JPS6040178B2 - Method of manufacturing metallized film capacitors - Google Patents

Method of manufacturing metallized film capacitors

Info

Publication number
JPS6040178B2
JPS6040178B2 JP5729079A JP5729079A JPS6040178B2 JP S6040178 B2 JPS6040178 B2 JP S6040178B2 JP 5729079 A JP5729079 A JP 5729079A JP 5729079 A JP5729079 A JP 5729079A JP S6040178 B2 JPS6040178 B2 JP S6040178B2
Authority
JP
Japan
Prior art keywords
film
capacitor
capacitor element
temperature
metallized film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5729079A
Other languages
Japanese (ja)
Other versions
JPS55150219A (en
Inventor
太助 沢田
紀行 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5729079A priority Critical patent/JPS6040178B2/en
Publication of JPS55150219A publication Critical patent/JPS55150219A/en
Publication of JPS6040178B2 publication Critical patent/JPS6040178B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/32Wound capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 本発明は譲露体フィルムの両面または片面に金属蒸着膜
を形成した金属化フィルムを巻回することにより素子が
構成される金属化フィルムコソデンサの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a metallized film cosodenser, in which an element is formed by winding a metallized film in which a metallized film is formed on both sides or one side of a display film. be.

この種のコンデンサの場合、電極取り出し部が特性の上
で重要なポイントとなる。
In the case of this type of capacitor, the electrode extraction portion is an important point in terms of characteristics.

一般には、コンデンサ素子の両端面(電極取り出し部)
に金属をアーク溶射(メタリコン)し、コンデンサ素子
の両端面に電極を形成している。このようなコンデンサ
を電気機器用としてl00V以上の交流回路で使用した
時に問題となるのは、誘電正綾(tan6)の上昇によ
る発熱現象であり、このようにコンデンサの内部温度が
上昇すると、プラスチックフィルムの劣化、耐電圧低下
等が起こり、最悪の場合にはコンデンサが破壊してしま
う。
Generally, both end faces of the capacitor element (electrode extraction part)
Electrodes are formed on both end faces of the capacitor element by arc spraying metal. When such a capacitor is used in an AC circuit of 100 V or more for electrical equipment, a problem arises due to the heat generation phenomenon caused by the rise in dielectric tan6.When the internal temperature of the capacitor rises in this way, the plastic Deterioration of the film, reduction in withstand voltage, etc. will occur, and in the worst case, the capacitor will be destroyed.

また、tan6の劣化は、コンデンサ素子とメタリコン
との接着部分に不充分な点が存在すると、その点から起
こり始めるものであり、巻回型コンデンサにおいては、
メタリコンとの接着か弱い箇所は、巻き乱れ等が起こり
易い巻芯部である。すなわち、第1図に示すように、誘
電体フィルムーの両面の金属蒸着膜2とメタリコン層3
との接着の弱い弱点部4が存在するコンデンサに高い電
流を流すと、弱点部4の電極取り出し部の金属蒸着膜2
が焼失し、電流はその焼失部5から中間部6に直接流れ
ることができないので、電極部7を通って流れ込むこと
となり、これによって電極部7は過負荷となり、さらに
電流サージが加わると、電極部7の金属蒸着膜2が次々
と焼失してしまう。
Furthermore, if there is an insufficient bond between the capacitor element and the metallicon, deterioration of tan6 begins to occur at that point, and in wound type capacitors,
The location where the adhesion with the metallicon is weak is at the winding core where irregular winding is likely to occur. That is, as shown in FIG.
When a high current is passed through a capacitor that has a weak point 4 where the adhesion is weak, the metal vapor deposited film 2 on the electrode extraction part of the weak point 4
is burnt out, and the current cannot flow directly from the burnt out part 5 to the intermediate part 6, so it flows through the electrode part 7, which overloads the electrode part 7. When a current surge is applied, the electrode The metal vapor deposited film 2 in the portion 7 is burned away one after another.

このように電極部7の金属蒸着膜2が焼失してしまうと
、単位面積当りの接触抵抗が大きくなり、コンデンサと
してのtan6値も大きくなる。また、接触抵抗の増加
に伴ない、ジュール熱の発生も増加しコンデンサの内部
温度が上昇する。このような温度上昇を防止するために
は、電極部7の金属蒸着膜2がある程度焼失した所で、
第2図に示すようにフィルムの長さ方向に対して直角方
向に金属蒸着膜2の焼失部8を設ければ、電流の集中が
起こらなく、前述したような電極部7の金属蒸着膜2が
次々と焼失してしまうこともなくなり、温度上昇を防止
することができるのである。
If the metal vapor deposited film 2 of the electrode portion 7 is burnt out in this manner, the contact resistance per unit area increases, and the tan6 value as a capacitor also increases. Furthermore, as the contact resistance increases, the generation of Joule heat also increases and the internal temperature of the capacitor rises. In order to prevent such a temperature rise, it is necessary to
As shown in FIG. 2, if the burned out part 8 of the metal vapor deposited film 2 is provided in the direction perpendicular to the length direction of the film, concentration of current will not occur, and the metal vapor deposited film 2 of the electrode part 7 as described above This prevents the fire from burning out one after another, and prevents the temperature from rising.

また、このような直角方向への金属葵着膜2の焼失を起
こさせるためには、金属蒸着膜2に弱点部9を持たせて
おけばよいのである。本発明はこのような現状に鑑み成
されたものであり、本発明において、加熱工程はコンデ
ンサ素子を成形、すなわち固くするために必要である。
Further, in order to cause the metal hollyhocks deposited film 2 to be burned away in the perpendicular direction, the metal evaporated film 2 should have a weak point 9. The present invention has been made in view of the current situation, and in the present invention, the heating step is necessary to shape, that is, harden, the capacitor element.

その時の加熱温度は金属化フィルムのベースフィルムで
あるポリプロピレン、ポリエステルフイルムの耐熱性と
熱収縮性を考慮すると同時に、巻回後のコンデンサ素子
を成形できる温度である必要がある。ポリプロピレンフ
ィルム使用のコンデンサ素子はポリエステルフィルム使
用のものより低い温度で成形でき、ポリエステルフィル
ムは耐熱温度も高く、熱収縮も小さいので高い温度でも
成形可能である。実験よりポリプロピレンフィルム使用
のコンデンサ素子を成形するのに必要な最低温度は60
ooであり、熱収縮やコンデンサ素子の変形等を考慮す
ると最高温度は110ooである。またポリエステルフ
ィルム使用のコンデンサ素子を成形できる最低温度は7
5o0であり、最高温度は140℃であった。本発明に
おいては、ポリプロピレン、ポリエステルをベースフィ
ルムとして使用した金属化フィルムを成形することがで
きる60qo〜14000の温度までコンデンサ素子を
加熱し、コンデンサ素子全体が均一な温度に達した後、
瞬時に50k9/地〜300k9/塊の圧力で1〜30
の鞍間プレスするもので、巻始め部の折れ曲り部の金属
蒸着膜2が伸び、膜抵抗が高くなって第1図および第2
図に示すような弱点部9が形成されるものである。この
成形方法において、加熱時間はコンデンサ素子全体が規
定の温度まで達する時間である。従って、フィルム厚み
や、コンデンサ素子の厚みにより加熱時間やプレス時間
は異なるが、コンデンサ素子全体が成形可能な温度に達
しているため、圧力は全体に均一に加わり、コンデンサ
素子厚みに関係なく弱点部9が形成される。なお、本発
明において、加熱されたコンデソサ素子をプレスする理
由は二つある。
The heating temperature at this time must take into consideration the heat resistance and heat shrinkage of the polypropylene or polyester film that is the base film of the metallized film, and at the same time must be at a temperature at which the capacitor element after winding can be formed. Capacitor elements using polypropylene film can be molded at lower temperatures than those using polyester film, and polyester film has a higher heat resistance and less thermal shrinkage, so it can be molded at higher temperatures. According to experiments, the minimum temperature required to mold a capacitor element using polypropylene film is 60℃.
oo, and the maximum temperature is 110 oo when considering thermal contraction, deformation of the capacitor element, etc. Also, the minimum temperature at which capacitor elements using polyester film can be molded is 7.
5o0, and the maximum temperature was 140°C. In the present invention, the capacitor element is heated to a temperature of 60 qo to 14,000 quartz, which is sufficient to form a metallized film using polypropylene or polyester as a base film, and after the entire capacitor element reaches a uniform temperature,
Instantly 50k9/earth to 300k9/lump pressure 1-30
The metal vapor deposited film 2 at the bend at the beginning of the winding stretches and the film resistance increases, as shown in Figures 1 and 2.
A weak point 9 as shown in the figure is formed. In this molding method, the heating time is the time required for the entire capacitor element to reach a specified temperature. Therefore, the heating time and pressing time will differ depending on the thickness of the film and the thickness of the capacitor element, but since the entire capacitor element has reached the temperature at which it can be molded, the pressure will be applied uniformly to the entire capacitor element, regardless of the thickness of the capacitor element. 9 is formed. In the present invention, there are two reasons for pressing the heated condenser element.

第一は素子成形し、必要な容量を得ることにある。第二
はフィルム巻き始め部の折れ曲り部金属蒸着膜抵抗を高
くし弱点部を形成することにある。素子成形に必要な圧
力は20〜30k9/地(現行)で充分であるが、50
k9/塊未満の圧力でプレスすると、フィルム巻始めの
折れ曲り部の金属蒸着膜抵抗を高くすることができず、
弱点部9を形成することができない。従来のポリエステ
ルフィルムコンデンサは20〜30k9/嫌の圧力を加
えた状態で、温度1150±5℃で14±4時間の加熱
エージングを行ないながら成形する。従って低い圧力で
ありながら成形後のコンデンサ素子は非常に固く、成形
のもどりがほとんどない。しかし、本成形方法によれば
、コンデンサ素子全体の温度が規定温度に達した後、5
0kg/の未満の圧力でプレス(1〜30栃砂)を行な
うと、プレスしている間は充分な容量が得られるが、圧
力を除くと、成形(20〜30k9/地の圧力)はでき
ているが、フィルム自体の加熱工−ジングが充分でなく
、従来成形品に比べると固さで劣り、成形後のもどりが
若干あり、容量が減少する。加熱エージングが不充分な
条件下で成形素子の固さを増し、成形後のもどりを考慮
するとプレス時の容量を期待値の容量より大きくなるよ
うに設定する必要がある。そのためには圧力は50k9
/係以上が必要となる。圧力20〜30kg′めでプレ
スすると従来の成形品に比べ初期の容量が3〜5%も減
少する。このため、50k9′の未満で成形するとすれ
ば、従来方式と同等の容量を得るためには電極長を長く
する必要があり、材料費の高騰につながる。一方、30
0k9/地を超える値の圧力でプレスすると、フィルム
巻始め部だけでなく、金属化フィルム全体の物性を低下
させ、コンデンサとしての寿命を低下させる原因となる
。また、成形性、容量のばらつき、素子全面に対する均
一なプレス等を考慮すると、コンデンサ素子を個別にプ
レスする必要がある。個別プレスの場合、作業性、製造
コスト等を考慮するとプレス時間は短かし、方が良い。
作業性、製造コスト等を考慮した結果プレス時間は30
の砂以下でなければならないことが判明した。またプレ
ス時間はコンデンサ素子厚みにより異なる。たとえばポ
リエステルフィルムコンデンサ素子の場合、厚みが4肋
以下の場合、プレス時間は1秒で充分な成形ができ、容
量も満足できた。またコンデンサ素子が厚い場合でもプ
レス時間30の皆以下で充分満足できる成形素子を得る
ことができた。従ってプレス時間は1〜30現砂の範囲
であれば良いことが判明した。これらの条件を満足しな
い限り、本発明の目的を達成することができない。この
ような本発明の製造方法によれば、金属化フィルムの金
属蒸着膜2に弱点部9を持たせることができ、これによ
ってメタリコン層3との接着の弱い弱点部4を持ってい
る場合、電流負荷がかかりその弱点部4における金属蒸
着膜2が焼失し、電極部7の電流密度が増加すると、金
属蒸着膜2の弱点部9に流れる電流密度も増加し、焼失
して第1図に示すような中間部6に電流が流れなくなり
、電流部7の電流密度も減少し、ねn6の上昇、温度上
昇も生じない。
The first step is to mold the element and obtain the required capacity. The second purpose is to increase the resistance of the metal vapor deposited film at the bend at the beginning of film winding to form a weak point. The pressure required for element molding is 20 to 30 k9/ground (currently), but 50 k9/ground is sufficient.
If pressed with a pressure less than k9/lump, it will not be possible to increase the resistance of the metal vapor deposited film at the bend at the beginning of film winding.
The weak point 9 cannot be formed. Conventional polyester film capacitors are molded by heat aging at a temperature of 1150±5° C. for 14±4 hours while applying a pressure of 20 to 30 k9/min. Therefore, even though the pressure is low, the capacitor element after molding is very hard and hardly recovers from molding. However, according to this molding method, after the temperature of the entire capacitor element reaches the specified temperature,
If pressing is carried out at a pressure of less than 0 kg/1 to 30 Kg/ground, sufficient capacity can be obtained during pressing, but when the pressure is removed, forming (20 to 30 K9/Ground pressure) is not possible. However, the heat processing of the film itself is not sufficient, the hardness is inferior to conventional molded products, there is some rebound after molding, and the capacity is reduced. In order to increase the hardness of the molded element under conditions where heat aging is insufficient and to take into account recovery after molding, it is necessary to set the capacity at the time of pressing to be larger than the expected value of capacity. For that, the pressure is 50k9
/ Person in charge or above is required. When pressed at a pressure of 20 to 30 kg', the initial capacity is reduced by 3 to 5% compared to conventional molded products. Therefore, if molding is performed with less than 50k9', it is necessary to increase the electrode length in order to obtain a capacity equivalent to that of the conventional method, leading to a rise in material costs. On the other hand, 30
Pressing with a pressure exceeding 0k9/ground deteriorates the physical properties not only of the film winding start but of the entire metallized film, resulting in a shortened lifespan as a capacitor. Furthermore, in consideration of moldability, variations in capacitance, uniform pressing over the entire surface of the element, etc., it is necessary to press the capacitor elements individually. In the case of individual presses, it is better to shorten the press time in consideration of workability, manufacturing cost, etc.
As a result of considering workability, manufacturing cost, etc., the press time was 30
It turned out that the sand should be less than that. Furthermore, the pressing time varies depending on the thickness of the capacitor element. For example, in the case of a polyester film capacitor element with a thickness of 4 ribs or less, sufficient molding was possible with a press time of 1 second, and the capacity was also satisfactory. Furthermore, even when the capacitor element was thick, a sufficiently satisfactory molded element could be obtained with a pressing time of less than 30 minutes. Therefore, it was found that the pressing time should be within the range of 1 to 30 hours. Unless these conditions are satisfied, the object of the present invention cannot be achieved. According to such a manufacturing method of the present invention, it is possible to make the metallized film 2 of the metallized film have a weak point 9, and thereby, when the metallized film has a weak point 4 with weak adhesion to the metallicon layer 3, When a current load is applied and the metal vapor deposited film 2 at the weak point 4 is burned out and the current density of the electrode part 7 increases, the current density flowing to the weak point 9 of the metal vapor deposited film 2 also increases and is burned out, resulting in the state shown in FIG. No current flows through the intermediate portion 6 as shown, the current density in the current portion 7 decreases, and no rise in n6 or temperature occurs.

また、メタリコン層3の接着が充分な時は、金属蒸着膜
2の弱点部9は問題とならす、もし金属葵着膜2が焼失
してもコンデンサとしては何ら問題とはならない。次に
、本発明の金属化フィルムコンデンサの製造方法の一具
体例を説明する。厚み6仏のポリエチレンテレフタレー
トフィルムにアルミニウムを蒸着した金属化フィルムと
、合せフィルム用として厚み5山のポリプロピレンフィ
ルムを使用し、5〆Fの静電容量のコンヂンサ素子を得
た後、偏平形状にし、11500の垣温槽で3び分間加
熱した。
Further, when the adhesion of the metallicon layer 3 is sufficient, the weak point 9 of the metal vapor deposited film 2 poses no problem; even if the metal vapor deposited film 2 is burnt out, it does not pose any problem as a capacitor. Next, a specific example of the method for manufacturing a metallized film capacitor of the present invention will be described. A capacitor element with a capacitance of 5F was obtained by using a metallized film made by vapor-depositing aluminum on a polyethylene terephthalate film with a thickness of 6F, and a polypropylene film with a thickness of 5F as a laminated film, and then shaped into a flat shape. It was heated for 3 minutes in a 11,500° heating tank.

30分間加熱後、垣温槽から取り出し、室温で100k
9/地の圧力を加えて5秒間プレス成形した。
After heating for 30 minutes, take it out from the hot tub and heat it at room temperature for 100k.
Press molding was performed for 5 seconds by applying a pressure of 9/ground.

そして、このプレス成形したコンデンサ素子にアルニウ
ムをアーク溶射してメタリコンによる電極を形成し、そ
の後リード線を熔接し、ェポキシ樹脂で外装を施してコ
ンデンサとした。このようにして製造したコンデンサの
充放電結果を第3図に示している。
The press-molded capacitor element was then arc-sprayed with aluminum to form metallicon electrodes, and then lead wires were welded and the capacitor was covered with epoxy resin. FIG. 3 shows the charging and discharging results of the capacitor manufactured in this manner.

この第3図に示す結果からも明らかなように、容量変化
は生じるものの、tan6の変化はほとんど生じない。
As is clear from the results shown in FIG. 3, although a capacitance change occurs, tan6 hardly changes.

以上のように本発明によれば、高い電流負荷がかかった
場合でもtan6の劣化はなく、異常な温度上昇を起さ
ないコンデンサを容量に得ることができる。
As described above, according to the present invention, it is possible to obtain a capacitor having a capacitance that does not deteriorate tan6 and does not cause an abnormal temperature rise even when a high current load is applied.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はメタリコン層に弱点部がある巻回型の金属化フ
ィルムコンデンサの電流路を説明するための説明図、第
2図はその金属化フィルムコンデンサにおいて、弱点部
が除去され正常となった場合の電流路を説明するための
説明図、第3図は本発明の製造方法の一実施例による金
属化フィルムコンデンサの充放電試験による容量変化と
tan6変化を従来例と比較して示す図である。 第1図 第2図 第3図
Figure 1 is an explanatory diagram to explain the current path of a wound-type metallized film capacitor that has a weak point in the metallicon layer, and Figure 2 shows a metallized film capacitor in which the weak point has been removed and is now normal. FIG. 3 is a diagram showing the capacitance change and tan6 change in a charge/discharge test of a metallized film capacitor according to an embodiment of the manufacturing method of the present invention in comparison with a conventional example. be. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 ポリプロピレン、ポリエステルフイルムをベースフ
イルムとした金属化フイルムを巻回して構成したコンデ
ンサ素子を60℃〜140℃の温度で加熱し、かつその
加熱したコンデンサ素子を50kg/cm^2〜300
kg/cm^2の圧力で1〜300秒間プレスして偏平
形状に成形した後、コンデンサ素子の両端面にメタリコ
ンによる電極を設けることを特徴とする金属化フイルム
コンデンサの製造方法。
1. A capacitor element constructed by winding a metallized film with polypropylene or polyester film as a base film is heated at a temperature of 60°C to 140°C, and the heated capacitor element is heated to a temperature of 50kg/cm^2 to 300°C.
A method for manufacturing a metallized film capacitor, which comprises forming metallized film capacitors into a flat shape by pressing at a pressure of kg/cm^2 for 1 to 300 seconds, and then providing metallized electrodes on both end faces of a capacitor element.
JP5729079A 1979-05-10 1979-05-10 Method of manufacturing metallized film capacitors Expired JPS6040178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5729079A JPS6040178B2 (en) 1979-05-10 1979-05-10 Method of manufacturing metallized film capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5729079A JPS6040178B2 (en) 1979-05-10 1979-05-10 Method of manufacturing metallized film capacitors

Publications (2)

Publication Number Publication Date
JPS55150219A JPS55150219A (en) 1980-11-22
JPS6040178B2 true JPS6040178B2 (en) 1985-09-10

Family

ID=13051412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5729079A Expired JPS6040178B2 (en) 1979-05-10 1979-05-10 Method of manufacturing metallized film capacitors

Country Status (1)

Country Link
JP (1) JPS6040178B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114219A (en) * 1981-01-07 1982-07-16 Matsushita Electric Ind Co Ltd Metallized film capacitor
JPS5995620U (en) * 1982-12-16 1984-06-28 ニチコン株式会社 dry metallized film capacitor
JPS6310515A (en) * 1986-07-02 1988-01-18 松下電器産業株式会社 Winding type metallized film capacitor
JPH0770419B2 (en) * 1987-09-18 1995-07-31 松下電器産業株式会社 Method of manufacturing film capacitor

Also Published As

Publication number Publication date
JPS55150219A (en) 1980-11-22

Similar Documents

Publication Publication Date Title
US3991451A (en) Method of making a fluoride film capacitor
CN101834055B (en) Electronic device and choke
JPS6040178B2 (en) Method of manufacturing metallized film capacitors
US3585468A (en) Thermoplastic jacketed thermoplastic capacitor
FI77338C (en) FRAMSTAELLNINGSFOERFARANDE AV EN SJAELVREGENERERANDE KONDENSATOR.
CN104681286A (en) Manufacturing method of conducting polymer electrolyte aluminum capacitor
CN108417392A (en) A kind of X2 safety capacitance and its preparation process inhibiting breakthrough performance based on cross-line
US3134059A (en) Wound capacitor
US1811067A (en) Condenser and method of making same
JPWO2022191029A5 (en)
JP2013073761A (en) Power storage element
JP3446523B2 (en) Capacitor and manufacturing method thereof
US1354147A (en) Condenser and method of making the same
CN213635718U (en) Energy-saving dry-type power capacitor
CN204204641U (en) Metallic film capacitor fuse and film capacitor
JP2558807B2 (en) Dry metallized plastic film capacitor
JPS6127167Y2 (en)
JPS63179509A (en) Dry-type metallized film capacitor
US3079537A (en) Capacitor
JPS6032750Y2 (en) capacitor
KR200355759Y1 (en) Condenser
JPH04311017A (en) Dry type high-tension capacitor
JP2580063Y2 (en) Electrolytic capacitor
JPH0227551Y2 (en)
JP3363533B2 (en) Solid electrolytic capacitor and method of manufacturing the same