JPS6040204B2 - 2-resonance microstrip antenna - Google Patents

2-resonance microstrip antenna

Info

Publication number
JPS6040204B2
JPS6040204B2 JP55044057A JP4405780A JPS6040204B2 JP S6040204 B2 JPS6040204 B2 JP S6040204B2 JP 55044057 A JP55044057 A JP 55044057A JP 4405780 A JP4405780 A JP 4405780A JP S6040204 B2 JPS6040204 B2 JP S6040204B2
Authority
JP
Japan
Prior art keywords
microstrip antenna
conductor element
elliptical
radiation conductor
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55044057A
Other languages
Japanese (ja)
Other versions
JPS56141605A (en
Inventor
登喜雄 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55044057A priority Critical patent/JPS6040204B2/en
Publication of JPS56141605A publication Critical patent/JPS56141605A/en
Publication of JPS6040204B2 publication Critical patent/JPS6040204B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Description

【発明の詳細な説明】 本発明は小型・軽量でかつ低姿勢な構造を有するマイク
ロストリップアンテナの構造に関し、特にその広帯域化
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a microstrip antenna that is small, lightweight, and has a low profile, and particularly relates to widening the band.

マイクロストリップアンテナは、共振器的な電気的構造
であるため、本質的に狭帯域であり、従来のこの種のア
ンテナは第1図のように構成されていた。
Since a microstrip antenna has a resonator-like electrical structure, it essentially has a narrow band, and a conventional antenna of this type was constructed as shown in FIG.

第1図において1は円形放射導体素子、2は接地導体、
3は誘電体、4は給電点、5は給電線、6は同軸線路、
7は入出力端子、8は円形放射導体素子の中心であり、
この点で放射導体素子は接地導体と短絡されている。こ
の種のアンテナの帯城を拡大させる最も基本的な方法は
、放射導体素子1と接地導体板2との間に挿入されてい
る誘電体3の厚さを厚くすることであった。しかし、譲
電体の厚さが譲亀体内での波長に比べて薄くない厚さ以
上となると、次第にマイクロストリップアンテナの特徴
である共振特性が消失し、円板装荷形ュニポールアンテ
ナの動作となるため、利得が低下する欠点があり、また
低姿勢という利点が損なわれるという欠点があった。ま
た、誘電率の小さい誘電体を用いることによっても広帯
域となるが、放射導体素子の直径が大きくなり、小形化
の目的に相反するという欠点があった。実際の実用面で
は、離れた2つの周波数の近傍の帯域のみを使用するこ
とが多いため、広帯域化の別法として、使用する帯城の
みに共振する周波数特性を実現すればよい。この観点よ
り、従釆の2共振形のマイクロストリップアンテナは、
第2図に示すような整合素子11を設けた構造や、第3
図に示すような無給電素子12を装荷した構造で2共振
形のマイクロストリップアンテナを構成していた。前者
は入力端子7から給電されるもので放射導体素子と同程
度の大きさの整合素子11を必要とするため小形化の目
的に相反し、後者は低姿勢という利点を損なう欠点を有
していた。従って本発明は従来の技術の上記欠点を改善
するもので、その目的は低姿勢で高利得の2共振マイク
ロストリップアンテナを提供することにあり、その特徴
は、放射導体素子として楕円形の放射導体を用い、楕円
形放射導体素子上の給電点をその給電点から長軸及び短
軸に下した垂線が等しい長さになるような直線上に設け
、かつ給電点の位置を同軸給電線の特性インピーダンス
と整合がとれる適当な位置に配置したことにあり、以下
図面について詳細に説明する。第4図は本発明の実施例
であって、1は楕円形放射導体素子、2は接地導体、3
は誘電体、4は給電点、5は給電線、6は同軸線路、7
は入出力端子、8は楕円形放射導体素子の長蛇と短軸の
交点で、この点において放射導体素子1と接地導体2は
短絡されている。
In Fig. 1, 1 is a circular radiation conductor element, 2 is a ground conductor,
3 is a dielectric, 4 is a feed point, 5 is a feed line, 6 is a coaxial line,
7 is an input/output terminal, 8 is the center of a circular radiation conductor element,
At this point the radiating conductor element is shorted to the ground conductor. The most basic method for increasing the coverage of this type of antenna is to increase the thickness of the dielectric 3 inserted between the radiation conductor element 1 and the ground conductor plate 2. However, when the thickness of the transfer body exceeds a thickness that is not thin compared to the wavelength within the transfer body, the resonance characteristics that characterize the microstrip antenna gradually disappear, and the operation of the disk-loaded unipol antenna gradually disappears. Therefore, there is a drawback that the gain is reduced, and the advantage of having a low profile is lost. Furthermore, a wide band can be achieved by using a dielectric material with a low permittivity, but this has the disadvantage that the diameter of the radiation conductor element becomes large, which contradicts the objective of miniaturization. In actual practical use, only bands near two far apart frequencies are often used, so as an alternative method for widening the band, it is sufficient to realize frequency characteristics that resonate only in the band to be used. From this point of view, the secondary two-resonance type microstrip antenna is
A structure including a matching element 11 as shown in FIG.
A two-resonance type microstrip antenna was constructed with a structure loaded with parasitic elements 12 as shown in the figure. The former is supplied with power from the input terminal 7 and requires a matching element 11 of the same size as the radiation conductor element, which contradicts the purpose of miniaturization, while the latter has the disadvantage of detracting from the advantage of having a low profile. Ta. Therefore, the present invention aims to improve the above-mentioned drawbacks of the prior art, and its purpose is to provide a low-profile, high-gain two-resonance microstrip antenna, which is characterized by using an elliptical radiating conductor as a radiating conductor element. The feed point on the elliptical radiating conductor element is placed on a straight line such that the perpendicular lines drawn from the feed point to the long and short axes are of equal length, and the position of the feed point is set according to the characteristics of the coaxial feed line. The reason for this is that it is placed at an appropriate position to match the impedance, and will be described in detail below with reference to the drawings. FIG. 4 shows an embodiment of the present invention, in which 1 is an elliptical radiation conductor element, 2 is a grounding conductor, and 3 is an elliptical radiation conductor element.
is a dielectric, 4 is a feed point, 5 is a feed line, 6 is a coaxial line, 7
8 is an input/output terminal, and 8 is the intersection of the long and short axes of the elliptical radiation conductor element, at which point the radiation conductor element 1 and the ground conductor 2 are short-circuited.

9は楕円形放射導体素子1の長離、1川ま楕円形放射導
体素子1の短軸である。
9 is the long axis of the elliptical radiation conductor element 1 and the short axis of the elliptical radiation conductor element 1.

また第5図は本発明の構成による周波数特性例であって
、14は入出力端子7よりみたりターンロスである。こ
こでリターンロス00Bとはアンテナへの入射電力が全
て反射してもどる場合を示す。放射導体素子が楕円形の
場合、基本モードとしてeTM,,。なる最軸モード(
共振周波数ナ1)とoTM,.oなる短軸モード(共振
周波数ナu)が独立に存在する。これら2つの基本モー
ドの電界分布Ezは、楕円形放射素子の焦点を座標系の
焦点とする楕円座標系(り,ぎ,z)において、以下の
ようになる。eTM,,。
Further, FIG. 5 shows an example of frequency characteristics according to the configuration of the present invention, and 14 is a turn loss seen from the input/output terminal 7. Here, return loss 00B indicates a case where all the power incident on the antenna is reflected back. When the radiation conductor element is elliptical, the fundamental mode is eTM, . The most axis mode (
Resonant frequency na1) and oTM, . A short axis mode (resonance frequency n) o exists independently. The electric field distributions Ez of these two fundamental modes are as follows in an elliptical coordinate system (ri, gi, z) in which the focal point of the elliptical radiating element is the focal point of the coordinate system. eTM,,.

モード;eEzのCe,(り,eX,)ce,(f,e
x,) moTM,.。
Mode; Ce of eEz, (ri, eX,)ce, (f, e
x,) moTM,. .

モード;oEzのSe,(り,o×,)se,(ぎ,。
X.) (21ここでce,(ぎ,x),se,
(f,x)はx→0のときそれぞれCOSさ,sinf
に収束するMathieu関数、Ce,(f,x),S
e,(り,x)はx→0のときそれぞれCOSh刀,s
inhりに収束する変形されたNEthieu関数、e
xはCe.(d,x)の1番目の非零根、ox.はSe
,′(d,x)1番目の非零限、り=dは楕円の大きさ
を表わす媒介変数で、楕円の焦点距離を幻とするとき、
最軸の長さが初cosh d、短軸の長さが幻si肌
dとなる関係にある。
Mode; Se of oEz, (ri, ox,)se, (gi,.
X. ) (21 where ce, (gi, x), se,
(f, x) are COS and sinf respectively when x→0
Mathieu function that converges to Ce, (f, x), S
e, (ri, x) are COSh sword and s respectively when x→0
A modified NEthieu function that converges to inh, e
x is Ce. The first non-zero root of (d,x), ox. is Se
, '(d,
The length of the longest axis is first cosh d, and the length of the short axis is phantom si skin.
The relationship is d.

これら2つの基本モードは最軸9上あるいは短軸10上
に給電点を設けることにより、それぞれeTM,.o,
oTM,,。モードを独立に励振することができる。本
発明では給電点4を最軸9と短藤10からの距離が等し
くなる直線上、すなわち長軸と短軸の交点8を中心とし
て長軸(あるいは短藤)から450だけ回転した線上に
給電点を設定することによつて、これら2つの独立した
固有モードの双方に結合する給電電界を励起することが
できる。
These two basic modes can be achieved by providing a feeding point on the most axis 9 or on the short axis 10, eTM, . o,
oTM,,. Modes can be excited independently. In the present invention, the power supply point 4 is fed on a straight line where the distance from the longest axis 9 and the short rattan 10 is equal, that is, on a line rotated by 450 from the long axis (or the short rattan) around the intersection 8 of the long axis and the short axis. By setting the point, it is possible to excite a feeding field that couples to both of these two independent eigenmodes.

従って、この入出力端子においてはこれら2つの励振モ
ードに対する共振周波数〆u,ノ1において共振する2
点共振形の周波数特性が得られる。このような2点共振
は、同時送受話方式の場合、送受信間結合減衰量を大き
くすることができるので、広帯域化の手段としてはむし
ろ有利である。上記のような配置の給電点4は長藤と短
藤との交点8から適当な距離だけ離すことにより異なる
2つの周波数〆u,メ1において、給電点での入力イン
ピーダンスと給電線5に接続される同軸線路の特性イン
ピーダンスとの整合をとることができるため、整合素子
が不要となる利点をもつ。以上説明したように、本発明
の構造によって、放射導体素子以外の周辺素子(整合素
子、無給電素子等)を設けずに相異なる周波数に共振す
るマイクロストリップアンテナを実現でき、マイクロス
トリップアンテナ本来の特徴である小形・軽量・低姿勢
なる利点を損なうことがない。
Therefore, at this input/output terminal, 2
Point-resonant frequency characteristics can be obtained. In the case of a simultaneous transmission and reception system, such two-point resonance can increase the amount of coupling attenuation between transmission and reception, so it is rather advantageous as a means of widening the band. The feed point 4 arranged as described above is connected to the input impedance at the feed point and the feed line 5 at two different frequencies (u, 1) by separating it by an appropriate distance from the intersection 8 of Nagafuji and Tanfuji. Since the characteristic impedance of the coaxial line can be matched with the characteristic impedance of the coaxial line, there is no need for a matching element. As explained above, with the structure of the present invention, it is possible to realize a microstrip antenna that resonates at different frequencies without providing any peripheral elements other than the radiation conductor element (matching element, parasitic element, etc.). The advantages of small size, light weight, and low profile are not compromised.

したがって、本発明のアンテナは、送受信帯域が異なる
移動通信方式等の移動体用アンテナとして極めて有効で
ある。
Therefore, the antenna of the present invention is extremely effective as an antenna for a mobile body, such as a mobile communication system with different transmission and reception bands.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は基本的な円形マイクロストリップアンテナの構
造図、第2図は整合素子を設けた構成の従来の円形マイ
クロストリップアンテナの構造図、第3図は無給電円板
素子を装荷した従来の円形マイクロストリップアンテナ
の構造図、第4図は本発明の実施例、第5図は本発明の
構造による2共振マイクロストリップアンテナの周波数
特性例である。 1・・・・・・放射導体素子、2・・・・・・接地導体
、3・・・・・・謙露体、4…・・・給電点、5・・・
・・・給電線、6・・・・・・同軸線路、7…・・・入
出力端子、8…・・・放射導体素子の中心、9・…・・
楕円形放射導体素子の最軸、10……楕円形放射導体素
子の短軸、11・・・・・・整合素子、12・・・・・
・無給電円板素子、13・・・・・・議電体、14・・
・・・・リターンロス特性。 努/図 繁2図 笑う図 繁々図 繁づ図
Fig. 1 is a structural diagram of a basic circular microstrip antenna, Fig. 2 is a structural diagram of a conventional circular microstrip antenna with a matching element, and Fig. 3 is a structural diagram of a conventional circular microstrip antenna equipped with a parasitic disk element. A structural diagram of a circular microstrip antenna, FIG. 4 is an embodiment of the present invention, and FIG. 5 is an example of frequency characteristics of a two-resonance microstrip antenna having the structure of the present invention. DESCRIPTION OF SYMBOLS 1... Radiation conductor element, 2... Ground conductor, 3... Humidity body, 4... Feeding point, 5...
...Feeding line, 6... Coaxial line, 7... Input/output terminal, 8... Center of radiation conductor element, 9...
Maximum axis of elliptical radiation conductor element, 10... Short axis of elliptical radiation conductor element, 11... Matching element, 12...
・Passive disk element, 13...Electrifying body, 14...
...Return loss characteristics. Tsutomu / Illustration 2 Laughing Illustration Illustration Illustration

Claims (1)

【特許請求の範囲】[Claims] 1 波長に比べて薄い誘電体を挾み、互いに対向する放
射導体素子と接地導体板から構成され、接地導体板の背
面から同軸給電線より給電されるマイクロストリツプア
ンテナにおいて、放射導体素子として楕円形放射導体板
を用い、楕円放射導体素子の給電点を、その給電点から
楕円導体板の長軸及び短軸に下した垂線が等しくなるよ
うな直線上に設けたことを特徴とする2共振マイクロス
トリツプアンテナ。
1. In a microstrip antenna, which consists of a radiation conductor element and a ground conductor plate facing each other with a dielectric thinner than the wavelength in between, and is fed from the back of the ground conductor plate by a coaxial feed line, the antenna is used as a radiation conductor element. An elliptical radiating conductor plate is used, and the feeding point of the elliptical radiating conductor element is provided on a straight line such that the perpendicular lines drawn from the feeding point to the major axis and the minor axis of the elliptical conductor plate are equal. Resonant microstrip antenna.
JP55044057A 1980-04-05 1980-04-05 2-resonance microstrip antenna Expired JPS6040204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55044057A JPS6040204B2 (en) 1980-04-05 1980-04-05 2-resonance microstrip antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55044057A JPS6040204B2 (en) 1980-04-05 1980-04-05 2-resonance microstrip antenna

Publications (2)

Publication Number Publication Date
JPS56141605A JPS56141605A (en) 1981-11-05
JPS6040204B2 true JPS6040204B2 (en) 1985-09-10

Family

ID=12680979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55044057A Expired JPS6040204B2 (en) 1980-04-05 1980-04-05 2-resonance microstrip antenna

Country Status (1)

Country Link
JP (1) JPS6040204B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148201U (en) * 1986-03-14 1987-09-19
JPH0323121Y2 (en) * 1986-03-14 1991-05-21
JPH03119307U (en) * 1990-03-13 1991-12-09
JPH051404U (en) * 1991-06-26 1993-01-14 株式会社貝印刃物開発センター Nail clippers, T-type razors and replaceable knife
JP2002290144A (en) * 2001-03-28 2002-10-04 Hitachi Chem Co Ltd Planar array antenna
JP2004104678A (en) * 2002-09-12 2004-04-02 Matsushita Electric Ind Co Ltd Antenna device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916402A (en) * 1982-07-19 1984-01-27 Nippon Telegr & Teleph Corp <Ntt> Broad band microstrip antenna uses two-frequencies in common
JPH0685487B2 (en) * 1985-05-18 1994-10-26 日本電装株式会社 Dual antenna for dual frequency
JPH01243705A (en) * 1988-03-25 1989-09-28 Japan Radio Co Ltd Two frequency shared microstrip antenna
FR2658374B1 (en) * 1990-02-09 1992-06-05 Signaux Equipements Electro Ci REMOTE DATA TRANSMISSION MICROWAVE SYSTEM.
US6239674B1 (en) * 1993-12-27 2001-05-29 Matsushita Electric Industrial Co., Ltd Elliptical resonator with an input/output capacitive gap
NL1001840C2 (en) * 1995-12-07 1997-06-10 Nederland Ptt Label.
DE102004054015A1 (en) * 2004-11-09 2006-05-11 Robert Bosch Gmbh Planar broadband antenna
JP6552791B2 (en) * 2014-07-03 2019-07-31 株式会社Soken Antenna device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148201U (en) * 1986-03-14 1987-09-19
JPH0323121Y2 (en) * 1986-03-14 1991-05-21
JPH03119307U (en) * 1990-03-13 1991-12-09
JPH051404U (en) * 1991-06-26 1993-01-14 株式会社貝印刃物開発センター Nail clippers, T-type razors and replaceable knife
JP2002290144A (en) * 2001-03-28 2002-10-04 Hitachi Chem Co Ltd Planar array antenna
JP2004104678A (en) * 2002-09-12 2004-04-02 Matsushita Electric Ind Co Ltd Antenna device

Also Published As

Publication number Publication date
JPS56141605A (en) 1981-11-05

Similar Documents

Publication Publication Date Title
US4723305A (en) Dual band notch antenna for portable radiotelephones
JP3450967B2 (en) Dual function antenna structure and portable wireless device having the same
JPS6040204B2 (en) 2-resonance microstrip antenna
HU182355B (en) Aerial array for handy radio transceiver
JPH01231404A (en) Antenna for mobile body
JPH02174404A (en) Plane antenna for mobile communication
EP0165264A1 (en) Dual band transceiver antenna
JPH08107304A (en) Portable radio equipment
JPH10242728A (en) Multi-band antenna structure for portable radio equipment
JPH03236612A (en) Helical antenna
JPS6141205A (en) Antenna for wide-band transmission line
JPS58104504A (en) Antenna for radio equipment
US4086598A (en) Broadband omnidirectional slot antenna with an electrical strap connector
US6684085B1 (en) Mobile telephone and antenna therefor
KR101974546B1 (en) Filter integrated cavity back antenna
US4829316A (en) Small size antenna for broad-band ultra high frequency
US4451829A (en) Circularly polarized antenna formed of a slotted cylindrical dipole
AU707303B2 (en) Matched input antenna for a portable radio
US5006861A (en) Antenna
JPS6040203B2 (en) microstrip antenna
JP3307070B2 (en) Antenna device
US3509575A (en) Broadband uhf dipole antenna
JP3261628B2 (en) antenna
KR101974548B1 (en) Filter integrated cavity back antenna
JPH08195609A (en) Portable radio equipment incorporated type inverted f antenna