JPS6040104A - Purification of rubber-like polymer - Google Patents

Purification of rubber-like polymer

Info

Publication number
JPS6040104A
JPS6040104A JP14881783A JP14881783A JPS6040104A JP S6040104 A JPS6040104 A JP S6040104A JP 14881783 A JP14881783 A JP 14881783A JP 14881783 A JP14881783 A JP 14881783A JP S6040104 A JPS6040104 A JP S6040104A
Authority
JP
Japan
Prior art keywords
polymer
solvent
emulsion
slurry
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14881783A
Other languages
Japanese (ja)
Other versions
JPH0354684B2 (en
Inventor
Yasuo Toyama
外山 靖男
Sadahide Yamazaki
山崎 禎英
Noboru Ooshima
昇 大嶋
Mikio Takeuchi
幹雄 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd, Japan Synthetic Rubber Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP14881783A priority Critical patent/JPS6040104A/en
Publication of JPS6040104A publication Critical patent/JPS6040104A/en
Publication of JPH0354684B2 publication Critical patent/JPH0354684B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To purify a rubber-like polymer efficiently, by adding a surface active agent and water to a slurry solution having finished a polymerization reaction into an emulsified state previously, adding a good solvent for the polymer to form an oil-in-water type emulsified state, removing the catalyst residue. CONSTITUTION:In removing the catalyst residue from a rubber-like polymer obtained by using a catalyst consisting of a transition metal compound and an organoaluminum compound in a poor solvent by slurry polymerization method, at the first stage, the polymer slurry solution is blended with a surface active agent [e.g., polyoxyethylene alkyl(phenyl) ether type nonionic surface active agent, (polyoxyethylene) sorbitan ester type nonionic surface active agent] so that an emulsion is previously formed. At the second stage, a good solvent (e.g., cyclohexane, toluene, etc.) for the polymer is added to the emulsion to give an oil-in-water type emulsion, and the catalyst residue is extracted into a water phase.

Description

【発明の詳細な説明】 本発明は、遷移金属化合物と有機アルミニウム化合物と
からなる触媒を用いて、貧溶媒中スラリー重合で得られ
たゴム状重合体に含まれる触媒残渣を、効率良く除去す
る、改良されたコ゛ム状重合体の精製法に関するもので
ある。
Detailed Description of the Invention The present invention uses a catalyst comprising a transition metal compound and an organoaluminum compound to efficiently remove catalyst residues contained in a rubbery polymer obtained by slurry polymerization in a poor solvent. This invention relates to an improved method for purifying comb-like polymers.

ゴム状重合体の工業的重合方式には、n−。Industrial polymerization methods for rubbery polymers include n-.

ンタン、n−ヘキサン、n−へブタン、シクロヘキサン
、トルエンの如き常態で液状の不活性炭化水素に共重合
体を溶解させて、重合を行う溶液重合法と、重合体を溶
解させない溶媒中に重合体を析出、分散させた状態で重
合を行うスラリー重合法とがあるが、次の如く後者の方
が多くの利点を有する。
There are solution polymerization methods, in which the copolymer is polymerized by dissolving it in normally liquid inert hydrocarbons such as n-tane, n-hexane, n-hebutane, cyclohexane, and toluene, and polymerization methods in which the copolymer is polymerized in a solvent that does not dissolve the polymer. There is a slurry polymerization method in which polymerization is carried out in a state in which the polymer is precipitated and dispersed, but the latter has many advantages as described below.

■ 重合体濃度が高い状態でも、実質的に反応媒体と同
じ低粘度で取扱うことが出来るため物質移動及び混合が
容易である。
(2) Even when the polymer concentration is high, it can be handled with substantially the same low viscosity as the reaction medium, making mass transfer and mixing easy.

■ 製造される重合体の単位量当りの反応器容積が小さ
くて済む。
(2) Reactor volume per unit amount of polymer produced is small.

■ 液状単量体を溶媒として用いることができるので溶
液重合で行なわれている様な、溶剤の回収工程が不要と
なシ、エネルギー消費を大幅に削減できる。
■ Since a liquid monomer can be used as a solvent, there is no need for a solvent recovery process, which is required in solution polymerization, and energy consumption can be significantly reduced.

中でも■については、ゴム状重合体を溶液重合で製造す
る場合、重合体単位重量当り通常10〜20倍もの溶剤
を使用しなければならず、この溶剤の回収に要するエネ
ルギーは非常に大きいが、単量体を溶媒として用いるス
ラリー重合ではこのエネルギーを少なくする事ができる
のでこの利点は工業的に極めて大きい、 スラリー重合法は、この様に多くの利点があるが、反面
法の様な欠点も持っている。
Among them, regarding (2), when producing rubber-like polymers by solution polymerization, it is usually necessary to use 10 to 20 times more solvent per unit weight of the polymer, and the energy required to recover this solvent is extremely large. Slurry polymerization, which uses monomers as a solvent, can reduce this energy, and this advantage is extremely large industrially.Although the slurry polymerization method has many advantages as described above, it also has the disadvantages of the reverse method. have.

即ち、(1)触媒が生成した重合体粒子中に包含されて
いるため、その残渣を除去することが極めて困難であり
、重合体中に多量に残存すると重合体の着色の原因とな
るばかりでなく、重合体の老化が促進されることが知ら
れている。
That is, (1) since the catalyst is included in the produced polymer particles, it is extremely difficult to remove the residue, and if a large amount remains in the polymer, it will only cause coloring of the polymer. It is known that aging of polymers is accelerated.

(2)残液が存在すると製造工程及び加工工程でゴム状
重合体と接触′して使用される装置、器具などの金属材
料を腐食する原因にもなる。
(2) The presence of residual liquid may cause corrosion of metal materials such as equipment and instruments used in contact with the rubbery polymer during manufacturing and processing steps.

以上の如くスラリー重合法は、多くの利点がある反面、
前記の重大な欠点を持つため、その優位性を活かし切れ
ないのが現状である。従ってスラリー重合法で極力触媒
残渣を除去することが望まれてきた。
As mentioned above, while the slurry polymerization method has many advantages,
Due to the serious drawbacks mentioned above, the current situation is that it is not possible to take full advantage of its advantages. Therefore, it has been desired to remove catalyst residues as much as possible by slurry polymerization.

この様な状況に鑑み、本発明者らは、スラリー重合法で
得られたゴム状重合体から触媒残渣を除去する方法を、
鋭意研究した結果、極めて効率の良い方法を見出し本発
明を完成した。
In view of this situation, the present inventors developed a method for removing catalyst residues from rubbery polymers obtained by slurry polymerization.
As a result of intensive research, an extremely efficient method was discovered and the present invention was completed.

即ち本発明は、遷移金属化合物と有機アルミニウム化合
物とからなる触媒を用いてスラリー重合法で得られたゴ
ム状重合体に含まれる触媒残渣を、除去するに際して重
合体のスラリー液に、界面活性剤および水を添加混合し
て、スラリー溶媒に取シ囲まれた状態の重合体粒子が水
中に分散した乳化液を予め形成せしめ、次いで該乳化液
に溶液重合で用いる量よシ遥かに少量の重合体を溶解し
得る良溶媒(以下単に溶剤と称することがある)を添加
し、スラリー溶媒と溶剤の混合物に溶解した重合体の液
滴が、水中に微分散した氷中油滴型の乳化液を形成せし
め、該液滴から触媒残渣を水中に抽出除去することを特
徴とするゴム状重合体の効率的な精製法を提供するもの
である。
That is, in the present invention, a surfactant is added to the polymer slurry liquid when removing catalyst residues contained in a rubbery polymer obtained by slurry polymerization using a catalyst consisting of a transition metal compound and an organoaluminum compound. and water are added and mixed to preform an emulsion in which polymer particles surrounded by a slurry solvent are dispersed in water, and then a much smaller amount of polymer than that used in solution polymerization is added to the emulsion. A good solvent (hereinafter sometimes simply referred to as a solvent) that can dissolve the polymer is added, and the droplets of the polymer dissolved in the mixture of the slurry solvent and the solvent form an oil-in-ice emulsion in which the polymer droplets are finely dispersed in water. The present invention provides an efficient method for purifying rubber-like polymers, which is characterized in that catalyst residues are extracted and removed from the droplets in water.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

ゴム状重合体の重合触媒に用いる遷移金属化合物には例
えばニッケル、コバルト、バナジウム、ニオビウム、タ
ングステン、チタニウム、ロジウム、モリブデン、ジル
コニウムなどの化合物が知られている。
Known transition metal compounds used as polymerization catalysts for rubbery polymers include, for example, nickel, cobalt, vanadium, niobium, tungsten, titanium, rhodium, molybdenum, and zirconium.

有機アルミニウム化合物には、例えば、トリアルキルア
ルミニウム、ジアルキルアルミニウムモノクロリド、ア
ルキルアルミニウムセスキクロリド、アルキルアルミニ
ウムジクロリドなどが知られている。
Known organoaluminum compounds include, for example, trialkylaluminum, dialkylaluminum monochloride, alkylaluminum sesquichloride, alkylaluminum dichloride, and the like.

ゴム状重合体としては、ポリブタジェン、ポリイソプレ
ン、エチレン−α−オレフィン系共重合体(エチレン−
α−オレフィン共重合体及びエチレン−α−オレフィン
−非共役ジエン共重合体を含み、以下EPDMと略称す
る)等がある。
Examples of rubbery polymers include polybutadiene, polyisoprene, ethylene-α-olefin copolymers (ethylene-
These include α-olefin copolymers and ethylene-α-olefin-nonconjugated diene copolymers (hereinafter abbreviated as EPDM).

中でも1iJ’DMは、その物性的特徴である良好な耐
候性、耐熱性を確保するために、触媒残渣を十分に除去
することが強く要求される。
Among these, 1iJ'DM is strongly required to sufficiently remove catalyst residues in order to ensure good weather resistance and heat resistance, which are its physical characteristics.

KPDMの場合遷移金属化合物としては、オキシ三塩化
バナジウム、四塩化バナジウムやこれらのアルコール(
炭素数1〜12)変性物あるいはバナジウムトリアセチ
ルアセトネート、オキシバナジウムジアセチルアセトネ
ート等のバナジウム化合物を用いるのが一般的で、これ
らのバナジウム化合物を用いた場合、重合体中にバナジ
ウムが約50 ppm以上以上色重合体が着色し商品価
値がなくなるので本発明の精製法は特に有効な手段であ
る。
In the case of KPDM, the transition metal compounds include vanadium oxytrichloride, vanadium tetrachloride, and their alcohols (
It is common to use vanadium compounds such as vanadium triacetylacetonate, oxyvanadium diacetylacetonate, etc., or vanadium compounds such as vanadium triacetylacetonate and oxyvanadium diacetylacetonate. The purification method of the present invention is a particularly effective means since the color polymer becomes colored and loses its commercial value.

なお、バナジウム化合物の他に、四塩化チタン、三塩化
チタン等のチタニウム化合物も用いる事もできる。
In addition to vanadium compounds, titanium compounds such as titanium tetrachloride and titanium trichloride can also be used.

一方、有機アルミニウム化合物としては、例えばジエチ
ルアルミニウムモノクロリド、エチルアルミニウムセス
キクロリド、エチルアルミニウムジクロリド、トリエチ
ルアルミニウム、トリイソブチルアルミニウム及びこれ
らの混合物が使用できる。
On the other hand, as the organic aluminum compound, for example, diethylaluminum monochloride, ethylaluminum sesquichloride, ethylaluminum dichloride, triethylaluminum, triisobutylaluminum, and mixtures thereof can be used.

捷だ、α−オレフィンとしては、プロピレン、1−ブテ
ンが好ましいが、1−ヘキ七ン、4−メチル−1、−o
ブテン、1−オクテンなどであってもよい。
As the α-olefin, propylene and 1-butene are preferable, but 1-hexane, 4-methyl-1, -o
Butene, 1-octene, etc. may also be used.

EPDMの第3成分である非共役ジエンとしては直鎖ま
たは環状のジエンまたはポリエンであり、例えば、5−
メチレン−2−ノルボルネン、5−ニチリデンー2−ノ
ルボルネン(ENB )、5−プロピリテン−2−ノル
ボルネン、ジシクロRンタジエン(DCP)、1.4−
へキサジエン、5−インプロパニル−2−ノルボルネン
などがあるが中でもEND 、 DCPが好ましい。
The non-conjugated diene which is the third component of EPDM is a linear or cyclic diene or polyene, for example, 5-
Methylene-2-norbornene, 5-nitylidene-2-norbornene (ENB), 5-propyritene-2-norbornene, dicycloR-ntadiene (DCP), 1.4-
Among them, hexadiene, 5-inpropanyl-2-norbornene, and the like are preferred, and among them, END and DCP are preferable.

棟だ、EPDMのスラリー重合用の貧溶媒としては、E
PDMを実質的に溶解しない、プロピレン、1−ブテン
やハロゲン化炭化水素であるメチレンジクロリド、メゾ
レンジプロミド、エチルク01Jドまたけ、これらのE
PDMを溶解しない溶媒と、少量の溶剤との混合物など
があるが、前記の如く揮発性の反応単量体であるプロピ
レン、1−ブテンを用いるのが好ましい。
However, E is a poor solvent for EPDM slurry polymerization.
Propylene, 1-butene, and halogenated hydrocarbons such as methylene dichloride, mesolodipromide, and ethylchloride, which do not substantially dissolve PDM,
Although there are mixtures of a solvent that does not dissolve PDM and a small amount of solvent, it is preferable to use propylene and 1-butene, which are volatile reaction monomers, as described above.

次に、本発明による触媒残渣の除去方法を説明する。Next, a method for removing catalyst residue according to the present invention will be explained.

前記の触媒、単量体、溶媒を用いて共重合反応を行った
後、−まず第1段階で重合スラリー液に界面活性剤の存
在下で水を添加混合して乳化液を形成せしめるのである
が、この際に使用する界面活性剤としては、例えばポリ
オキシエチレンアルキルエーテル型、ポリオキシエチレ
ンアルキルフェニルエーテル型、ソルビタンエステル型
、ポリオキシエチレンソルビタンエステル型の非イオン
界面活性剤が好捷しいが、カチオン、アニオン及び両性
界面活性剤を併用しても良い。
After carrying out a copolymerization reaction using the catalyst, monomer, and solvent described above, in the first step, water is added and mixed to the polymerization slurry in the presence of a surfactant to form an emulsion. However, as the surfactant used in this case, for example, nonionic surfactants of the polyoxyethylene alkyl ether type, polyoxyethylene alkyl phenyl ether type, sorbitan ester type, and polyoxyethylene sorbitan ester type are preferable. , cationic, anionic and amphoteric surfactants may be used in combination.

界面活性剤は予め水溶液にしておいて重合反応器から排
出されるゴム状重合体のスラリー液に添加してもよいし
、水とは別に添加しても良いが、いずれの方法にしても
乳化液を形成せしめるには界面活性剤と水と重合スラリ
ー液を激しく混合することが必要である。界面活性剤の
使用蛋は水に対して通常0.01〜0.3重量パーセン
ト程度で良い。
The surfactant may be made into an aqueous solution in advance and added to the slurry liquid of the rubbery polymer discharged from the polymerization reactor, or it may be added separately from water, but in either method, it is difficult to emulsify. Vigorous mixing of the surfactant, water, and polymeric slurry liquid is required to form a liquid. The amount of surfactant used may generally be about 0.01 to 0.3 percent by weight based on water.

一方水の添加量は、第2段階で溶剤を添加したとき水が
連続相となって水中油滴型の乳化液が形成されるのに必
要な量とすればよい。定量的にはスラリー重合に用いた
貧溶媒と第2段階で加える浴剤との合計10容量部に対
して0.4〜2.0重量部加えるのが好ましい。
On the other hand, the amount of water to be added may be such that when the solvent is added in the second step, water becomes a continuous phase and an oil-in-water type emulsion is formed. Quantitatively, it is preferable to add 0.4 to 2.0 parts by weight based on a total of 10 parts by volume of the poor solvent used in slurry polymerization and the bath agent added in the second stage.

次いで第2段階の操作として、前記の乳化液に溶剤を添
加し、氷中油滴型の乳化液を形成せしめるのであるがゴ
ム状重合体を溶解させるために、添加する溶剤は実質的
に水に溶解しないことが必要で、n−ヘキサン、n−オ
クタン、n −/ ナン、シクロヘキサン、トルエン、
メチルシクロRンタン、ベン七ン、キシレン、エチルベ
ンセン等の溶剤が使用できる。
Next, in the second step, a solvent is added to the emulsion to form an oil-in-ice emulsion, but in order to dissolve the rubbery polymer, the added solvent is substantially dissolved in water. It is necessary that it does not dissolve, and n-hexane, n-octane, n-/nan, cyclohexane, toluene,
Solvents such as methylcyclo-R, benzene, xylene, and ethylbenzene can be used.

これらの溶剤の添加量は、水中油滴型乳化液の油滴に含
1れるスラリー用の溶媒と混合された状態で、ゴム状重
合体を溶解し得る量にする必要がある。
The amount of these solvents added must be such that the rubber-like polymer can be dissolved in a state where the solvent is mixed with the slurry solvent contained in the oil droplets of the oil-in-water emulsion.

即ちゴム状重合体がEPDMの場合、これを浴Mさせる
ためにはスラリー溶媒と溶剤の混合物の溶解度パラメー
ター(以下S−P値と略記する)が6.8以上になる様
なものがよシ好ましい。スラリー溶媒がプロピレンであ
り、シクロヘキサンを添加溶剤に用いると、プロピレン
1部に対して0.5部添加すればこれらの混合物のs−
p値が6.8となI)、BPDMを溶解するのに好捷し
い。
That is, when the rubbery polymer is EPDM, in order to make it into Bath M, it is recommended that the solubility parameter (hereinafter abbreviated as S-P value) of the slurry solvent and the solvent mixture be 6.8 or more. preferable. When the slurry solvent is propylene and cyclohexane is used as the additive solvent, the s-
A p-value of 6.8 (I) is favorable for dissolving BPDM.

なお、ゴム状重合体を溶解させるための好ましいs−p
値はゴム状重合体の鍾類が変れば異った値となる。
In addition, preferable sp for dissolving the rubbery polymer
The value will be different depending on the type of rubbery polymer.

なお本発明で言うs−p値は25℃における値であシ、
代表的な溶媒(剤)のs−p値は次の辿シである。
Note that the s-p value referred to in the present invention is the value at 25°C,
The sp values of typical solvents (agents) are as follows.

プロピレン・・・(S、i、)7−ン・・67、n−ヘ
キサン・・72、n−オクタン・・・7.5、n−ノナ
ン・・・Z6、シクロヘキサン・・・8.2、トルエン
・ 89、ベンゼン・・・9.2、エチルベン七゛ン、
Propylene...(S,i,)7-n...67, n-hexane...72, n-octane...7.5, n-nonane...Z6, cyclohexane...8.2, Toluene 89, benzene 9.2, ethylben 7,
.

8 また、液体の混合物のS−P値は、一般に、各成分の容
量分率によるS−P値の算術子j句で表1フされる。
8 Also, the S-P value of a liquid mixture is generally expressed in Table 1 by the arithmetic expression of the S-P value according to the volume fraction of each component.

溶剤の種類は、後の工程での回収を考えると、少ない添
加量でゴム状重合体を溶解させることができ、かつ比較
的沸点の低いものが好ましく、前述の良溶剤の中ではシ
クロヘキサン、トルエンが好適に使用できる。
The type of solvent is preferably one that can dissolve the rubbery polymer in a small amount and has a relatively low boiling point, considering recovery in a later process.Among the good solvents mentioned above, cyclohexane and toluene are preferred. can be suitably used.

次に氷中油滴型の乳化状態を形成せしめて、触媒残渣を
除去する時の温度は10〜70℃が好ましく、この範囲
以下では液滴の粘性が著しく増大し、この範囲をこえる
と界面活性剤の効果が茗しく低下するので好ましくない
6捷だ水中油滴型の乳化状態は、攪拌により約10分り
上好捷しくけ20〜120分間維持することにより良好
なものかえられる、 以上説明した本発明によるゴム状重合体の精製法の特徴
を要約すると、 ■ 重合反応を終えたスラリー液を予め乳化状態に保つ
Next, the temperature at which an oil-in-ice droplet type emulsion is formed and the catalyst residue is removed is preferably 10 to 70°C; below this range, the viscosity of the droplets increases significantly, and above this range, the surface activity increases. As explained above, the oil-in-water type emulsification state, which is undesirable because the effect of the agent deteriorates slowly, can be changed to a better state by stirring for about 10 minutes and then stirring vigorously for 20 to 120 minutes. To summarize the characteristics of the rubbery polymer purification method according to the present invention: (1) The slurry liquid after the polymerization reaction is kept in an emulsified state in advance.

■ 次いでスラリー溶媒が存在する該乳化液に少量の溶
剤を添加し氷中油滴型の乳化状態を形成せしめて触媒を
除去する。
(2) Next, a small amount of solvent is added to the emulsion containing the slurry solvent to form an oil-in-ice emulsion, and the catalyst is removed.

のようになシ、この本発明方法によって次の効果が得ら
れる。
According to the method of the present invention, the following effects can be obtained.

■ スラリー液を予め乳化状態に保つ事により、次の工
程で形成される水中油滴型乳化状態に於て油滴を、水中
に微分散させる事ができる。
(2) By keeping the slurry liquid in an emulsified state in advance, oil droplets can be finely dispersed in water in the oil-in-water type emulsified state formed in the next step.

則ち重合反応器から排出される重合体粒子は極めて微小
なものであるため、予め乳化することによりこの微小状
態を保持でき溶剤を加えると、微小な油滴に様態が変化
し、その結果物質移動が促進され、触媒を水相に容易に
抽出できる、 これに対し乳化に先だって、溶剤を加える方法を用いる
と、高粘度状態を経てから水中油滴型乳化状態が形成さ
れる事に々るので油滴が微小に分散しなくなシ、充分な
触媒抽出が妨げられ好ましくない。
In other words, the polymer particles discharged from the polymerization reactor are extremely small, so by emulsifying them in advance, they can maintain this small state. When a solvent is added, the shape changes to minute oil droplets, and as a result, the substance Transfer is promoted and the catalyst can be easily extracted into the aqueous phase. On the other hand, if a method is used in which a solvent is added prior to emulsification, an oil-in-water emulsion is likely to be formed after a high viscosity state. Therefore, the oil droplets are not dispersed minutely and sufficient catalyst extraction is hindered, which is undesirable.

なお、スラリー液を乳化した時の状態は、スラリー溶媒
に取り囲まれた重合体の微粒子が水中に分散した形態と
なっている。
Note that when the slurry liquid is emulsified, the state is such that fine particles of the polymer surrounded by the slurry solvent are dispersed in water.

■ 重合反応がスラリー状態であり、触媒除去が水中油
滴型の乳化状態であるので、重合から触媒除去に到るま
で、低粘度の状態を保って攪拌、移送等の操作を行うこ
とができる。
■ Since the polymerization reaction is in a slurry state and the catalyst removal is in an oil-in-water type emulsified state, operations such as stirring and transfer can be performed while maintaining a low viscosity state from polymerization to catalyst removal. .

これに対し乳化に先だって溶剤を加えると、高粘度状態
での攪拌混合操作を伴うのでエネルギー消費上好寸しく
ない。
On the other hand, if a solvent is added prior to emulsification, stirring and mixing operations are required in a highly viscous state, which is undesirable in terms of energy consumption.

■ 重合体を溶解しない貧溶媒であるスラリー溶媒が存
在する状態のところに良溶媒を添加するため、重合体を
溶解させ得る比較的貧溶媒に近い溶剤を生じさせる事に
なるので形成される重合体M液の油滴の粘性が低くなり
物a移動が促進される。
■ Since a good solvent is added to a situation where a slurry solvent, which is a poor solvent that does not dissolve the polymer, is present, a solvent that is relatively similar to a poor solvent that can dissolve the polymer is generated, which reduces the amount of polymer that is formed. The viscosity of the oil droplets of the combined M liquid decreases and the movement of the material a is promoted.

■ スラリー液を乳化した状態のところに溶剤が加えら
れると、溶剤がスラリー溶媒に迅速に取り込まれるので
短時間で重合体を溶解し、油滴をつくることができる。
(2) When a solvent is added to an emulsified slurry, the solvent is rapidly incorporated into the slurry solvent, allowing the polymer to be dissolved and oil droplets to be formed in a short period of time.

油滴にする別の方法としては、溶剤を水で乳化しておい
てスラリー液に添加する方法もあるがこの方法によると
、後述の実施例で示す如く重合体の溶解に長時間を要す
るので好ましくない。
Another method to make oil droplets is to emulsify the solvent with water and add it to the slurry liquid, but this method requires a long time to dissolve the polymer, as shown in the examples below. Undesirable.

■ スラリー溶媒と溶剤とで重合体を溶解させる混合溶
剤を形成させることは、換言すれば、スラリー溶媒を溶
剤として利用できることであり、従って、新たに加える
溶剤の量を少なくすることができる。具体的に説明する
と、プロピレンを溶媒としてEPDMをスラリー重合し
、シクロヘキサンを重合体の溶解用溶剤として用いた場
合と、溶液重合でEPDMを製造する場合とで、重合体
であるEPDM単位重量当りの溶剤の使用量を比較した
場合、後者の10〜20重量比に対し、前者は、1.5
〜6重量比と格段に少なくこのことが本発明の触媒除去
方法を有利なものにしている。
(2) Forming a mixed solvent that dissolves a polymer with a slurry solvent and a solvent means, in other words, that the slurry solvent can be used as a solvent, and therefore the amount of newly added solvent can be reduced. Specifically, the amount of EPDM per unit weight of the polymer is determined by slurry polymerizing EPDM using propylene as a solvent and using cyclohexane as a solvent for dissolving the polymer, and when producing EPDM by solution polymerization. When comparing the amount of solvent used, the latter has a weight ratio of 10 to 20, while the former has a weight ratio of 1.5
-6 weight ratio, which is extremely low, which makes the catalyst removal method of the present invention advantageous.

なお、水を添加して乳化液を形成せしめる前に、重合ス
ラリー液に重合停止剤を添加すると、さらに高い触媒除
去効果が得られることも本発明者らによって見出されて
おり、この方法もまた、本発明の範囲に含1れるもので
ある。この場合、好適に使用できる重合停止剤としては
、01〜C20のアルキル基、丁lは3〜200の整数
)を有する構造のもので、例えばポリオキシエチレンモ
ノアルキレート、テトラオレイン酸ポリオキシエチレン
ソルビット、ポリオキシエチレンソルビタントリアルキ
レート、ポリオキシエチレンモアルキレートなどを挙け
ることができるが、このうち特にテトラオレイン酸ポリ
オキシエチレンソルビットが好ましい。
The present inventors have also discovered that an even higher catalyst removal effect can be obtained by adding a polymerization terminator to the polymerization slurry before adding water to form an emulsion, and this method also Moreover, it is included in the scope of the present invention. In this case, the polymerization terminator that can be suitably used is one having a structure having an alkyl group of 01 to C20, where 1 is an integer of 3 to 200), such as polyoxyethylene monoalkylate, polyoxyethylene tetraoleate, etc. Examples include sorbitol, polyoxyethylene sorbitan trialkylate, polyoxyethylene moalkylate, and among these, polyoxyethylene sorbitate tetraoleate is particularly preferred.

これらの化合物の添加量は、重合触媒である遷移金属化
合物の0.5〜10重週倍、好ましくは1〜5重量倍で
ある、1 また、溶剤を添加する以前、もしくは添加すると同時に
スラリー溶媒の一部を除くことにより、溶剤の添加量を
実質的により少なくすることができるが、この方法も壕
だ、本発明の範囲に含1れるものである。また触媒残渣
の抽出時間及び重合体の溶解時間を、短くするために高
剪断力を与える乳化機、又は、破枠機を、適当に配置し
て用いることもできる。
The amount of these compounds added is 0.5 to 10 times, preferably 1 to 5 times the weight of the transition metal compound as a polymerization catalyst. By removing a portion of the solvent, the amount of solvent added can be substantially reduced, but this method is also within the scope of the present invention. Further, in order to shorten the extraction time of the catalyst residue and the dissolution time of the polymer, an emulsifying machine or frame breaking machine which applies high shear force can be appropriately arranged and used.

次に本発明を実施例で具体的に説明するが、本発明は、
実施例に何等限定されるものではない。
Next, the present invention will be specifically explained with examples.
The present invention is not limited to the examples in any way.

なお、実施例において、触媒残渣量は原子吸光法によシ
測定した。
In the examples, the amount of catalyst residue was measured by atomic absorption spectrometry.

実施例 1 オキシ三塩化バナジウムに1.5倍モルの脱水乾燥した
n−ブチルアルコールを、常温で徐々に添加して、変性
処理したバナジウム化合物と、ジエチルアルミニウムク
ロライドの存在下に液体プロピレン中でエチレン、プロ
ピレン及びENBを共重合させることによって得られた
EPDItllのプロピレンスラリ−に液体プロピレン
1部に対しテ、界面活性剤ポリオキシエチレンノニルフ
エ−ニルエーテル(商品名1.ノイゲンEA−80)の
OO808重量パーセント水溶液1激しく攪拌(約1,
000 rpm) Lながら徐々に加えて乳化液を形成
させ、攪拌を10分間維持した。この乳化液は水中にプ
ロピレンとEPDM粒子が細かく分散した状態であった
cl 次いで前記乳化液に、液体プロピレン1部に対して06
部のシクロヘキサン(混合溶剤のS−P値6.9)を加
え、温度を30〜55℃に維持した状態で激しく攪拌(
約1,000 rpm )を行った。
Example 1 1.5 times the mole of dehydrated and dried n-butyl alcohol was gradually added to vanadium oxytrichloride at room temperature, and the modified vanadium compound was mixed with ethylene in liquid propylene in the presence of diethylaluminium chloride. To a propylene slurry of EPDItll obtained by copolymerizing propylene and ENB, OO808 weight of surfactant polyoxyethylene nonyl phenyl ether (trade name 1. Neugen EA-80) was added to 1 part of liquid propylene. Stir vigorously (approximately 1,
000 rpm) to form an emulsion and stirring was maintained for 10 minutes. This emulsion contained propylene and EPDM particles finely dispersed in water.
of cyclohexane (S-P value of mixed solvent 6.9) was added, and the mixture was stirred vigorously while maintaining the temperature at 30 to 55°C (
approximately 1,000 rpm).

60分間攪拌を続けた時点でEPDMが溶解し水中に数
滴として微分散した状態にあることを確認し、攪拌を止
めた。
After stirring for 60 minutes, it was confirmed that the EPDM was dissolved and finely dispersed as several drops in the water, and the stirring was stopped.

j貴拌停止後この乳化液を約1時間静iff l、 E
PI)Mδ液と界面活性剤を含む水とに分割した。
After stopping stirring, let this emulsion stand still for about 1 hour.
PI) It was divided into Mδ liquid and water containing a surfactant.

この様にして氷と分離されたEPDi4の溶1夜を周知
のスチームストリッピングにより溶剤を除去し乾燥して
得られたKPDMの分析結果を表−1に71くず。
Table 1 shows the analysis results of KPDM obtained by removing the solvent from the EPDi4 solution separated from the ice overnight by well-known steam stripping and drying.

なお、重合温度は35℃で、触媒収率は446g −B
PDlvl / g−At2,72 [1g −EPD
M/g −V 、また重合スラリー液中のEPDM濃度
は31重量パーセントであった。
The polymerization temperature was 35°C, and the catalyst yield was 446g -B
PDlvl / g-At2,72 [1g-EPD
M/g -V and the EPDM concentration in the polymerization slurry was 31% by weight.

実施例 2 バナジウム化合物を、オキシ三塩化バナジウムとして、
実施例1と同様に液体プロピレン中で共重合して得られ
六EPDMのプロピレンスラリ−に、液体プロピレン1
部に対して実施例1と同じ界面活性剤の0.10重量パ
ーセント水溶液1.5部を激しく攪拌(約1,000r
pm)Lながら除徐に加えて乳化液を形成させ攪拌を1
0分間維持した。
Example 2 The vanadium compound is vanadium oxytrichloride,
Liquid propylene 1 1 was added to a propylene slurry of 6 EPDM obtained by copolymerizing in liquid propylene in the same manner as in Example 1.
1.5 parts of a 0.10 weight percent aqueous solution of the same surfactant as in Example 1 was stirred vigorously (approximately 1,000 rpm).
pm) Gradually add to the mixture while stirring to form an emulsion.
It was maintained for 0 minutes.

次いで前記乳化液に液体プロピレン1部に対して04部
のトルエン(混合溶剤のs−p値69)を加えて、温度
を30〜35℃に維持した状態で60分間救しく攪拌(
約1.00 Orpm )を行った。。
Next, 0.4 parts of toluene (s-p value of the mixed solvent: 69) was added to the emulsion based on 1 part of liquid propylene, and the mixture was stirred for 60 minutes while maintaining the temperature at 30 to 35°C.
approximately 1.00 Orpm). .

この後の操作は実施例1と同じ様にし得られた重合体の
分析結果を表−1に示す。
The subsequent operations were carried out in the same manner as in Example 1, and the analysis results of the obtained polymer are shown in Table 1.

なお重合温度は27℃で触媒収率は571 g−FJ’
DM/g−AA、 3,220 g−KPDM/g−V
Xiた重合スラリー液中のEPDM濃度は、64重量パ
ーセントであった。
The polymerization temperature was 27°C and the catalyst yield was 571 g-FJ'
DM/g-AA, 3,220 g-KPDM/g-V
The EPDM concentration in the Xi polymerization slurry was 64% by weight.

実施例 6 実施例1と同じ設定条件で共重合して得られたEl)D
Mのプロピレンスラリ−から溶媒である液体プロピレン
の半量を、ジャケット加熱によりろ0〜35℃に8.[
(−持しつつ蒸発により除去した。
Example 6 El)D obtained by copolymerization under the same setting conditions as Example 1
Half of the liquid propylene solvent was filtered from the propylene slurry of M to 0 to 35°C by jacket heating.8. [
(-Removed by evaporation while retaining.

次に蒸発しないで残ったEPDMスラリーの液体プロピ
レン1部に対して実施例1と同じ界面活性剤の0.08
重量パーセント水溶液1.5部を加えると同時に激しく
攪拌し乳化液を形成させて攪拌を10分間S40寺した
。。
Next, 0.08% of the same surfactant as in Example 1 was added to 1 part of liquid propylene of the EPDM slurry that remained unevaporated.
1.5 parts of the weight percent aqueous solution was added and stirred vigorously to form an emulsion, and stirring was continued for 10 minutes for 40 minutes. .

次いでこの乳化液に、液体プロピレン1部に対して05
部のシクロヘキサン(混合溶剤のS・P値6.8 ) 
f:加え、温度を30〜35℃に保った状態で6Q分間
激しく攪拌を行った。
This emulsion was then added with 0.5 ml of
part of cyclohexane (S/P value of mixed solvent 6.8)
f: was added and vigorously stirred for 6Q minutes while keeping the temperature at 30-35°C.

この後の操作は、実施例1と同じ様にした。The subsequent operations were the same as in Example 1.

得られた重合体の分相結果を、表−1に示す。Table 1 shows the phase separation results of the obtained polymer.

なお重合温度は30℃で触媒収率は481 g−KPD
M/g、−kA、 2,9ろQ g−EPDM/ g−
VXまたプロピL/7の半量を除去する前の液体プロピ
レン中のEPDIφ濃度は64重量パーセントであった
。スラIJ−溶媒である液体プロピレンの汐を蒸発させ
たためEPDMを溶解させるS−P値にするために添加
するシクロヘキサンの添加量も棒に減らすことができ、
それでいて表−1に示すごと(EPDM中の触媒残渣を
実施例−1,2と同程度迄減らすことができた。
The polymerization temperature was 30°C and the catalyst yield was 481 g-KPD.
M/g, -kA, 2,9loQ g-EPDM/g-
The EPDIφ concentration in the liquid propylene before removing VX and half of the propylene L/7 was 64 weight percent. Sura IJ - Since the liquid propylene solvent was evaporated, the amount of cyclohexane added to achieve the S-P value that dissolves EPDM could also be reduced to a bar.
However, as shown in Table 1 (the catalyst residue in EPDM could be reduced to the same level as in Examples 1 and 2).

実施例 4 実施例1と同じ設定条件で共重合して得られたEPDM
のプロピレンスラリ−に、重合停止剤としてテトラオレ
イン酸ポリオキシエチレンソルビット(商品名、レオド
ール)を、共重合に用いたバナンウム化合物の2.5重
量倍添加し、5分間攪拌した。次に実施例1と全く同じ
操作でスラリーの乳化、EPDMの溶解、液滴化、触媒
残渣の抽出、溶剤除去、乾燥を行い重合体を分析した。
Example 4 EPDM obtained by copolymerization under the same setting conditions as Example 1
Polyoxyethylene sorbitol tetraoleate (trade name, Rheodol) was added as a polymerization terminator to the propylene slurry in an amount of 2.5 times the weight of the vananium compound used in the copolymerization, and the mixture was stirred for 5 minutes. Next, the slurry was emulsified, EPDM was dissolved, droplets were formed, the catalyst residue was extracted, the solvent was removed, and the polymer was dried in the same manner as in Example 1, and the polymer was analyzed.

分析結果を表−1に示す。The analysis results are shown in Table-1.

なお重合温度は66℃で触媒収率は398 g −BT
DIA/ g−At、 2,515 g−EPDM/ 
g−V、また重合スラリー液中のEPDM濃度は29重
量パーセントであった。
The polymerization temperature was 66°C and the catalyst yield was 398 g-BT.
DIA/ g-At, 2,515 g-EPDM/
g-V, and the EPDM concentration in the polymerization slurry was 29% by weight.

比較例 1 実施例1と同じ設定条件で共重合して得られたE]’]
)Mのプロピレンスラリ−に、実施例1と同様に界面活
性剤ポリオキシエチレンノニルフェニルエーテルの0.
08重量パーセント水溶液を液体プロピレン1部に対し
て1部添加して乳化液を形成させ温度を60〜35℃に
保ちながら2時間激しく攪拌(約1.00 Orpm 
) した。次いで攪拌を停止し、液体ゾロピレンの全量
を蒸発させて除き、次に1時間静置し重合体と水とに分
離した1、この様にして水と分離されたEPDMをスチ
ームストリッピングにより4釈〈少惜含捷れているゾロ
ピレンと触媒稀釈用溶剤を除き乾燥した。
Comparative Example 1 E]'] obtained by copolymerization under the same setting conditions as Example 1
0.0% of the surfactant polyoxyethylene nonylphenyl ether was added to the propylene slurry of M) in the same manner as in Example 1.
0.08 weight percent aqueous solution was added to 1 part of liquid propylene to form an emulsion, and the mixture was stirred vigorously for 2 hours (approximately 1.00 Orpm) while maintaining the temperature at 60 to 35°C.
) did. Next, stirring was stopped, the entire amount of liquid zolopyrene was evaporated off, and the water was left to stand for 1 hour to separate the polymer and water.1.The EPDM thus separated from water was diluted by steam stripping. <A small amount of zoropyrene and the solvent for diluting the catalyst were removed and the mixture was dried.

イ()られたEPDMの分析結果を表−1に示す。Table 1 shows the analysis results of the EPDM.

なお重合温度は36℃で触媒収率は415 g−EPD
M/z−A1. 、 2,620 g−1i:PI)M
/g−V 、また重合液中の1は°DM濃1川は60重
量パーセントであった1、比 111.父 例 2 実施例1と同じ設定条件で共重合して得られたEPDM
のプロピレンスラリ−に液体プロピレン1部に対してシ
クロヘキサンを06部加え、温度を30〜35℃に保ち
ながら約1時間攪拌した。
The polymerization temperature was 36°C and the catalyst yield was 415 g-EPD.
M/z-A1. , 2,620 g-1i:PI)M
/g-V, and 1 in the polymerization solution was 60% by weight of DM concentration 1, ratio 111. Father Example 2 EPDM obtained by copolymerization under the same setting conditions as Example 1
To the propylene slurry was added 0.6 parts of cyclohexane per 1 part of liquid propylene, and the mixture was stirred for about 1 hour while maintaining the temperature at 30 to 35°C.

約1時間後の状態は、EPDMが完全に溶解した高粘度
の均一溶液であった。
The state after about 1 hour was a highly viscous homogeneous solution in which EPDM was completely dissolved.

次いで実施例1と同じ界面活性剤の0.08重量パーセ
ント水溶液を液体プロピレン1部に対して1部の量添加
し温度を30〜65℃に保ちながら60分間激しく攪拌
(約1.’000 rpm )を行っ/こ。
Next, a 0.08 weight percent aqueous solution of the same surfactant as in Example 1 was added in an amount of 1 part per 1 part of liquid propylene, and the mixture was vigorously stirred for 60 minutes (approximately 1.000 rpm) while maintaining the temperature at 30 to 65°C. ).

この後の操作は実施例1と同じ様にした。得られた重合
体の分析結果を表−1に示した。
The subsequent operations were the same as in Example 1. The analysis results of the obtained polymer are shown in Table-1.

なお重合温度は33℃で触媒収率は498 g−El”
DIφ/g−AL% 、 3.026 g−BPDM/
g−V、また重合スラリー液中のEPDM濃度は、36
重量パーセントであった。
The polymerization temperature was 33°C and the catalyst yield was 498 g-El"
DIφ/g-AL%, 3.026 g-BPDM/
g-V, and the EPDM concentration in the polymerization slurry is 36
Weight percent.

比較例 6 シクロヘキサン添加量を液体プロピレン1部に対して0
6部に少なくシ(混合心媒のS−P値は6.6)、他は
実施例1と同じ条件で重合及び触媒残渣除去を行った。
Comparative Example 6 The amount of cyclohexane added was 0 per part of liquid propylene.
Polymerization and catalyst residue removal were carried out under the same conditions as in Example 1, except that the amount was reduced to 6 parts (SP value of the mixed core medium was 6.6).

ンクロヘキサン添加後60分の時点で乳化液を採取し観
察したところ水中に油滴が微分散した状態ではあったが
、個々の油滴においてEPDMは溶解しておらず膨潤し
た状態であった。
When the emulsion was collected and observed 60 minutes after the addition of cyclohexane, it was found that the oil droplets were finely dispersed in the water, but the EPDM was not dissolved in each oil droplet and was in a swollen state.

なお、重合温度は63℃で触媒収率は465g−EPD
M/g−At、 2,910 g−EPDM/g−v 
、、また重合液スラリー中のIDPDM濃度は52重量
パーセントであった。
The polymerization temperature was 63°C and the catalyst yield was 465g-EPD.
M/g-At, 2,910 g-EPDM/g-v
,,The IDPDM concentration in the polymerization liquid slurry was 52% by weight.

比較例 4 実施例1と同じ設定条件で共重合して得られりJc、p
Dy+のプロピレンスラリ−に予め調製しておいた水と
シクロヘキサンの乳化液を加え温度を30〜55℃に維
持しながら60分間激しく攪拌(約1.00 Orpm
 )を行いしかる後約1時間装置しIDM溶液と水とに
分離した。
Comparative Example 4 Jc, p obtained by copolymerization under the same setting conditions as Example 1.
Add a pre-prepared emulsion of water and cyclohexane to the Dy+ propylene slurry and stir vigorously for 60 minutes while maintaining the temperature at 30 to 55°C (approx. 1.00 Orpm).
) was carried out, and the mixture was left in the apparatus for about 1 hour to separate the IDM solution and water.

この様にして水と分離されたEPDM溶液を採取し、観
察したところEPDMの1部は溶解しているものの、溶
解していない1uPDMが多食に残っていた。
The EPDM solution separated from the water in this manner was collected and observed. Although a portion of the EPDM had been dissolved, a large amount of undissolved 1 uPDM remained.

上記水とシクロヘキサンの乳化液は実施例1で用いた界
面活性剤の0.08重量・ξ−セント水溶7fi、 1
部に対して0.6部のシクロヘキサンを加え激しく攪拌
することによって調製したものである。また水とシクロ
ヘキサンの乳化液の添加量は液体プロピレン1部に対し
て16部とした。
The above emulsion of water and cyclohexane is a 0.08 weight/ξ-cent aqueous solution of the surfactant used in Example 1, 7fi, 1
0.6 parts of cyclohexane per part of the sample was added and vigorously stirred. The amount of the emulsion of water and cyclohexane added was 16 parts per 1 part of liquid propylene.

なお重合温度は35℃で触媒収率は662 g−El)
DM/g、−AL、2,320g−EPDM/g−V、
また重合スラリー液中の1iJ’DM濃度は26重量パ
ーセントであった。
The polymerization temperature was 35°C and the catalyst yield was 662 g-El)
DM/g, -AL, 2,320g-EPDM/g-V,
The concentration of 1iJ'DM in the polymerization slurry was 26% by weight.

Claims (3)

【特許請求の範囲】[Claims] (1) 遷移金属化合物と有機アルミニウム化合物とか
らなる触媒を用いて貧溶媒中スラリー重合方式で得られ
るゴム状重合体に含まれる触媒残渣を除去するに際して
、第1段階で該重合体スラリー液に界面活性剤および水
を混合して予め乳化液を形成させた後、第2段階で該乳
化液に該重合体の良溶媒を添加して氷中油滴型の乳化液
を形成せしめて触媒残渣を水相に抽出することを特徴と
するゴム状重合体の精製法。
(1) When removing catalyst residues contained in a rubbery polymer obtained by slurry polymerization in a poor solvent using a catalyst consisting of a transition metal compound and an organoaluminum compound, in the first step, the catalyst residue is added to the polymer slurry liquid. After mixing a surfactant and water to form an emulsion in advance, in the second step, a good solvent for the polymer is added to the emulsion to form an oil-in-ice emulsion to remove catalyst residue. A method for purifying a rubbery polymer, characterized by extraction into an aqueous phase.
(2)界面活性、剤がポリオキシエチレンアルキルエー
テル型、ポリオキシエチレンアルキルフェニルエーテル
型、ソルビタンエステル型およヒホ゛リオキシエチレン
ソルビタンエステル型の界面活性剤から選ばれた非イオ
ン界面活性剤である特許請求の範囲第(1)項記載の精
製法、
(2) The surfactant is a nonionic surfactant selected from polyoxyethylene alkyl ether type, polyoxyethylene alkyl phenyl ether type, sorbitan ester type and hydroxyethylene sorbitan ester type surfactants. A purification method according to claim (1),
(3)良溶媒がシクロヘキサンまたは/およびトルエン
である特許請求の範囲第(1)項記載の精製法。
(3) The purification method according to claim (1), wherein the good solvent is cyclohexane and/or toluene.
JP14881783A 1983-08-16 1983-08-16 Purification of rubber-like polymer Granted JPS6040104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14881783A JPS6040104A (en) 1983-08-16 1983-08-16 Purification of rubber-like polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14881783A JPS6040104A (en) 1983-08-16 1983-08-16 Purification of rubber-like polymer

Publications (2)

Publication Number Publication Date
JPS6040104A true JPS6040104A (en) 1985-03-02
JPH0354684B2 JPH0354684B2 (en) 1991-08-21

Family

ID=15461376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14881783A Granted JPS6040104A (en) 1983-08-16 1983-08-16 Purification of rubber-like polymer

Country Status (1)

Country Link
JP (1) JPS6040104A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278519A (en) * 1985-06-04 1986-12-09 Ube Ind Ltd Purification of polymer having carboxylic groups on both ends
US5242961A (en) * 1992-05-28 1993-09-07 Shell Oil Company Color prevention in titanium catalyzed hydrogenated diene polymers
JP2015183170A (en) * 2014-03-26 2015-10-22 日本ゼオン株式会社 Method for removing catalyst

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140107A (en) * 1974-09-30 1976-04-03 Matsushita Electric Ind Co Ltd JIKITEEPUSOCHI
JPS5871929A (en) * 1981-10-26 1983-04-28 Mitsui Toatsu Chem Inc Manufacture of granular atactic polypropylene

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140107A (en) * 1974-09-30 1976-04-03 Matsushita Electric Ind Co Ltd JIKITEEPUSOCHI
JPS5871929A (en) * 1981-10-26 1983-04-28 Mitsui Toatsu Chem Inc Manufacture of granular atactic polypropylene

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61278519A (en) * 1985-06-04 1986-12-09 Ube Ind Ltd Purification of polymer having carboxylic groups on both ends
JPH0362721B2 (en) * 1985-06-04 1991-09-26 Ube Industries
US5242961A (en) * 1992-05-28 1993-09-07 Shell Oil Company Color prevention in titanium catalyzed hydrogenated diene polymers
US5280058A (en) * 1992-05-28 1994-01-18 Shell Oil Company Color prevention in titanium catalyzed hydrogenated diene polymers
US5280059A (en) * 1992-05-28 1994-01-18 Shell Oil Company Color prevention in titanium catalyzed hydrogenated diene polymers
JP2015183170A (en) * 2014-03-26 2015-10-22 日本ゼオン株式会社 Method for removing catalyst

Also Published As

Publication number Publication date
JPH0354684B2 (en) 1991-08-21

Similar Documents

Publication Publication Date Title
US3390207A (en) Method of making block copolymers of dienes and vinyl aryl compounds
US3766301A (en) Preparation of polymers of increased average molecular weight from mono lithium terminated block co polymers coupled with certain aryl monoesters
CN107226916B (en) Method for preparing polyisoprene rubber latex
JPS5978216A (en) Non-aqueous dispersion polymerization for butadiene under presence of polymer dispersant
JPH0365367B2 (en)
JPS6040104A (en) Purification of rubber-like polymer
NO144075B (en) MOBILE EXCAVATOR.
US3663727A (en) Process for purification of polymer solution
JPS5978217A (en) Non-aqueous dispersion polymerization of butadiene under presence of carbonylated polymer dispersion
Bataille et al. Emulsion polymerization of styrene. I. Review of experimental data and digital simulation
JPS6010041B2 (en) How to obtain rubbery polymers
JPS6274908A (en) Production of rubber-like polymer
CA1070716A (en) Method for isolating low molecular weight polymers
US6262145B1 (en) Process for the extraction of material from multi-phase systems
Siadat et al. Preparation of esters of styrene sulfonic acid and their emulsion copolymerization with isoprene
KR20010022030A (en) Enhanced hydrogenation catalyst removal from block copolymers by reduction in polymer cement viscosity by increasing the vinyl content of the block copolymers
US20070299225A1 (en) Method for Producing Isobutylene Polymer
US3226349A (en) Ethylene-alpha olefin polymer latices
US5665858A (en) Process for coagulation finishing of polymers
KR100336175B1 (en) water dipersible gelling agent for oil spilled on sea
US2393348A (en) Method for coagulating latices
JP7376586B6 (en) Method for forming rubber latex from branched polymers
Rupar et al. A Study of Synthetic Rubber Latexes by the Electron Microscope
US3394101A (en) Method of masterbatching reinforcing pigments with elastomeric polymers
US3743631A (en) Processing of catalyst-containing polyisoprene solutions