JPS6040246B2 - How to lay underground communication lines - Google Patents
How to lay underground communication linesInfo
- Publication number
- JPS6040246B2 JPS6040246B2 JP52102242A JP10224277A JPS6040246B2 JP S6040246 B2 JPS6040246 B2 JP S6040246B2 JP 52102242 A JP52102242 A JP 52102242A JP 10224277 A JP10224277 A JP 10224277A JP S6040246 B2 JPS6040246 B2 JP S6040246B2
- Authority
- JP
- Japan
- Prior art keywords
- phase
- communication lines
- power transmission
- line
- transmission line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Laying Of Electric Cables Or Lines Outside (AREA)
Description
【発明の詳細な説明】
この発明は、地中における送電線路と併設する通信線路
の電磁誘導電圧の相殺又は軽減方法に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for canceling or reducing electromagnetic induced voltage in a communication line installed alongside an underground power transmission line.
従来、通信線路の電磁誘導電圧を軽減する対策として、
通信線に導電層として銅テープ又はアルミニウムテープ
を磁性層として軟鉄テープ又は鋼帯等を施したいわゆる
亀滋しやへし、ケーブルを用いて導電層の両端を低抵抗
接地する方式や誘導電圧抑圧線論等の保安装置が用いら
れていたが、特に前者の場合は、電磁しやへし、効果を
良くするためには、銅テープ又はアルミニウムテープを
厚くして導電層の抵抗を下げることやあるいは透磁率の
高い軟鉄テープ又は鋼帯等を磁性層として使用すること
等が必要であるため、ケーブルのコストが高くなると共
に、外径が大きくなると同時に重量が増加し、これに比
例して可とう性が悪くなり取扱いが面倒な上に不経済で
ある等の欠点を有すると共に、このような電磁しやへし
、ケーブルは両端を接地して使用することが必要であり
、その性能は接地抵抗の大きさに大きく左右されて性能
的にあまり好ましくなかった。Conventionally, as a measure to reduce electromagnetic induced voltage on communication lines,
The so-called Kamishiyaheshi, which is a communication line with a copper tape or aluminum tape as a conductive layer and a soft iron tape or steel strip as a magnetic layer, a method in which both ends of the conductive layer are grounded with low resistance using a cable, and induced voltage suppression. Safety devices such as wire theory were used, but especially in the case of the former, it was necessary to reduce the resistance of the conductive layer by making the copper tape or aluminum tape thicker to improve the effectiveness. Alternatively, it is necessary to use a soft iron tape or steel strip with high magnetic permeability as the magnetic layer, which increases the cost of the cable and increases the weight as the outer diameter increases. In addition to having disadvantages such as poor flexibility, cumbersome handling, and being uneconomical, such electromagnetic shields and cables must be used with both ends grounded, and their performance is limited by grounding. Performance was not very favorable as it was greatly influenced by the magnitude of resistance.
又、後者の場合は、誘導量並びにその絶縁性等の対策面
の上から1回線当りの設備費が大きくなり経済性にすぐ
れず、特に多対ケーブルにおいては不経済であるという
欠点があった。この発明は、このような欠点を除去する
ためになされたもので、通信線に何ら特別の電磁しやへ
し・を施したり、又は保安装置を用いたりすることなく
、通信線の布設のしかたにより所定の電磁しやへし、効
果を得る通信線路の布設方法の提供を目的としたもので
ある。In addition, in the latter case, the equipment cost per line increases due to the amount of induction and its insulation, which is not economical, and it is especially uneconomical for multi-pair cables. . This invention was made to eliminate these drawbacks, and provides a method for laying communication lines without applying any special electromagnetic shielding or security devices to the communication lines. The purpose of this invention is to provide a method for laying a communication line that achieves a predetermined electromagnetic shielding effect.
次に、この発明の一実施例を図面について説明すると、
3相地中送電線路による電磁誘導電圧は、第1凶及び{
B}に示すように送電線のR相、S相、T相との相対位
置関係によって、誘導電圧の実数部及び虚数部の大きさ
及び極性が異なり任意の位置における大きさをa及びb
とすれば、誘導電圧が(a+功)、(a−ib)、(一
a−功)の3通りの位相関係を有することに着目し、第
2図に示すように一定長さ毎に通信線路の位置を交互に
変えて布設(以下、交叉布設と呼ぶ。Next, one embodiment of this invention will be explained with reference to the drawings.
The electromagnetic induced voltage due to the three-phase underground transmission line is
B}, the magnitude and polarity of the real and imaginary parts of the induced voltage vary depending on the relative positional relationship with the R phase, S phase, and T phase of the power transmission line.
Then, focusing on the fact that the induced voltage has three phase relationships: (a + gong), (a-ib), and (1a-kong), we can communicate at fixed length intervals as shown in Figure 2. Laying the tracks by alternating their positions (hereinafter referred to as cross-laying).
)して一定長さ毎の譲導電圧を所定長さ内で相殺又は軽
減するのである。この場合、‘B}のように通信線路は
送電線路のS相を中心にして左右対称にして、その位置
はR相又はT相に対して真上のみでなくある程度ずらし
てもよいだけの裕度を有している。さらに、詳しく説明
すれ‘ま全長1に対して季の地点でS相を対称として交
叉布設した場合の誘導電圧の絶対値は、小ln誌XI。) to cancel out or reduce the yield voltage for each given length within a given length. In this case, as shown in 'B}, the communication line should be symmetrical about the S phase of the power transmission line, and its position should not only be directly above the R phase or T phase, but also have enough margin to be shifted to some extent. degree. Furthermore, to explain in detail, the absolute value of the induced voltage when the S-phase is symmetrically crossed at the point of 1 with respect to the total length 1 is as shown in Small Insert Journal XI.
‐4(V)(ただし、の:角周波数、1:条長(物)、
1:送電線の相電流■、R・S・T:各相との離隔距離
)となり、その分布図を第3図に示す。-4 (V) (However, 1: Angular frequency, 1: Length (object),
1: Phase current of the power transmission line (■, R・S・T: separation distance from each phase), and its distribution diagram is shown in Fig. 3.
すなわち、等間隔で交叉布設した場合は、誘導電圧が零
になる位置がある。これを第3図の座標軸で表わせば〆
:で−芸の点であり、具体例としては地中送電線の相間
隔を25(地)とした場合、R相及びT相の真上、約1
7.7(抑)の位置で交叉布設すれば電磁譲導電圧を零
にすることが可能である。次に実験例について説明する
。第4図における無交叉布設時及び交叉布設時の電磁誘
導電圧実測値を第1表に示す。That is, when the cables are laid at equal intervals, there is a position where the induced voltage becomes zero. If this is expressed on the coordinate axes in Figure 3, it is a point of interest.As a specific example, if the phase spacing of the underground power transmission line is 25 (ground), the position directly above the R phase and T phase, approximately 1
If the wires are crossed at the position of 7.7 (inhibition), it is possible to make the electromagnetic transfer voltage zero. Next, an experimental example will be explained. Table 1 shows the actual measured values of the electromagnetic induction voltage during non-cross laying and crossing laying in FIG.
第1表
さらに、第5図における無交叉布設時及び交叉布設時の
電磁誘導電圧実測値を第2表に示す。Table 1 Furthermore, Table 2 shows the actual measured values of the electromagnetic induction voltage when the cables were laid without crossing and when they were laid with crossing in FIG.
第 2 表この発明は、以上のようであるから次のよう
な効果を有している。Table 2 As described above, this invention has the following effects.
‘11 通信線路を適当な間隔で送電線路と交叉布設す
るのみで、電磁誘導電圧を相殺又は軽減できるので、実
用上十分なしやへし、効果を得ることができる。'11 Electromagnetic induced voltage can be canceled out or reduced simply by laying communication lines across power transmission lines at appropriate intervals, so it can be sufficiently avoided and effective in practice.
■ したがって、通信線に特別のしやへし・層を設ける
必要がないので、重量が軽く、かつ外径が4・さく、そ
の上、可とう性のよい経済的な通信線を提供できる。(2) Therefore, since there is no need to provide a special shield or layer to the communication line, it is possible to provide an economical communication line that is light in weight, has a small outer diameter of 4 mm, and has good flexibility.
【3’又、従来のようにケーブル構造や接地抵抗の影響
がなく極めて信頼性が高い。[3' Also, it is extremely reliable as it is not affected by the cable structure or grounding resistance as in the past.
■ 通信線路を送電線路に接近させることができるので
、掘削経費が低減できる。■ Since communication lines can be brought closer to power transmission lines, excavation costs can be reduced.
【5} マンホール内における通信線の保守作業時、人
体に加わる最大の譲導電圧は、高々1マンホール区間長
に発生する電圧のみであるから危険度が極めて低い。[5] During maintenance work on communication lines inside a manhole, the maximum yield voltage applied to the human body is only the voltage generated over one manhole section at most, so the risk level is extremely low.
‘6} 前記したように、誘電量を相殺又は軽減できる
ので、誘導電圧抑圧線輪等の保安装置が不要である。'6} As described above, since the amount of dielectricity can be canceled out or reduced, a safety device such as an induced voltage suppression coil is not required.
第1図は、3相地中送電線R相、S相、T相により発生
する電磁議導電圧分布図で、凶はその実数部を示し、‘
B}‘ま虚数部を各々示した説明図、第2図は交叉布設
の原理を示すもので、■は通信線を送鰍R櫛比季岬点ま
坪価設し、菱歌通信線を交叉させ学例はで送電線T相
の上を平行布設していることを示す平面説明図、脚は送
電線路との位置関係を示す断面説明図、第3図は第2図
のように交叉布設した場合の単位譲導電圧の分布及び座
標軸を示す説明図、第4図は交叉布設の一模擬実験例を
示す説明図、第5図は実系統での一美験例を示す説明図
である。
なお、1・・・・・・送電線、2・・・・・・通信線、
2′・・・・・・交叉しない場合の通信線、3・・・・
・・電圧計。
篤1図皮2図
解3図
界4図
努づ図Figure 1 is a diagram of the electromagnetic conduction voltage distribution diagram generated by the R phase, S phase, and T phase of the 3-phase underground power transmission line.
B}' An explanatory diagram showing each imaginary part, Figure 2 shows the principle of crossing. The horizontal example is a plan view showing that the power transmission line is laid parallel to the T-phase, the legs are a cross-sectional view showing the positional relationship with the power transmission line, and Figure 3 is a cross-sectional view showing that the legs are laid in parallel on top of the T-phase transmission line. FIG. 4 is an explanatory diagram showing an example of a simulation experiment of cross installation, and FIG. 5 is an explanatory diagram showing an example of a beautiful experiment in an actual system. . In addition, 1... power transmission line, 2... communication line,
2'...Communication line when not crossing, 3...
··voltmeter. Atsushi 1 Figure Skin 2 Illustration 3 Figure Kai 4 Figure Tsutsuzu
Claims (1)
で配置した三相電力線(R.S.T)の中心を通る軸を
Xとし、中央に配置した電力線Sの中心を通り軸Xに対
して直角な軸をYとした場合、該電力線(R.S.T)
に対しY^2=X^2−1/2の関係が成立する箇所に
通信線をS相を対称として交互布設することを特徴とす
る地中通信線路の布設方法。1 As shown in Figure 3, the axis passing through the center of the three-phase power lines (R.S.T.) arranged in a straight line at equal intervals on the same plane is X, and the axis passing through the center of the power line S arranged in the center is If the axis perpendicular to the axis X is Y, the power line (R.S.T.)
A method for laying an underground communication line, characterized in that communication lines are laid alternately in locations where the relationship Y^2=X^2-1/2 holds true, with the S phase symmetrical.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52102242A JPS6040246B2 (en) | 1977-08-24 | 1977-08-24 | How to lay underground communication lines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP52102242A JPS6040246B2 (en) | 1977-08-24 | 1977-08-24 | How to lay underground communication lines |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5435392A JPS5435392A (en) | 1979-03-15 |
JPS6040246B2 true JPS6040246B2 (en) | 1985-09-10 |
Family
ID=14322144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP52102242A Expired JPS6040246B2 (en) | 1977-08-24 | 1977-08-24 | How to lay underground communication lines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6040246B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57141310A (en) * | 1981-02-24 | 1982-09-01 | Daifuku Co Ltd | Automatic conveyer speed control device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053258U (en) * | 1991-07-01 | 1993-01-19 | 村田機械株式会社 | Roll unwinding device for package cage |
-
1977
- 1977-08-24 JP JP52102242A patent/JPS6040246B2/en not_active Expired
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH053258U (en) * | 1991-07-01 | 1993-01-19 | 村田機械株式会社 | Roll unwinding device for package cage |
Also Published As
Publication number | Publication date |
---|---|
JPS5435392A (en) | 1979-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10290392B2 (en) | Electric cables having self-protective properties and immunity to magnetic interferences | |
Mamishev et al. | Effects of conductor sag on spatial distribution of power line magnetic field | |
Christoforidis et al. | A hybrid method for calculating the inductive interference caused by faulted power lines to nearby buried pipelines | |
Rozov et al. | Efficient shielding of three-phase cable line magnetic field by passive loop under limited thermal effect on power cables | |
Djekidel et al. | Passive mitigation for magnetic coupling between HV power line and aerial pipeline using PSO algorithms optimization | |
Rozov et al. | Analytical calculation of magnetic field shielding factor for cable line with two-point bonded shields | |
US5360998A (en) | Magnetic field minimization in power transmission | |
Tsiamitros et al. | Earth conduction effects in systems of overhead and underground conductors in multilayered soils | |
AlShahri et al. | Induced voltage on pipeline located close to high voltage lines due to electromagnetic induction | |
JPS6040246B2 (en) | How to lay underground communication lines | |
Popovic | Practical methods for analysis and design of HV installation grounding systems | |
Taflove et al. | Mitigation of buried pipeline voltages due to 60 Hz AC inductive coupling Part I-Design of joint rights-of-way | |
Yokoyama | Experimental analysis of earth wires for induced lightning surges | |
Ellithy | Measurement of magnetic fields in a 220kV Gas insulated substation | |
EP0426746A1 (en) | Improvements in or relating to reducing the strength of electro-magnetic fields | |
Grinchenko et al. | Magnetic field normalization in residential building located near overhead line by grid shield | |
CN114218817A (en) | Cable grounding wire heating research and treatment method adjacent to three-phase reactor | |
Akinlolu et al. | Assessment of human exposure to magnetic field from overhead high voltage transmission lines in a city in south western Nigeria | |
Costea et al. | Side effects of the power frequency magnetic field mitigation | |
Stet et al. | Case studies on electromagnetic interference between HVPL and buried pipelines | |
Alshehri et al. | Electric Field Computation Under a Double Circuit 380 kV Overhead Transmission Line | |
US4527073A (en) | Shielded electrical cable system | |
Paranin et al. | Evaluation of the effectiveness of protective measures against electromagnetic influence for the tram line at the intersection of overhead power lines | |
Yang et al. | Measurements and simulations of cable shielding against magnetic field induction | |
Nourredine et al. | Modeling of inductive coupling on aerial metallic Pipeline from HV overhead power line |