JPS603958A - Forging method of molten metal - Google Patents

Forging method of molten metal

Info

Publication number
JPS603958A
JPS603958A JP11039183A JP11039183A JPS603958A JP S603958 A JPS603958 A JP S603958A JP 11039183 A JP11039183 A JP 11039183A JP 11039183 A JP11039183 A JP 11039183A JP S603958 A JPS603958 A JP S603958A
Authority
JP
Japan
Prior art keywords
core
molten metal
die
mold
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11039183A
Other languages
Japanese (ja)
Other versions
JPH0440104B2 (en
Inventor
Tadashi Donomoto
堂ノ本 忠
Atsuo Tanaka
淳夫 田中
Shinji Kato
加藤 眞治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11039183A priority Critical patent/JPS603958A/en
Publication of JPS603958A publication Critical patent/JPS603958A/en
Publication of JPH0440104B2 publication Critical patent/JPH0440104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/02Pressure casting making use of mechanical pressure devices, e.g. cast-forging

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To suppress impregnation of a molten metal to the inside of a core and to prevent the molten metal from solidifying while said metal remains in the skeletal form by using the core which consists of a metallic salt and of which the bulk density is specific % of the true density or above. CONSTITUTION:Powder NaCl is heated and is charged to the lower die 2 of a master die 1 and is pressed by an upper die 3 and after parting of the die 3, the molding is ejected by a plunger 4 to form a core having 80% bulk density. The core 5 is attached to the top end of the female die 7 of a preheated forming die 6 and a molten Al alloy is poured into the cavity. The molten metal is pressurized by the die 7 and is maintained under that pressure until the molten metal solidifies, by which a piston 9 as a casting is obtd. The die 7 is thereafter opened while the piston 9 is left therein. A plunger 10 is actuated to remove the piston 9 from the die 6. The piston 9 is thereafter dipped in water to elute the core 5. An undercut 9b is thus formed in the hollow part 9a, by which the weight is reduced, the amt. of the molten metal is reduced and the die life is extended.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、アルミニウム等の金属溶湯の凝固過程に高圧
を加えて鋳造品を得る溶湯鍛造法に11A−!する。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a molten metal forging method in which a cast product is obtained by applying high pressure during the solidification process of a molten metal such as aluminum. do.

(従来技術) アルミニウムやアルミニウム系合金の金属溶湯の凝固過
程に、おいて、例えば1000kg/cm21早度の高
圧を金属溶湯に加える溶湯鍛造法が近年11xく行なわ
れている。この方法によれば、重力鋳造法に比して凝固
時間が短くて済み、かつ、組織ffi緻密でポロシティ
等の鋳造欠陥もなく、現在実用化されている鋳造法のな
かでも最高品質の鋳造品が得られる。然しながらこの溶
湯鋳造法で(よ、砂型製の中子、例えばCO2プロセス
により作製した中子を使用した場合には、金属溶湯にか
なりの高圧が加わるため、金属溶湯が中子表面hXら砂
粒をまきこむように砂粒間に激しく含浸し、そのため金
属が砂粒を巻きこんだままスケルトン状に凝固Jる。こ
のような凝固金属や中子の破片を後処理で機械的に除去
することは極めて困難であった。
(Prior Art) In recent years, a molten metal forging method in which high pressure of, for example, 1000 kg/cm21 is applied to the molten metal during the solidification process of the molten metal of aluminum or an aluminum-based alloy has been carried out 11x. According to this method, the solidification time is shorter than that of the gravity casting method, and the structure is dense and there are no casting defects such as porosity, resulting in the highest quality castings among the casting methods currently in practical use. is obtained. However, in this molten metal casting method, when a sand mold core, for example a core made by the CO2 process, is used, a considerably high pressure is applied to the molten metal, which causes the molten metal to dislodge sand grains from the surface of the core. The sand is intensely impregnated between the sand grains, and as a result, the metal solidifies into a skeleton shape with the sand grains entrapped.It is extremely difficult to mechanically remove such solidified metal and core fragments in post-processing. there were.

1.7に、後処理をし辛いピストンの中空部に砂型製の
中子を使用した場合、例えばピストン周壁の肉Vを辞く
づるために該中空部に形成するアンダカツ1〜部に砂型
製の中子を使用した場合、その箇所にスケルトン状の凝
固金属や中子の破片が残る。
1.7, when a sand mold core is used in the hollow part of the piston that is difficult to post-process, for example, a sand mold core is used in the undercut 1 to 1 to be formed in the hollow part to cut out the flesh V of the piston peripheral wall. If a core is used, skeleton-like solidified metal and core fragments remain in the area.

この凝固金属や中子の破片を後処理で機械的に除入りる
ことは極めて困難である。そのため従来の溶湯鍛造法で
はビス!−ンの中空部のアンダーカッ1〜部に砂型製中
子を使用づ−ることは、事実上不可能であ−)た。
It is extremely difficult to mechanically remove the solidified metal and core fragments in post-processing. Therefore, the conventional molten metal forging method requires screws! It was virtually impossible to use a sand mold core for the undercut in the hollow part of the mold.

上記した問題を解消するためには、砂型製の中子を使用
Jる代りに、溶湯鍛造に用いる金属製の成形型を多数に
分割し、多方向への型抜きづる方法も考えられる。しか
し、この場合には成形型が分:リリされているだけにコ
スト高となり、成形型のスI′命も極輻;に短くなる。
In order to solve the above-mentioned problems, instead of using a sand mold core, it is possible to divide the metal mold used for molten metal forging into many parts and cut the molds in multiple directions. However, in this case, the cost is high because the mold is separated, and the life of the mold is extremely shortened.

〔発明の目的〕[Purpose of the invention]

木弁明は上記した従来技術の実情に風みなされIこもの
であり、金属溶湯が中子に含浸づることを抑え、金属が
スケルトン状に残ったままで凝固することを防止できる
溶湯鍛造法を提供することを目的とする。
Kibenmei has been disregarded by the above-mentioned state of the art and has set out to provide a molten metal forging method that can suppress the molten metal from impregnating the core and prevent the metal from solidifying while remaining in a skeleton shape. purpose.

〔発明のM4成〕 本発明の溶湯鍛造法は、溶媒に溶出可能な金属塩からな
る真密度の80%以上のかざ密度の中子を、成形型のキ
ャどティ内にセットづ゛る工程と、該成形型の該キャビ
ティ内に金属溶湯を注入し溶湯が凝固する際溶湯に高圧
を加えるニ[程と、金属溶湯の凝固後に中子を溶媒で溶
出して鋳造品を得る工程とを順に実施して成ることを特
徴と覆るものである。
[M4 formation of the invention] The molten metal forging method of the invention is a process in which a core made of a metal salt that can be eluted into a solvent and has a bulk density of 80% or more of the true density is set in a mold cavity. a step of injecting molten metal into the cavity of the mold and applying high pressure to the molten metal as it solidifies; and a step of dissolving the core with a solvent after solidifying the molten metal to obtain a cast product. It is characterized by being carried out sequentially.

本発明で使用する中子は、例えば、溶媒に溶出可能な金
属塩をプレスして真密度の80%以上のかさ密度に形成
したものを使用できる。金属」nは溶媒に溶出するとい
う性質を有する必要がある。
The core used in the present invention may be, for example, one formed by pressing a metal salt that can be eluted into a solvent to have a bulk density of 80% or more of the true density. The metal "n" must have the property of being eluted into a solvent.

又、金属塩は、成形型内へ注入覆る金属溶湯、例えばア
ルミニウム系合金の溶湯によって溶融しないことが必要
である。代表的な金属塩としては塩化ナトリウム(Na
 C1)を使用りることができ 鬼る。Na Clの場
合、融点が常圧で772℃とアルミニウムの融点以上で
あり、溶媒としての冷水、熱水、常温水によ(溶は得る
。NRC1としては食塩、岩塩を用いることができる。
Further, it is necessary that the metal salt is not melted by the molten metal that is injected into the mold, such as the molten aluminum alloy. A typical metal salt is sodium chloride (Na
C1) can be used. In the case of Na Cl, the melting point is 772° C. at normal pressure, which is higher than the melting point of aluminum, and it can be dissolved in cold water, hot water, or room temperature water as a solvent. Common salt or rock salt can be used as NRC1.

中子の金属塩のかざ密度は、真密度の80%以上にづる
必要がある。その理由は以下のとありである。即ち金属
塩から成る中子を通常のグラビテイ鋳造法に適用した場
合には、金属塩と金属溶湯とのぬれ性が悪いこと、溶湯
に加わる圧力が高く4Tいこと等が関係して、かさ密度
が真密度の80%以下であっても金属溶湯は中子に含浸
しない。
The bulk density of the metal salt in the core must be 80% or more of the true density. The reason is as follows. That is, when a core made of a metal salt is applied to the normal gravity casting method, the bulk density decreases due to poor wettability between the metal salt and molten metal, high pressure applied to the molten metal, etc. The molten metal does not impregnate the core even if it is less than 80% of the true density.

一方、例えば、500 kn/am2の高圧を加える溶
湯鍛造法の場合には、金属溶湯に高圧を加えるため、金
属JXaのかさ密度が真密度の80%以下であると金属
溶湯が中子の内部に含浸し、結果として金属がスクルト
ン状に残ってしまうからである。
On the other hand, in the case of a molten metal forging method that applies a high pressure of 500 kn/am2, for example, since high pressure is applied to the molten metal, if the bulk density of the metal JXa is less than 80% of the true density, the molten metal will be trapped inside the core. This is because the metal will remain in the form of a skeleton.

ここでかざ密度とは、成形体の重量をその体積で除した
6のという意味である。その他の金属塩としては塩化バ
リウム(88CIz)、塩化カルシウム(CaC12>
、塩化カリ(KCI )等を使ITI Jることができ
る、これらの金属塩の場合にも、融点が770℃〜8.
0’O℃であり、冷水、熱水、常温水等の溶媒によく溶
は得る。尚、金属塩としては、単一種類のものを使用し
てもよいし、場合よっては複数種類の金属塩を混合して
複塩とし′Cもよく、又、必要に応じて他の添加物を加
えてもよい。
Here, the term density means 6, which is the weight of the molded body divided by its volume. Other metal salts include barium chloride (88CIz) and calcium chloride (CaC12>
In the case of these metal salts, the melting point is 770°C to 8.0°C.
The temperature is 0'0°C, and it dissolves well in solvents such as cold water, hot water, and water at room temperature. In addition, a single type of metal salt may be used, or in some cases, multiple types of metal salts may be mixed to form a double salt, and other additives may be used as necessary. may be added.

かさ密度が゛真密度の80%以上である中子を形成する
には、例えば、所定湿度に加熱した金属塩を中子成形用
の型内へ所要m装入し、その状態r圧力500ka/c
m2〜1200kg/cm2rプレスするとにい。中子
のかさ密度はできるだ(プ高い方が望ましい。尚、中子
の表面に被膜を形成し、中子の吸温を防止したり、中子
の表面と金属溶湯とが直に触れぬようにしてもよい。
To form a core whose bulk density is 80% or more of the true density, for example, a metal salt heated to a predetermined humidity is charged into a mold for molding the core, and the pressure is 500 ka/min. c.
It is difficult to press m2 to 1200kg/cm2r. The bulk density of the core can be increased (the higher the density the better).In addition, a film may be formed on the surface of the core to prevent the core from absorbing heat, or to prevent the surface of the core from coming into direct contact with the molten metal. You can do it like this.

中子を成形型のキャビティ内にヒラ1−でるにあたって
は、例えば可動型及び固定型からなる成形型の場合、可
動型又は固定型のいずれにヒツトしてもよい。この場合
、金属溶湯が中子に激しく衝突しないようにセットする
ことが望ましい。金属溶湯としては、アルミニウム、又
はアルミニウム−銅等のノフルミニウム系合金の溶湯を
使用できる。
In order to insert the core into the cavity of the mold, for example, in the case of a mold consisting of a movable mold and a fixed mold, either the movable mold or the fixed mold may be pressed. In this case, it is desirable to set the core so that the molten metal does not violently collide with the core. As the molten metal, molten aluminum or a nofluminium alloy such as aluminum-copper can be used.

これらは加圧効果が大きいからである。金属溶湯に高圧
を加えるにあたっては、300ka/cm2〜2000
 kL/ cm2程度が望ましい・。この圧力は金属溶
湯の凝固が完了するまで保持する。
This is because these have a large pressurizing effect. When applying high pressure to molten metal, 300ka/cm2 to 2000
The desired value is around kL/cm2. This pressure is maintained until solidification of the molten metal is completed.

金属の溶湯が凝固したならば、中子を溶媒で化学的に溶
出づる。溶出づるにあたっては、成形型/J)ら取り出
した鋳造品を、溶媒を貯留しIC檜に浸漬ηるとよい。
Once the molten metal has solidified, the core is chemically eluted with a solvent. For elution, it is preferable to store the solvent and immerse the cast product taken out from the mold/J) into an IC hinoki.

Na C1の場合には浸漬するだGJぐ簡111に溶出
しうる。場合にJ:っては、(aに振動を与えC中子の
溶出を促進させてもよい。溶媒としては1iii述した
ように例えば常温水、冷水、熱水を使用りることができ
、場合ににってはメタノール、■タノール、アヒトン、
トルエン、グリレリン等を使用づることができる。尚、
溶媒に溶出さけた金属塩を再生し、これによって中子を
形成し’CbA:い。
In the case of NaCl, it can be eluted in the GJ sample 111 that is immersed. In this case, vibration may be applied to (a) to promote elution of the C core. As the solvent, for example, room temperature water, cold water, or hot water can be used as described in 1iii. In some cases, methanol, ■tanol, ahitone,
Toluene, glycerin, etc. can be used. still,
The metal salt eluted in the solvent is regenerated, thereby forming a core.

〔発明の効果〕〔Effect of the invention〕

本発明の溶湯鍛造法によれば、金属塩からなるかさ密度
が真密度の80%以上の中子を使用するから、金属溶湯
に高圧を加えた場合であっても、その金属溶湯が中子の
内部に含浸づることを抑え得る。従って砂型製の中子を
用いる従来とは異なり金属溶湯がスケルトン状に残った
まま凝固りることを防止でき、それたり後処理を簡単に
しつる。
According to the molten metal forging method of the present invention, since a core made of metal salt and having a bulk density of 80% or more of the true density is used, even if high pressure is applied to the molten metal, the molten metal will It can prevent impregnation inside. Therefore, unlike the conventional method using a sand mold core, it is possible to prevent the molten metal from solidifying while remaining in a skeleton shape, and it is possible to easily hang the molten metal and to easily perform post-processing.

本発明によれば、機械的な後処理が困難あるいは事実上
不可能な箇所、例えばビス1ヘンの中空部に形成したア
ンダーカット部のような箇所であっでも、その箇所に相
当する成形型のキレ1フ4部に、金属塩製のかさ密度が
真密度の80%以上で鍛 ある中子をセットして溶湯鋳造すれば、後は中子を溶媒
に溶出するだけで簡単に形成できる。
According to the present invention, even in places where mechanical post-processing is difficult or practically impossible, such as an undercut part formed in the hollow part of a screw 1, the mold corresponding to that part can be If a forged core made of metal salt with a bulk density of 80% or more of the true density is set in the sharp 1st part and 4 parts is cast in molten metal, the rest can be easily formed by simply dissolving the core in a solvent.

旅 又、本発明によれば、溶IK造用の成形型を多数に分割
して多方向へ型抜きづる方法に比してコストを低廉に抑
え得、かつ型寿命も長く保ち得る。
Furthermore, according to the present invention, the cost can be kept low and the life of the mold can be maintained longer than the method of dividing a mold for melt IK manufacturing into a large number of parts and punching the mold in multiple directions.

更に本発明ににれば、発生ガス等によるガス欠陥を#l
l造品に生じさせ易い金属塩で中子を形成した場合には
、金属溶湯に加える圧ツノを調整づればこの圧力によっ
てガスを金属塩からなる中子に極 1カ押し留めること
もできる。
Furthermore, according to the present invention, gas defects caused by generated gas etc.
When the core is made of a metal salt that easily forms in manufactured products, by adjusting the pressure horn applied to the molten metal, it is possible to use this pressure to hold down a small amount of gas in the core made of the metal salt.

(実施例) 図面は本発明の一実施例を示したものである。(Example) The drawings show one embodiment of the invention.

第1図はNa Clから中子を形成している状態を承り
断面図であり、第2図は形成した中子の斜視図であり、
そして第3図は中子をレットした成形型のキャピテイ内
にアルミニウム合金を注入し、その溶湯iに高圧を加え
ている状態を示ず断面図である。この実施例においては
粉末状のNa Clを280°Cに加熱し、そのNa 
Clを主型1の下型2に装入し、そして、上型3により
約1.000 kg/cm2にCプレスし、上型3の離
型後プランジャー4にて押し出し、これによりがさ密度
80%の中子を形成した。この中子5の高さは10n+
m、幅は20I1111長さは45mmである。この中
子5を、250℃に予熱された成形型6のおす型7の先
端に取イ」けた。続いて740℃のアルミニウム合金(
JIS−AC8B)の溶湯をキャビティ内に注入し、お
り型7によってその溶湯を1000k(110n+”(
”加圧し、溶湯が凝固するまでその圧力を保持し、鋳造
品どしてのピストン9を得た。その後、中子5をピスト
ン9に残したまま、おず型7を型聞きした。次にプラン
ジャー10を作動させることによってピストン9を成形
型6から取出した。
FIG. 1 is a cross-sectional view of a core formed from NaCl, and FIG. 2 is a perspective view of the formed core.
FIG. 3 is a sectional view, not showing a state in which an aluminum alloy is injected into the cavity of a mold with a core removed, and high pressure is applied to the molten metal i. In this example, powdered NaCl was heated to 280°C, and the NaCl
Cl is charged into the lower mold 2 of the main mold 1, and C-pressed to about 1.000 kg/cm2 by the upper mold 3. After releasing the upper mold 3, it is extruded by the plunger 4, and thereby the material is separated. A core with a density of 80% was formed. The height of this core 5 is 10n+
m, width is 20I1111, and length is 45mm. This core 5 was placed at the tip of the male mold 7 of the mold 6 which had been preheated to 250°C. Next, aluminum alloy at 740℃ (
JIS-AC8B) molten metal is injected into the cavity, and the molten metal is heated to 1000k (110n+”) by the cage mold 7.
``Pressure was applied and the pressure was maintained until the molten metal solidified to obtain the piston 9 as a cast product.Then, the mold 7 was molded with the core 5 left in the piston 9.Next. The piston 9 was taken out from the mold 6 by actuating the plunger 10.

その後ピストン9を槽中の水に浸漬することによって中
子5を溶出した。
Thereafter, the core 5 was eluted by immersing the piston 9 in water in the tank.

このようにして形成したビス1ヘン9にJ3いては、中
空部9aにアンダーカット部91)を形成づ−ることか
できた。そしてこれにより10.8(+の軽量化を図る
ことができた。このように軽量化し得るふん金属溶湯の
量を減らりことができ、従って成形sreの熱負荷を軽
減でき、型寿命を伸ばJことができlζ。
In the screw 1 hem 9 formed in this manner, an undercut portion 91) could be formed in the hollow portion 9a. As a result, we were able to achieve a weight reduction of 10.8 (+).In this way, we were able to reduce the amount of molten metal that could be used to reduce the weight, thereby reducing the heat load of molding SRE and extending the life of the mold. If J can lζ.

尚、比較例として、Na C1をプレスしてがさ密度を
真密度の75%とした中子を使用して上述同様にピスト
ンを形成した。この場合には中空部9aのアンダーカッ
ト部9bにアルミニウム系合金がスケルトン状に凝固し
たまま残った。
In addition, as a comparative example, a piston was formed in the same manner as described above using a core made of Na C1 with a core density of 75% of the true density. In this case, the aluminum alloy remained solidified in a skeleton shape in the undercut portion 9b of the hollow portion 9a.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は中子形成用の
型によってNa Cl中子を形成している状態を示ず断
面図、第2図はNaC1中子の斜視図、第3図はアルミ
ニウム合金の溶湯に圧力を加えている状態を示す断面図
である。 図中、5はNa Clの中子、6は成形型、9はピスト
ン、9aは中空部、9bはアンダーカット部を示づ。 特5′1出願人 トヨタ自動車株式会社代理人 弁理士
 大川 宏 同 弁理士 藤谷 修 同 弁理士 丸山明夫
The drawings show one embodiment of the present invention; FIG. 1 is a cross-sectional view showing a NaCl core being formed using a mold for forming the core; FIG. 2 is a perspective view of the NaCl core; FIG. 3 is a sectional view showing a state in which pressure is applied to molten aluminum alloy. In the figure, 5 is a Na Cl core, 6 is a mold, 9 is a piston, 9a is a hollow part, and 9b is an undercut part. Patent 5'1 Applicant Toyota Motor Corporation Agent Patent Attorney Hirodo Okawa Patent Attorney Shudo Fujitani Patent Attorney Akio Maruyama

Claims (1)

【特許請求の範囲】 (1〉溶媒に溶出可能な金属塩からなる真密度の80%
以上のかさ密度の中子を、成形型のキャじ一7−イ内に
セットする工程と、該成形型の該主11ビデC内に金属
溶湯を注入し溶湯が凝固する際溶−湖に高圧を加える工
程と、金属溶湯の凝固後に中子を溶媒で溶出して鋳造品
を得る工程とを順に実施して成ることを特徴とする溶湯
鍛造法。 (2)金属塩は塩化ナトリウムであり、溶媒は水である
特許請求の範囲第1項記載の溶湯鍛造法。 (3)金属溶湯はアルミニウム又はアルミニウム系合金
である特許請求の範囲第1項記載の溶瀉鍛 式シ 1人
 。 (4)中子は、鋳造品にアンダーカット部を設けるため
の中子である特許請求の範囲第1項記載の溶湯鍛造法。
[Scope of Claims] (1> 80% of true density consisting of a metal salt that can be eluted in a solvent
A process of setting the core with the above bulk density in the cage 7-A of the mold, and pouring molten metal into the main bidet C of the mold, and when the molten metal solidifies, it forms a molten lake. A molten metal forging method characterized by sequentially performing a step of applying high pressure and a step of eluting the core with a solvent after solidifying the molten metal to obtain a cast product. (2) The molten metal forging method according to claim 1, wherein the metal salt is sodium chloride and the solvent is water. (3) The molten forging method according to claim 1, wherein the molten metal is aluminum or an aluminum-based alloy. (4) The molten metal forging method according to claim 1, wherein the core is a core for providing an undercut portion in a cast product.
JP11039183A 1983-06-20 1983-06-20 Forging method of molten metal Granted JPS603958A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11039183A JPS603958A (en) 1983-06-20 1983-06-20 Forging method of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11039183A JPS603958A (en) 1983-06-20 1983-06-20 Forging method of molten metal

Publications (2)

Publication Number Publication Date
JPS603958A true JPS603958A (en) 1985-01-10
JPH0440104B2 JPH0440104B2 (en) 1992-07-01

Family

ID=14534617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11039183A Granted JPS603958A (en) 1983-06-20 1983-06-20 Forging method of molten metal

Country Status (1)

Country Link
JP (1) JPS603958A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875517A (en) * 1989-05-01 1989-10-24 Brunswick Corporation Method of producing salt cores for use in die casting
JPH02123334U (en) * 1989-03-16 1990-10-11
JPH05133031A (en) * 1991-05-30 1993-05-28 Misawa Homes Co Ltd Floor structure for wood construction building
NL1028077C2 (en) * 2005-01-20 2006-07-21 Fountain Patents B V Method and device for manufacturing light metal products.
JP2006326610A (en) * 2005-05-24 2006-12-07 Toyota Motor Corp Method for removing molten salt core
WO2021124542A1 (en) * 2019-12-20 2021-06-24 本田金属技術株式会社 Breathable salt core and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150219A (en) * 1974-10-29 1976-05-01 Kobe Steel Ltd SUIYOSE INAKAGO
JPS56117862A (en) * 1980-02-19 1981-09-16 Atsugi Motor Parts Co Ltd Method for casting piston for internal combustion engine provided with hollow part
JPS57134259A (en) * 1981-01-13 1982-08-19 Imp Clevite Inc Method of casting light piston with abrasion-resisting filler metal and mold device for casting

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5150219A (en) * 1974-10-29 1976-05-01 Kobe Steel Ltd SUIYOSE INAKAGO
JPS56117862A (en) * 1980-02-19 1981-09-16 Atsugi Motor Parts Co Ltd Method for casting piston for internal combustion engine provided with hollow part
JPS57134259A (en) * 1981-01-13 1982-08-19 Imp Clevite Inc Method of casting light piston with abrasion-resisting filler metal and mold device for casting

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123334U (en) * 1989-03-16 1990-10-11
US4875517A (en) * 1989-05-01 1989-10-24 Brunswick Corporation Method of producing salt cores for use in die casting
JPH05133031A (en) * 1991-05-30 1993-05-28 Misawa Homes Co Ltd Floor structure for wood construction building
NL1028077C2 (en) * 2005-01-20 2006-07-21 Fountain Patents B V Method and device for manufacturing light metal products.
JP2006326610A (en) * 2005-05-24 2006-12-07 Toyota Motor Corp Method for removing molten salt core
JP4600151B2 (en) * 2005-05-24 2010-12-15 トヨタ自動車株式会社 Method for removing molten salt core
WO2021124542A1 (en) * 2019-12-20 2021-06-24 本田金属技術株式会社 Breathable salt core and method for manufacturing same
JPWO2021124542A1 (en) * 2019-12-20 2021-06-24
CN114667193A (en) * 2019-12-20 2022-06-24 本田金属技术株式会社 Breathable salt core and manufacturing method thereof
US11772150B2 (en) 2019-12-20 2023-10-03 Honda Foundry Co., Ltd. Method for manufacturing cast product using breathable salt core

Also Published As

Publication number Publication date
JPH0440104B2 (en) 1992-07-01

Similar Documents

Publication Publication Date Title
DE60311824T2 (en) casting process
EP1392875B1 (en) Method for producing metal/metal foam composite elements
US3106002A (en) Die-casting method
EP1472026B1 (en) Method for the production of moulded metal pieces
EP1356131B1 (en) Method for the production of metallic foam and metal bodies produced according to said method
DE3221357A1 (en) Process for the production of moulds and cores for casting purposes
TW200533436A (en) Process for producing cast item
CA2013835C (en) Method of producing salt cores for use in die casting
US3138856A (en) Method of producing clad porous metal articles
JPS603958A (en) Forging method of molten metal
DE3831400A1 (en) METHOD FOR CASTING A METAL OBJECT
DE102014007889B4 (en) Process for producing a salt body, in particular for die casting
DE102014211350A1 (en) Casting method for producing a piston and pistons for internal combustion engines
DE202021001848U1 (en) Device for pressure-assisted vertical gravity casting (DVSG) of metallic materials
JPH02503402A (en) Method of manufacturing metal parts
US3275424A (en) Clad porous metal articles
JP4000106B2 (en) Manufacturing method of salt core for casting
DE10301174B4 (en) Ceramic and / or powder-metal hollow body and process for its preparation
DE656707C (en) Process for the production of cast hollow blocks and similar workpieces
KR100400132B1 (en) A method for manufacturing a dissolution type core for a casting, a core and a method for extracting the core
DE10104340A1 (en) Process for the production of metal foam and metal body produced thereafter
JPS6390350A (en) Production of composite mold by metal and inorganic materials
TW426560B (en) Three-dimensional hollow, burrless cold forging forming method and its device
JP3327604B2 (en) Manufacturing method of metal products and core material used for the same
JPS62101366A (en) Molten metal forging device