対象とし、前記管台の頭部に装着した円
柱座標系で溶接位置を捉えて作動する溶接装置を用い、
該溶接装置には前記管台の軸線上で旋回する旋回軸、該
管台の半径方向に沿って移動可能な半径方向軸、該管台
の軸線方向に沿って移動可能な軸線方向軸、及び該軸線
方向軸に対して傾斜配置した傾斜軸を設け、前記旋回軸
に同期して前記半径方向軸、軸線方向軸及び傾斜軸を作
動させ、計算上求めた3次元曲線状の溶接線に基づき溶
接トーチを移動させて溶接することを特徴とする。ま
た、本発明では、前記旋回軸、半径方向軸、軸線方向軸
及び傾斜軸のうちで、溶接トーチに最も近い位置にある
軸にアークボルテージコントロール軸を配置し、多層盛
り時の溶接トーチの高さ方向の位置制御を行ってもよ
く、溶接開先周方向の複数箇所で、溶接トーチにて実際
の開先位置を確認し、前記管台の中心軸線と溶接装置の
中心軸線とのずれ量を検知し、計算上求めた3次元曲線
状の溶接線の位置を修正して、精度の向上を図ることも
可能である。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention is directed to a butt welding of a pipe main body and a nozzle to be welded to the pipe main body, which is mounted on a head of the nozzle. Using a welding device that operates by capturing the welding position in the cylindrical coordinate system
The welding device includes a swivel axis that pivots on the axis of the nozzle, a radial axis that is movable in a radial direction of the nozzle, an axial axis that is movable in an axial direction of the nozzle, and A tilt axis is provided to be inclined with respect to the axial axis, and the radial axis, the axial axis, and the tilt axis are operated in synchronization with the pivot axis, and based on a three-dimensional curved welding line obtained by calculation. The welding is performed by moving the welding torch. Further, in the present invention, an arc voltage control axis is arranged on the axis closest to the welding torch among the turning axis, the radial axis, the axial axis, and the inclined axis, and the height of the welding torch at the time of multi-layer filling is arranged. The position control in the vertical direction may be performed, and at a plurality of positions in the circumferential direction of the welding groove, the actual groove position is confirmed with a welding torch, and the deviation amount between the center axis of the nozzle and the center axis of the welding device is determined. Can be detected, and the position of the three-dimensionally curved welding line obtained by calculation can be corrected to improve the accuracy.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態について、図
面を参照しながら詳細に説明する。図1は本発明の実施
の形態に係る管台自動溶接方法の溶接対象とその管台自
動溶接装置を示した概略構成図、図2は図1の管台の中
心位置における管本体の横断面図である。この管台自動
溶接方法の溶接対象は、管本体1の所定箇所に突き合わ
せ溶接される管台2である。管本体1には、突き合わせ
溶接用の開先3aが形成されている。この開先3aは、
管台2の頭部4と一体の溶着部5を含む仮想円柱との交
差線上の3次元曲線に沿った溶接線となるように、管本
体1の所定箇所に加工を施して形成される。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing a welding target and an automatic welding device for the nozzle in the automatic nozzle welding method according to the embodiment of the present invention, and FIG. 2 is a cross-sectional view of the pipe body at the center position of the nozzle in FIG. FIG. The welding target of this automatic nozzle welding method is a nozzle 2 to be butt-welded to a predetermined portion of the tube body 1. A groove 3a for butt welding is formed in the pipe body 1. This groove 3a is
It is formed by processing a predetermined portion of the pipe body 1 so as to form a welding line along a three-dimensional curve on an intersection line with the virtual cylinder including the welded portion 5 integrated with the head 4 of the nozzle 2.

【0007】管台2は、突出した円筒形の頭部4と、該
頭部4の下端に続く溶着部5とを一体に有しており、溶
着部5の外周には、管本体1側の開先3aに対向するよ
うに加工を施して突き合わせ溶接用の開先3bが形成さ
れており、頭部4が管本体1に対して垂直に突出配置さ
れる。溶着部5は、溶接後に管本体1の一部を構成すべ
く、図2に示すように管本体1の周壁の円筒曲面に合わ
せて湾曲しており、全周に亘って外周に管本体1側の開
先3aとの間でほぼU形の開先3をなすように開先3b
が形成されている。
The nozzle 2 has a cylindrical head 4 projecting therefrom and a welded portion 5 following the lower end of the head 4 integrally formed on the outer periphery of the welded portion 5. A groove 3b for butt welding is formed by processing so as to face the groove 3a, and the head 4 is disposed so as to project perpendicularly to the pipe body 1. As shown in FIG. 2, the welded portion 5 is curved so as to form a part of the pipe main body 1 in accordance with the cylindrical curved surface of the peripheral wall of the pipe main body 1. The groove 3b is formed so as to form a substantially U-shaped groove 3 with the groove 3a on the side.
Are formed.

【0008】この溶接方法に用いる管台自動溶接装置W
Eは、管台2の軸線上で旋回する旋回軸6、管台2の半
径方向に沿って移動可能な半径方向軸7、該管台2の軸
線方向に沿って移動可能な軸線方向軸8、該軸線方向軸
8に対して傾斜配置した傾斜軸9及びアーク電圧を制御
するアークボルテージコントロール軸(以下これをAV
C軸という。)10を備え、このAVC軸10を介して
溶接トーチ13が搭載されている。また、管台自動溶接
装置WEは、上記各軸の動作を制御するための制御信号
を出力するコントローラ14を備え、該コントローラ1
4の出力する制御信号によって、溶接トーチ13の位置
と姿勢が制御される。
An automatic nozzle W for the nozzle used in this welding method.
E is a swivel shaft 6 that pivots on the axis of the nozzle 2, a radial axis 7 that can move in the radial direction of the nozzle 2, and an axial axis 8 that can move in the axial direction of the nozzle 2. An inclination axis 9 inclined with respect to the axial direction axis 8 and an arc voltage control axis for controlling an arc voltage (hereinafter referred to as an AV axis).
It is called C axis. ) 10, and a welding torch 13 is mounted via the AVC shaft 10. Further, the nozzle automatic welding apparatus WE includes a controller 14 that outputs a control signal for controlling the operation of each axis, and the controller 1
The position and the attitude of the welding torch 13 are controlled by the control signal output from 4.

【0009】旋回軸6は、管台2の頭部4上端にチャッ
キング機構16を介して装着配置されており、上端に直
交配置して真直案内筒17が固着されている。半径方向
軸7は、一端に真直案内筒19を直交配置して固着して
あり、旋回軸6の上端の真直案内筒17によって管台2
の半径方向に摺動自在に支持されている。軸線方向軸8
は、下端に湾曲案内筒21を固着してあり、半径方向軸
7の一端の真直案内筒19によって管台2の軸線方向に
摺動自在に配設されている。
The turning shaft 6 is mounted on the upper end of the head 4 of the nozzle 2 via a chucking mechanism 16. A straight guide cylinder 17 is fixed to the upper end of the rotating shaft 6 at right angles. The radial shaft 7 has a straight guide tube 19 fixed at one end to be orthogonally arranged and fixed thereto.
Are slidably supported in the radial direction. Axial axis 8
Has a curved guide tube 21 fixed to the lower end, and is slidably disposed in the axial direction of the nozzle 2 by a straight guide tube 19 at one end of the radial shaft 7.

【0010】傾斜軸9は、一端に傾斜案内筒23を固着
してあり、湾曲案内筒21と同一の曲率半径にて湾曲し
ており、湾曲案内筒21によって管台2に対し交差する
方向に摺動自在に支持されている。AVC軸10は、先
端に溶接トーチ13が取付けられており、傾斜案内筒2
3によって摺動自在に案内される。
The inclined shaft 9 has an inclined guide tube 23 fixed to one end thereof, is curved with the same radius of curvature as the curved guide tube 21, and extends in a direction intersecting the nozzle 2 with the curved guide tube 21. It is slidably supported. The AVC shaft 10 has a welding torch 13 attached to the tip, and the inclined guide cylinder 2
It is slidably guided by 3.

【0011】コントローラ14は、3次元曲線となる溶
接線に対して、溶接トーチ13を追従させるように、旋
回軸6、半径方向軸7、軸線方向軸8、傾斜軸9及びA
VC軸10の5つの軸の位置及び動作を同時に制御す
る。
The controller 14 controls the turning axis 6, the radial axis 7, the axial axis 8, the tilt axis 9, and the
The positions and operations of the five axes of the VC axis 10 are simultaneously controlled.

【0012】本発明の実施の形態に係る管台自動溶接方
法について詳細に説明する。溶接線の軌跡及び溶接トー
チ13の傾斜角度KT は、図3、図4及び図5に示すよ
うに、管本体1の軸線をX軸、該軸線に直交する水平線
をY軸、鉛直線をZ軸とする円柱座標系を用いて算定表
示される。管本体1の外径をDB 、管本体1の肉厚を
T、管台2の外径をDK とし、X軸に対する溶接トーチ
13の時計方向への回転角度がθの時の溶接トーチ13
の先端位置(C点)の座標(X,Y,Z)及びZ軸に対
する溶接トーチ13の傾斜角度KT は、θ、DB 、T及
びDK の関数fによって次のように表され求められる。 X=f1 (θ,DB ,T,DK ) Y=f2 (θ,DB ,T,DK ) Z=f3 (θ,DB ,T,DK ) KT =f4 (θ,DB ,T,DK
An automatic welding method for a nozzle according to an embodiment of the present invention will be described in detail. Inclination angle K T of the trajectory of the welding line and the welding torch 13, as shown in FIGS. 3, 4 and 5, X-axis the axis of the tube body 1, Y-axis horizontal line orthogonal to the axis line, the vertical line It is calculated and displayed using a cylindrical coordinate system with the Z axis. Welding torch when D B the outer diameter of the tube body 1, the rotation angle of the wall thickness of the pipe body 1 T, the outer diameter of the nozzle 2 and D K, the clockwise direction of the welding torch 13 with respect to the X-axis θ 13
The inclination angle K T coordinates (X, Y, Z) and the welding torch 13 with respect to the Z-axis of the tip position of the (C point), theta, determined is expressed as follows by D B, T and D K of the function f Can be X = f 1 (θ, D B, T, D K) Y = f 2 (θ, D B, T, D K) Z = f 3 (θ, D B, T, D K) K T = f 4 (θ, D B, T, D K)

【0013】従って、この管台自動溶接装置WEでは、
旋回軸6に同期させて、半径方向軸7、軸線方向軸8、
傾斜軸9及びAVC軸10を駆動することで、3次元曲
線状の溶接線に沿って溶接が行われる。図3において、
座標原点及び開先の中心を通る直線SLと管本体1の外
面の溶接線軌跡LOとの交点をB、直線SLと管本体1
の内面の溶接線軌跡LIとの交点をCとすると、実物で
は、図3及び図5に示すC点からB点に至るまでの多層
盛り溶接を行うことになるが、計算上溶接線の軌跡は、
前述の方法により算定し、溶接トーチ13の高さ方向の
追従は、傾斜軸9の先端に取付けたAVC軸10で溶接
中のアーク電圧を検出して、一定電圧となるように、溶
接トーチ13の高さ位置を制御することで対応可能であ
る。
Therefore, in the automatic nozzle welding device WE,
In synchronization with the pivot axis 6, the radial axis 7, the axial axis 8,
By driving the inclined shaft 9 and the AVC shaft 10, welding is performed along a three-dimensional curved welding line. In FIG.
The intersection of the straight line SL passing through the coordinate origin and the center of the groove and the welding line locus LO on the outer surface of the pipe body 1 is represented by B, and the straight line SL and the pipe body 1
Assuming that the intersection point of the inner surface with the welding line locus LI is C, in the actual product, multi-layer welding from point C to point B shown in FIGS. 3 and 5 is performed. Is
According to the above-described method, the welding torch 13 is followed in the height direction by detecting the arc voltage during welding with the AVC shaft 10 attached to the tip of the inclined shaft 9 so that the welding torch 13 has a constant voltage. It can be handled by controlling the height position.

【0014】しかし、実物では、図6に示すように、管
台2の頭部4に管台自動溶接装置WEを取付ける際の誤
差や、管台2側の開先3bの加工誤差等により、管台2
の中心軸Ce1と管台自動溶接装置WEの中心軸Ce2とは
必ずしも一致せず、計算で求めた溶接トーチ13の位置
と実物の開先位置とにはずれがある。
However, in the actual product, as shown in FIG. 6, due to an error in attaching the automatic nozzle WE to the head 4 of the nozzle 2 and a processing error of the groove 3b on the nozzle 2 side, etc. Nozzle 2
Does not always coincide with the central axis Ce2 of the automatic nozzle welding device WE, and there is a deviation between the calculated position of the welding torch 13 and the actual groove position.

【0015】そこで、管台2の頭部4に管台自動溶接装
置WEを取付けた時点において、図6及び図7に示すよ
うに、θが0°、90°、180°、270°となる各
ポイントで、AVC軸10を除いた4つの各軸、旋回軸
6、半径方向軸7、軸線方向軸8及び傾斜軸9を用い
て、溶接トーチ13先端を開先3の中心位置に移動させ
て、計算上の位置と実物の位置とのずれ量を、各軸の駆
動系に取り付けたエンコーダで検出する。
Therefore, when the automatic nozzle WE is attached to the head 4 of the nozzle 2, θ becomes 0 °, 90 °, 180 °, 270 ° as shown in FIGS. 6 and 7. At each point, the tip of the welding torch 13 is moved to the center position of the groove 3 by using the four axes except the AVC axis 10, the swivel axis 6, the radial axis 7, the axial axis 8, and the inclined axis 9. Then, the amount of deviation between the calculated position and the actual position is detected by an encoder attached to the drive system of each axis.

【0016】次に、前述のθが0°、90°、180
°、270°となる各位置で検出したずれ量から管台2
の中心軸線に対する管台自動溶接装置WEの中心軸線の
X軸方向のずれ量ΔX、Y軸方向のずれ量ΔY、Z軸方
向のずれ量ΔZを算出し、計算で求めた溶接トーチ13
の先端位置にこれらのずれ量ΔX、ΔY、ΔZを加算す
ることによって、精度良く溶接線を追尾することが可能
である。
Next, when the aforementioned θ is 0 °, 90 °, 180 °
°, 270 ° from the displacement detected at each position
Of the center axis of the nozzle WE with respect to the center axis of the nozzle WE in the X-axis direction, the Y-axis direction shift amount ΔY, and the Z-axis direction shift amount ΔZ, and the calculated welding torch 13
By adding these deviation amounts ΔX, ΔY, and ΔZ to the tip position of, it is possible to accurately track the welding line.

【0017】ここで、図6及び図7において、θが0
°、90°、180°、270°のときのマーク■で示
す計算上の位置と、マーク×で示す実際の溶接トーチ1
3の先端位置とのずれ量をそれぞれδ0°、δ90°、δ
180 °、δ270 °で表すと、ずれ量のX軸方向、Y軸方
向のそれぞれの成分ΔX、ΔYは、 ΔX=(δ0°+δ180 °)/2、 ΔY=(δ90°+δ270 °)/2、 θが0°及び180°のときのZ軸方向のずれ量をそれ
ぞれδZ0°及びδZ180 °で表すと、ずれ量のZ軸方
向の成分ΔZは、 ΔZ=(δZ0°+δZ180 °)/2、 であり、結局、実際のトーチ13の先端位置(C′)の
座標(X′、Y′、Z′)は、X′=X+ΔX、Y′=
Y+ΔY、Z′=Z+ΔZにより求められる。
Here, in FIG. 6 and FIG.
°, 90 °, 180 °, 270 ° at the calculated position indicated by the mark ■ and the actual welding torch 1 indicated by the mark x
3 are δ0 °, δ90 °, and δ, respectively.
When expressed in terms of 180 ° and δ270 °, the components ΔX and ΔY of the shift amount in the X-axis direction and the Y-axis direction are as follows: ΔX = (δ0 ° + δ180 °) / 2, ΔY = (δ90 ° + δ270 °) / 2, When the shift amounts in the Z-axis direction when θ is 0 ° and 180 ° are represented by δZ0 ° and δZ180 °, respectively, the component of the shift amount in the Z-axis direction ΔZ is ΔZ = (δZ0 ° + δZ180 °) / 2. Therefore, the coordinates (X ′, Y ′, Z ′) of the actual tip position (C ′) of the torch 13 are X ′ = X + ΔX, Y ′ =
Y + ΔY, Z ′ = Z + ΔZ.

【0018】本発明の上記実施の形態に係る管台自動溶
接装置WEの場合、旋回軸6、半径方向軸7、軸線方向
軸8及び傾斜軸9のうちで、溶接トーチ13に最も近い
位置にある傾斜軸9にAVC軸10を配置することによ
り、多層盛り時の溶接トーチ13の高さ方向の位置制御
を行って、多層盛りを精度良く行うことができ、溶接開
先周方向の4箇所で、溶接トーチ13にて実際の開先3
の位置を確認し、管台2の中心軸線と溶接装置WEの中
心軸線とのずれ量を検知し、計算上求めた3次元曲線状
の溶接線の位置を修正して、一層の精度向上を図ること
もできるという利点がある。
In the case of the automatic nozzle welding apparatus WE according to the embodiment of the present invention, among the turning shaft 6, the radial shaft 7, the axial shaft 8, and the inclined shaft 9, the position closest to the welding torch 13 is provided. By arranging the AVC shaft 10 on a certain inclined shaft 9, the position of the welding torch 13 in the height direction can be controlled at the time of multi-layer building, and multi-layer building can be performed with high accuracy. Then, the actual groove 3 with the welding torch 13
The position of the center axis of the nozzle 2 and the center axis of the welding device WE are detected, and the position of the calculated three-dimensional curved welding line is corrected to further improve the accuracy. There is an advantage that it can be achieved.

【0019】なお、本発明は、上記実施の形態によって
限定されるものではなく、種々の変形及び変更が可能で
ある。例えば、管本体1に対し管台2が傾斜して配置さ
れ溶接される場合にも適用することができ、開先3はV
形でもよく、薄肉の管本体1及び管台2を対象とする場
合にはI形にすることもできる。また、計算上の位置と
実物との位置のずれ量を検出する際に、3箇所又は5箇
所以上でずれ量を修正してもよい。
The present invention is not limited to the above embodiment, and various modifications and changes can be made. For example, the present invention can also be applied to a case where the nozzle 2 is arranged at an angle to the pipe main body 1 and welded.
It may be a shape, and may be an I shape when the thin tube main body 1 and the nozzle 2 are targeted. In addition, when detecting the shift amount between the calculated position and the actual position, the shift amount may be corrected at three or five or more positions.

【0020】[0020]

【発明の効果】本発明は、管本体と該管本体に溶接され
る管台との突合わせ溶接を対象とすることにより、溶接
線上の各位置で開先形状を同一にし易く開先形状が位置
によって異なるのを回避することができ、管台の頭部に
装着した円柱座標系で溶接位置を捉えて作動する溶接装
置を用い、溶接装置には管台の軸線上で旋回する旋回
軸、管台の半径方向に沿って移動可能な半径方向軸、管
台の軸線方向に沿って移動可能な軸線方向軸、及び該軸
線方向軸に対して傾斜配置した傾斜軸を設け、旋回軸に
同期して半径方向軸、軸線方向軸及び傾斜軸を作動さ
せ、計算上求めた3次元曲線状の溶接線に基づき溶接ト
ーチを移動させることにより、自動溶接化が容易であ
り、かつ放射線透過試験及び超音波探傷試験等の体積検
査を適用できるという効果を奏する。また、本発明で
は、旋回軸、半径方向軸、軸線方向軸及び傾斜軸のうち
で、溶接トーチに最も近い位置にある軸にAVC軸を配
置することにより、多層盛り時の溶接トーチの高さ方向
の位置制御を行えば、多層盛りを精度良く行うことがで
き、溶接開先周方向の複数箇所で、溶接トーチにて実際
の開先位置を確認し、管台の中心軸線と溶接装置の中心
軸線とのずれ量を検知し、計算上求めた3次元曲線状の
溶接線の位置を修正すれば、一層の精度向上を図ること
もできるという利点がある。
The present invention is intended for butt welding of a pipe main body and a nozzle to be welded to the pipe main body, so that the groove shape can be easily made identical at each position on the welding line. It is possible to avoid the difference depending on the position, using a welding device that operates by capturing the welding position in a cylindrical coordinate system attached to the head of the nozzle, a turning axis that turns on the axis of the nozzle, A radial axis movable along the radial direction of the nozzle, an axial axis movable along the axial direction of the nozzle, and an inclined axis inclined with respect to the axial axis are provided and synchronized with the pivot axis. By operating the radial axis, the axial axis, and the tilt axis, and moving the welding torch based on the calculated three-dimensional curved welding line, automatic welding is easy, and the radiation transmission test and The ability to apply volumetric inspections such as ultrasonic testing Achieve the. Also, in the present invention, the height of the welding torch at the time of multi-layer filling is arranged by arranging the AVC axis on the axis closest to the welding torch among the turning axis, the radial axis, the axial direction axis, and the inclined axis. By controlling the position in the direction, it is possible to perform multi-layer filling with high accuracy, check the actual groove position with a welding torch at multiple locations in the circumferential direction of the welding groove, and check the center axis of the nozzle and the welding equipment. If the amount of deviation from the central axis is detected and the position of the three-dimensionally curved welding line obtained by calculation is corrected, there is an advantage that the accuracy can be further improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る管台自動溶接方法の
溶接対象とその管台自動溶接装置を示した概略構成図で
ある。
FIG. 1 is a schematic configuration diagram showing a welding object and an automatic welding apparatus for a nozzle in an automatic nozzle welding method according to an embodiment of the present invention.

【図2】図1の管台の中心位置における管本体の横断面
図である。
FIG. 2 is a cross-sectional view of a tube main body at a center position of the nozzle in FIG. 1;

【図3】本発明の実施の形態に係る管台自動溶接方法に
おける溶接線軌跡の説明用平面図である。
FIG. 3 is a plan view for explaining a welding line trajectory in the nozzle automatic welding method according to the embodiment of the present invention.

【図4】図3の正面図である。FIG. 4 is a front view of FIG. 3;

【図5】図3のa−a′線に沿った断面図である。FIG. 5 is a sectional view taken along line aa ′ of FIG. 3;

【図6】本発明の実施の形態に係る管台自動溶接方法に
おける溶接線軌跡の修正方法説明用平面図である。
FIG. 6 is a plan view for explaining a method of correcting a welding line locus in the automatic nozzle welding method according to the embodiment of the present invention.

【図7】図6の計算上の位置及びずれ量と溶接線軌跡の
修正後における溶接トーチ実物の先端位置との関係を説
明するための断面図である。
7 is a cross-sectional view for explaining the relationship between the calculated position and the amount of displacement in FIG. 6 and the tip position of the actual welding torch after correcting the welding line locus.

【図8】従来の管台溶接方法の溶接対象とその溶接方法
の説明用縦断面図である。
FIG. 8 is a vertical sectional view for explaining a welding target and a welding method of a conventional nozzle welding method.

【図9】図8の管台の中心位置における管本体の横断面
図である。
9 is a cross-sectional view of the tube main body at a center position of the nozzle in FIG. 8;

【符号の説明】[Explanation of symbols]

WE 溶接装置 1 管本体 2 管台 3,3a,3b 開先 4 頭部 5 溶着部 6 旋回軸 7 半径方向軸 8 軸線方向軸 9 傾斜軸 10 アークボルテージコントロール軸(AVC軸) 13 溶接トーチ 14 コントローラ 16 チャッキング機構 17,19 真直案内筒 21 湾曲案内筒 23 傾斜案内筒 WE welding device 1 Pipe body 2 Sink 3, 3a, 3b Groove 4 Head 5 Welding part 6 Revolving axis 7 Radial axis 8 Axis axis 9 Incline axis 10 Arc voltage control axis (AVC axis) 13 Welding torch 14 Controller 16 Chucking mechanism 17, 19 Straight guide tube 21 Curved guide tube 23 Inclined guide tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 管本体と該管本体に溶接される管台との
突合わせ溶接を対象とし、前記管台の頭部に装着した円
柱座標系で溶接位置を捉えて作動する溶接装置を用い、
該溶接装置には前記管台の軸線上で旋回する旋回軸、該
管台の半径方向に沿って移動可能な半径方向軸、該管台
の軸線方向に沿って移動可能な軸線方向軸、及び該軸線
方向軸に対して傾斜配置した傾斜軸を設け、前記旋回軸
に同期して前記半径方向軸、軸線方向軸及び傾斜軸を作
動させ、計算上求めた3次元曲線状の溶接線に基づき溶
接トーチを移動させて溶接することを特徴とする管台自
動溶接方法。
An object of the present invention is to use a welding apparatus for butt welding of a pipe body and a nozzle to be welded to the pipe body, which operates by grasping a welding position in a cylindrical coordinate system mounted on a head of the nozzle. ,
The welding device includes a swivel axis that pivots on the axis of the nozzle, a radial axis that is movable in a radial direction of the nozzle, an axial axis that is movable in an axial direction of the nozzle, and A tilt axis is provided to be inclined with respect to the axial axis, and the radial axis, the axial axis, and the tilt axis are operated in synchronization with the pivot axis, and based on a three-dimensional curved welding line obtained by calculation. A nozzle automatic welding method characterized by moving a welding torch for welding.
JP14064898A 1998-05-22 1998-05-22 Nozzle automatic welding method Withdrawn JPH11320092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14064898A JPH11320092A (en) 1998-05-22 1998-05-22 Nozzle automatic welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14064898A JPH11320092A (en) 1998-05-22 1998-05-22 Nozzle automatic welding method

Publications (1)

Publication Number Publication Date
JPH11320092A true JPH11320092A (en) 1999-11-24

Family

ID=15273551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14064898A Withdrawn JPH11320092A (en) 1998-05-22 1998-05-22 Nozzle automatic welding method

Country Status (1)

Country Link
JP (1) JPH11320092A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137024A1 (en) * 2013-03-08 2014-09-12 한국수력원자력 주식회사 Outlet nozzle of nuclear reactor
WO2018008169A1 (en) 2016-07-07 2018-01-11 三菱重工業株式会社 Pipe base welding method, pipe base inspection method, and pipe base manufacturing method
CN111590161A (en) * 2020-04-07 2020-08-28 中车青岛四方机车车辆股份有限公司 Automatic welding method for urban rail tubular cross beam and plate-shaped part
CN114749786A (en) * 2022-05-20 2022-07-15 中南大学 Method and device for friction stir welding based on cylindrical coordinates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014137024A1 (en) * 2013-03-08 2014-09-12 한국수력원자력 주식회사 Outlet nozzle of nuclear reactor
WO2018008169A1 (en) 2016-07-07 2018-01-11 三菱重工業株式会社 Pipe base welding method, pipe base inspection method, and pipe base manufacturing method
CN111590161A (en) * 2020-04-07 2020-08-28 中车青岛四方机车车辆股份有限公司 Automatic welding method for urban rail tubular cross beam and plate-shaped part
CN111590161B (en) * 2020-04-07 2022-02-18 中车青岛四方机车车辆股份有限公司 Automatic welding method for urban rail tubular cross beam and plate-shaped part
CN114749786A (en) * 2022-05-20 2022-07-15 中南大学 Method and device for friction stir welding based on cylindrical coordinates

Similar Documents

Publication Publication Date Title
CN104364047A (en) Device for connecting the ends of pipes made of steel by means of an orbital welding process
JPH01216789A (en) Method for detecting and controlling target in space and remote controller for executing said method
NO309367B1 (en) Automatic tracking system for welding of pipelines
WO2016009502A1 (en) Turning processing control device and turning processing assist program
JP2010017731A (en) Welding apparatus and welding method
JPH08278117A (en) Attitude control device for work apparatus relative to work object plane, crucible instrumentation device with the control device and painting device
JPH11320092A (en) Nozzle automatic welding method
JP3397311B2 (en) Tube section center position measuring method and tube processing guide device
JPH02104474A (en) Measuring instrument for pipe inside welding position
JP3937814B2 (en) Automatic welding equipment
JPH06328385A (en) Attitude control of visual sensor of industrial robot
CN108098746A (en) Mechanical arm and mechanical arm bootstrap operating method
CN114309930A (en) Symmetrical double-station spray pipe laser welding equipment
JP2003326382A (en) Laser welding equipment and method
JPS59118278A (en) Treatment of tab plate for uo pipe
JP7438896B2 (en) Welding method and welding equipment
JPH09150264A (en) Positioning jig and welding equipment for welding steel segment
JP2002103039A (en) Automatic welding equipment
JP2824914B2 (en) Control method of welding torch for welding robot
JPH07185815A (en) Saddle shape welding equipment
JP2005066683A (en) Seam welding method
JPH06142967A (en) Method for correcting laser beam head of laser beam robot
JPH01162575A (en) Detector for weld line
JP2010111932A (en) Thermal spraying system
JPS6293077A (en) Automatic welding device for branch pipe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802