JPS6039455B2 - Mold for continuous casting equipment - Google Patents

Mold for continuous casting equipment

Info

Publication number
JPS6039455B2
JPS6039455B2 JP14465580A JP14465580A JPS6039455B2 JP S6039455 B2 JPS6039455 B2 JP S6039455B2 JP 14465580 A JP14465580 A JP 14465580A JP 14465580 A JP14465580 A JP 14465580A JP S6039455 B2 JPS6039455 B2 JP S6039455B2
Authority
JP
Japan
Prior art keywords
plating layer
mold
thickness
wall surface
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14465580A
Other languages
Japanese (ja)
Other versions
JPS5768249A (en
Inventor
孝次 北沢
勝 山口
茂 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP14465580A priority Critical patent/JPS6039455B2/en
Publication of JPS5768249A publication Critical patent/JPS5768249A/en
Publication of JPS6039455B2 publication Critical patent/JPS6039455B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】 本発明は連続鋳造設備の鋳型に関する。[Detailed description of the invention] The present invention relates to a mold for continuous casting equipment.

連続鍛造設備の鋳型は、例えば鋳造時にストランドの自
動幅替えを行なうものでは、第1図、第2図に示したよ
うに、一対の長片1,1と一対の短片2,2とを平面視
矩形状に粗立てて構成されており、各鋳型片の表面によ
り鋳型壁面3を形成している。
For example, in a mold for continuous forging equipment that automatically changes the width of the strand during casting, a pair of long pieces 1, 1 and a pair of short pieces 2, 2 are formed in a plane, as shown in Figs. 1 and 2. It is roughly constructed to have a rectangular shape when viewed, and a mold wall surface 3 is formed by the surface of each mold piece.

これらの鋳型片は鋼板にて様成されており、ストランド
表面性状の向上及びその寿命延長を図ることを目的とし
て多種多様な方法による表面処理が施されている。この
種の表面処理として、鋳型壁面3の全域に単層あるいは
複層のメッキ層を形成させる例があり、他方、鋳型盤面
3を部分的に処理するものとして、その下半部のみにメ
ッキ層を形成し、上半部にはメッキ層を形成させない例
がある。前者の例では、鋳型壁面3の下部における耐摩
耗性はある程度満足されるが、上部における熱伝導性に
関しては満足すべきものが得られない。後者の例では、
前者の例に比べて、その下部における耐摩耗性、上部に
おける熱伝導性に関して比較的満足できるものを備えて
いる。しかしながらこの例のものにおいても、鋳造時に
ストランドを自動幅替えするものにおいては不都合が生
じる。すなわちストランドの自動幅替えは、第1図、第
2図に示された短片2,2を一対の長片1,1に対して
スライドさせて行なうものであるので、最片1,1の表
面上部にメッキ層を有していない場合には、この部分に
傷が付き、結果として鋳型寿命が低下する。本発明は上
記の点に鑑み、鋳型壁面上部の熱伝導性及び下部の耐摩
耗性を同時に確保すると共に、鋳造初期等における溶造
の付着を防止でき、しかもストランドを自動幅替えする
ものにおいても幅替え時の傷付きを防止して寿命を延長
し得る連続孫造設抗肯の鋳型を提供するものであり、以
下その一実施例を図面に基づいて説明する。
These mold pieces are made of steel plates, and are subjected to surface treatments using a variety of methods in order to improve the surface properties of the strands and extend their lifespan. As this type of surface treatment, there is an example in which a single layer or a multilayer plating layer is formed on the entire mold wall surface 3, and on the other hand, when the mold disk surface 3 is partially treated, a plating layer is formed only on the lower half thereof. There is an example in which a plating layer is not formed on the upper half. In the former example, the wear resistance in the lower part of the mold wall surface 3 is satisfied to some extent, but the thermal conductivity in the upper part is not satisfactory. In the latter example,
Compared to the former example, the wear resistance in the lower part and the thermal conductivity in the upper part are relatively satisfactory. However, even in this example, inconveniences arise in those in which the width of the strand is automatically changed during casting. In other words, the automatic width change of the strand is performed by sliding the short pieces 2, 2 shown in FIGS. 1 and 2 against the pair of long pieces 1, 1, so that If the upper part does not have a plating layer, this part will be damaged and the life of the mold will be shortened as a result. In view of the above points, the present invention simultaneously ensures the thermal conductivity of the upper part of the mold wall surface and the abrasion resistance of the lower part, and also prevents the adhesion of welding during the initial stage of casting. The purpose is to provide a mold for continuous machining that can prevent damage during width changes and extend its life.One embodiment of the mold will be described below with reference to the drawings.

第3図において、4は鋳型を構成する一対の最片1,1
および一対の短片2,2の表面すなわち鋳型壁面3の全
域にわたって形成された300〜1000仏の厚のニッ
ケルメッキ層(以下Niメッキ層と記す)であり、該N
iメッキ層4上には、鋳型壁面3の下端から高さ方向略
1/2の範囲にわたって500〜1500〆の厚のニッ
ケル−鉄合金メッキ層(以下Ni−Feメッキ層と託す
)5が形成されている。このNi−Feメッキ層5を構
成するニッケル−鉄合金には、鉄が5〜2の重量%含ま
れている。また前記各メッキ層4,5上には、鋳型壁面
3の上端から高さ方向少なくとも2/3の範囲にわたっ
て10〜loorm厚のクロムメッキ層(以下Crメッ
キ層を記す)6が形成されている。ところで、連続鋳造
時における鋳型壁面3の温度は、第4図に示す如く、上
側と下側とで約5000以上異なり、この温度差が鋳型
片1,2の寿命あるいは表面処理層に要求される性能を
大きく変化させている。
In Fig. 3, 4 is a pair of outermost pieces 1, 1 constituting the mold.
and a nickel plating layer (hereinafter referred to as Ni plating layer) with a thickness of 300 to 1000 mm formed over the entire surface of the pair of short pieces 2, 2, that is, the mold wall surface 3, and the N
A nickel-iron alloy plating layer (hereinafter referred to as Ni-Fe plating layer) 5 with a thickness of 500 to 1500 mm is formed on the i-plating layer 4 over a range of approximately 1/2 in the height direction from the lower end of the mold wall surface 3. has been done. The nickel-iron alloy constituting this Ni-Fe plating layer 5 contains iron in an amount of 5 to 2% by weight. Further, on each of the plating layers 4 and 5, a chromium plating layer (hereinafter referred to as Cr plating layer) 6 having a thickness of 10 to 100 m is formed over a range of at least 2/3 in the height direction from the upper end of the mold wall surface 3. . By the way, the temperature of the mold wall surface 3 during continuous casting differs by about 5,000 degrees or more between the upper and lower sides, as shown in FIG. It makes a big difference in performance.

第4図において鋳型壁面3の温度が高い部分から平坦な
部分へと移行する境界A−A′は、連続鋳造機の構造や
操業条件等によってその位置が変化するのであるが、こ
の境界A−A′よりも上側を上部側、下側を下部側と定
義すると、上部側での鋳型片1,2の寿命を左右するの
は… であり、また下部側では摩耗である。したがっ
て、ストランドの表面性状の向上および鋳型片1,2の
寿命増大のために鋳型壁面3に施す表面処理層には、上
部側では耐熱疲労性、下部側では耐摩耗性が要求され、
これらの性質を満足する表面処理材の選択、組合せが重
要となる。そこで、まずストランドと鋳型片1,2との
直接接触を断つために鋳型壁面3の全域にわたって形成
するメッキ層として、鋼板から成る鋳型片1,2との密
着力の優れたNiメッキ層4を用いた。ただし、このN
iメッキ層4は、銅よりも熱伝導度が低く、熱疲労をお
こし易くなるため、鋳型壁面3上部におけるNiメッキ
層4の厚みと熱疲労によるクラック発生度との関係を検
討した結果、第5図に示すように、厚みが1000×肌
を越えるとクラック発生が顕著になることが判明した。
なお第5図は錨造回数が25比hの場合の結果である。
したがってNiメッキ層4の厚みを1000〆m以下と
した。またNiメッキ層4の厚みの下限は、所定鋳造回
数の間、鋳型片1,2が露出しないために必要な厚みで
あり、この厚みは約300〆机である。前記所定鋳造回
数は、蟹造の変形あるいは交換等、表面処理材の選定と
は無関係な事項により決定あるいは制約されるもので、
連続鋳造設備の操業上約25比hあるいはその倍数であ
り、本発明においては25比hとした。上記Niメッキ
層4のみでは、鋳型壁面3の下部において鋳造時のスト
ランド‘こよる摩耗に対し充分な耐摩耗性を保持しない
ため、さらに耐摩耗性に留意した表面処理が必要となる
In FIG. 4, the boundary A-A', where the temperature of the mold wall surface 3 transitions from the high-temperature part to the flat part, changes depending on the structure and operating conditions of the continuous casting machine, but this boundary A-A' If we define the area above A' as the upper side and the area below as the lower side, what determines the lifespan of the mold pieces 1 and 2 on the upper side is... and wear on the lower side. Therefore, the surface treatment layer applied to the mold wall surface 3 in order to improve the surface quality of the strands and extend the life of the mold pieces 1 and 2 is required to have thermal fatigue resistance on the upper side and wear resistance on the lower side.
It is important to select and combine surface treatment materials that satisfy these properties. Therefore, first, as a plating layer formed over the entire mold wall surface 3 to break direct contact between the strand and the mold pieces 1 and 2, a Ni plating layer 4, which has excellent adhesion to the mold pieces 1 and 2 made of steel plates, is used. Using. However, this N
The i-plated layer 4 has a lower thermal conductivity than copper and is more susceptible to thermal fatigue.As a result of examining the relationship between the thickness of the Ni-plated layer 4 on the upper part of the mold wall surface 3 and the degree of crack occurrence due to thermal fatigue, As shown in Figure 5, it has been found that cracks become more noticeable when the thickness exceeds 1000× skin.
Note that FIG. 5 shows the results when the number of anchor constructions was 25 ratio h.
Therefore, the thickness of the Ni plating layer 4 was set to 1000 m or less. The lower limit of the thickness of the Ni plating layer 4 is the thickness necessary to prevent the mold pieces 1 and 2 from being exposed during a predetermined number of castings, and this thickness is approximately 300 mm. The predetermined number of castings is determined or restricted by matters unrelated to the selection of the surface treatment material, such as deformation or replacement of the crab.
In terms of operation of continuous casting equipment, the ratio is approximately 25 ratio h or a multiple thereof, and in the present invention, it is set to 25 ratio h. Since the Ni plating layer 4 alone does not maintain sufficient wear resistance against the wear caused by the strands during casting at the lower part of the mold wall surface 3, surface treatment with further attention to wear resistance is required.

そこで、Niメッキ層4上の鋳型壁面3下半分に対応す
る部分に、商温(200〜300℃)での耐摩耗性およ
び強度、ならびにNiメッキ層4との密着性に優れたN
i−Feメッキ層5を形成した。耐摩耗性を向上させる
ためにはNi−Feメッキ層5の厚みを厚くすることが
望ましいが、この厚みが厚すぎると、表面温度の上昇を
きたし、物性強度の差によるNiメッキ層4との剥離の
問題を生じると共に、通常であれば問題にならない熱疲
労クラツクを生じる。鋳型壁面3下部におけるNi−F
eメッキ層5の厚みと熱疲労によるクラック発生度との
関係を検討した結果、第6図に示すように、厚みが15
0地肌を越えるとクラック発生が顕著になることが判明
した。なお第6図はNiメッキ層4の厚みが800ムの
の場合の結果である。したがってNi一Feメッキ層5
の厚みを1500仏の以下とした。また、Ni−Feメ
ッキ層5の厚みが薄すぎると、耐摩耗性が弱くなるので
、前記所定鋳造回数(25比h)に耐えるために、50
0凶の以上の厚みが必要である。またNi−Feメッキ
層5を構成するニッケル−鉄合金は、鉄が5重量%未満
では耐摩耗性が低下し、20重量%を越えるとNi−F
eメッキ層5にへャークラックが発生し易くなるので、
鉄の含有率を5〜2の重量%とするのが望ましい。上記
各Niメッキ層4とNi−Feメッキ層5との複層メッ
キにより、耐熱疲労性および耐摩耗性を充分に備えた表
面処理層が得られたが、さらに鋳造開始初期のような鋳
造の非定常時における飛散溶滴が表面処理層に付着する
のを防止する必要がある。このため、前記Niメッキ層
4およびNi−Feメッキ層5上の鋳型壁面3上部2/
3に対応する部分にCrメッキ層6を形成した。このC
rメッキ層6は上部2/3だけで充分である。またこの
Crメッキ層6は、上記のような目的であるため、その
厚みは10〜10wので充分であることが実験により確
認された。次に実験結果を説明する。
Therefore, on the part corresponding to the lower half of the mold wall surface 3 on the Ni plating layer 4, we added a layer of N, which has excellent wear resistance and strength at commercial temperatures (200 to 300°C) and excellent adhesion to the Ni plating layer 4.
An i-Fe plating layer 5 was formed. In order to improve the wear resistance, it is desirable to increase the thickness of the Ni-Fe plating layer 5, but if this thickness is too thick, the surface temperature will rise and the difference in physical strength between the Ni-Fe plating layer 4 and the Ni plating layer 4 will increase. This causes problems of peeling and thermal fatigue cracks, which would normally not be a problem. Ni-F at the lower part of the mold wall surface 3
As a result of examining the relationship between the thickness of the e-plated layer 5 and the degree of crack occurrence due to thermal fatigue, as shown in FIG.
It has been found that cracking becomes noticeable when the surface exceeds 0. Note that FIG. 6 shows the results when the thickness of the Ni plating layer 4 was 800 μm. Therefore, the Ni-Fe plating layer 5
The thickness was set to 1500 Buddhas or less. In addition, if the thickness of the Ni-Fe plating layer 5 is too thin, the wear resistance will be weakened, so in order to withstand the predetermined number of castings (25 ratio h), it is necessary to
It is necessary to have a thickness greater than zero. In addition, the wear resistance of the nickel-iron alloy constituting the Ni-Fe plating layer 5 decreases if the iron content is less than 5% by weight, and if it exceeds 20% by weight, the Ni-F
Since cracks are likely to occur in the e-plating layer 5,
Preferably, the iron content is between 5 and 2% by weight. By multi-layer plating of each Ni plating layer 4 and Ni-Fe plating layer 5, a surface treatment layer with sufficient thermal fatigue resistance and wear resistance was obtained. It is necessary to prevent scattered droplets from adhering to the surface treatment layer during unsteady conditions. For this reason, the upper part 2/of the mold wall surface 3 on the Ni plating layer 4 and the Ni-Fe plating layer 5 is
A Cr plating layer 6 was formed on a portion corresponding to 3. This C
It is sufficient to form the r plating layer 6 only on the upper two-thirds. Further, since the Cr plating layer 6 has the above-mentioned purpose, it has been confirmed through experiments that the thickness of 10 to 10 W is sufficient. Next, the experimental results will be explained.

Niメッキ層4を700〆肌の層厚で鋳型壁面3の全域
に形成し、該Niメッキ層4上に鉄を15重量%含有す
るNi−Feメッキ層5を1000仏肌の層厚で鋳型壁
面3の下半部に対応する部分に形成し、これら各メッキ
層4,5上にCrメッキ層6を40舷仇の層厚で鋳型壁
面3の全域に対応する部分に形成して成る鋳型を用い、
約1.2m/minの鋳造速度でスラブの鋳造を実施し
た場合、約25比hの鋳造に対して各メッキ層4,5,
6を補修する必要が全くなかった。これに対して、鋳型
壁面の全域に200仏の厚のニッケルメッキ層を形成し
、該ニッケルメッキ層上に全域にわたって5叫肌厚のク
ロムメッキ層を形成して成る従来の鋳型を用いた場合、
約15比hの鋳造回数でメッキ層の補修が必要であった
。なお上記実施例においては、ストランドの自動幅替え
を行なう鋳型について説明したが、本発明はこの他いか
なる型式の連続鋳造設備の鋳型に対しても適用し得ると
いうことは言うまでもない。
A Ni plating layer 4 is formed on the entire mold wall surface 3 to a thickness of 700 mm, and a Ni-Fe plating layer 5 containing 15% by weight of iron is formed on the Ni plating layer 4 to a thickness of 1000 mm. A mold is formed in a portion corresponding to the lower half of the wall surface 3, and a Cr plating layer 6 is formed on each of these plating layers 4 and 5 with a layer thickness of 40 mm in a portion corresponding to the entire area of the mold wall surface 3. using
When the slab is cast at a casting speed of about 1.2 m/min, each plating layer 4, 5,
There was no need to repair 6. On the other hand, when using a conventional mold in which a nickel plating layer with a thickness of 200 cm is formed over the entire mold wall surface, and a chrome plating layer with a thickness of 5 cm is formed over the nickel plating layer over the entire area. ,
Repair of the plating layer was required after approximately 15 ratio h of casting. In the above embodiments, a mold for automatically changing the width of the strand has been described, but it goes without saying that the present invention can be applied to molds for any other type of continuous casting equipment.

以上説明したように、本発明にかかる連続鋳造設備の鋳
型によれば、ニッケルメッキ層とニッケル−鉄合金メッ
キ層とを適度な層厚に形成することにより上部の熱伝導
性及び下部の耐摩耗性を同時に確保すると共に、クロム
メッキ層により鋳造初期等における熔通の付着を防止し
たので、ストランド表面性状の向上および鋳型寿命の延
長を図り得る。しかも、鋳型壁面への密着力に優れたニ
ッケルメッキ層を先ず鋳型壁面の全域にわたって形成し
、その後に該ニッケルメッキ層上の下部でニッケル−鉄
合金メッキ層を、さらに上部でのクロムメッキ層を形成
するので、良好な密着性が得られてニッケル−鉄合金メ
ッキ層およびクロムメッキ層の剥離を強力に防止できる
と共に、上部のクロムメッキ層の下端が下部のニッケル
−鉄合金メッキ層の上端に一部重復することにより、ク
ロムメッキ層とニッケル−鉄合金メッキ層の境界で発生
の恐れのある早期剥離も回避できる。
As explained above, according to the mold for continuous casting equipment according to the present invention, the nickel plating layer and the nickel-iron alloy plating layer are formed to have an appropriate thickness, thereby improving thermal conductivity in the upper part and wear resistance in the lower part. At the same time, the chromium plating layer prevents adhesion of weld metal during the early stages of casting, so it is possible to improve the surface quality of the strand and extend the life of the mold. Moreover, a nickel plating layer with excellent adhesion to the mold wall is first formed over the entire mold wall, and then a nickel-iron alloy plating layer is applied on the lower part of the nickel plating layer, and then a chromium plating layer is applied on the upper part. As a result, good adhesion can be obtained and peeling of the nickel-iron alloy plating layer and chromium plating layer can be strongly prevented, and the lower end of the upper chromium plating layer is attached to the upper end of the lower nickel-iron alloy plating layer. By partially overlapping, it is possible to avoid early peeling that may occur at the boundary between the chromium plating layer and the nickel-iron alloy plating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鋳型の平面図、第2図は第1図におけるローロ
線に沿う断面図、第3図〜第6図は本発明の一実施例を
示し、第3図は鋳型片の断面図、第4図は蓮銭時におけ
る鋳型壁面の温度分布の説明図、第5図は鋳型壁面上部
におけるニッケルメッキ層の層厚とクラック発生度との
関係の説明図、第6図は鋳型壁面下部におけるニッケル
−鉄合金メッキ層の層厚とクラック発生度との関係の説
明図である。 3・・・・・・鋳型壁面、4…・・・ニッケルメッキ層
、5・・・・・・ニッケル−鉄合金メッキ層、6・・・
・・・クロムメッキ層。 第1図 第2図 第3図 第5図 第4図
Fig. 1 is a plan view of the mold, Fig. 2 is a sectional view taken along the Rolo line in Fig. 1, Figs. 3 to 6 show an embodiment of the present invention, and Fig. 3 is a sectional view of a mold piece. , Fig. 4 is an explanatory diagram of the temperature distribution on the mold wall surface during the lotus period, Fig. 5 is an explanatory diagram of the relationship between the layer thickness of the nickel plating layer on the upper mold wall surface and the degree of crack occurrence, and Fig. 6 is an explanatory diagram of the relationship between the crack occurrence degree and the thickness of the nickel plating layer on the upper mold wall surface. FIG. 2 is an explanatory diagram of the relationship between the layer thickness of the nickel-iron alloy plating layer and the degree of crack occurrence in FIG. 3... Mold wall surface, 4... Nickel plating layer, 5... Nickel-iron alloy plating layer, 6...
...Chrome plating layer. Figure 1 Figure 2 Figure 3 Figure 5 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1 鋳型壁面の全域にわたつて300〜1000μm厚
のニツケルメツキ層を形成し、該ニツケルメツキ層上に
鋳型壁面の下端から高さ方向略1/2の範囲にわたつて
500〜1500μm厚のニツケル−鉄合金メツキ層を
形成し、さらに前記各メツキ層上に鋳型壁面の上端から
高さ方向少なくとも2/3の範囲にわたつて10〜10
0μm厚のクロムメツキ層を形成したことを特徴とする
連続鋳造設備の鋳型。
1. A nickel plating layer with a thickness of 300 to 1000 μm is formed over the entire area of the mold wall surface, and a nickel-iron alloy with a thickness of 500 to 1500 μm is formed on the nickel plating layer from the lower end of the mold wall surface to approximately 1/2 in the height direction. A plating layer is formed, and a layer of 10 to 10
A mold for continuous casting equipment, characterized by forming a chrome plating layer with a thickness of 0 μm.
JP14465580A 1980-10-15 1980-10-15 Mold for continuous casting equipment Expired JPS6039455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14465580A JPS6039455B2 (en) 1980-10-15 1980-10-15 Mold for continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14465580A JPS6039455B2 (en) 1980-10-15 1980-10-15 Mold for continuous casting equipment

Publications (2)

Publication Number Publication Date
JPS5768249A JPS5768249A (en) 1982-04-26
JPS6039455B2 true JPS6039455B2 (en) 1985-09-06

Family

ID=15367132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14465580A Expired JPS6039455B2 (en) 1980-10-15 1980-10-15 Mold for continuous casting equipment

Country Status (1)

Country Link
JP (1) JPS6039455B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224610Y2 (en) * 1986-10-24 1990-07-05

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108744B1 (en) * 1982-11-04 1988-08-17 VOEST-ALPINE Aktiengesellschaft Open-ended mould for a continuous-casting plant
JPS6095571A (en) * 1983-10-31 1985-05-28 Canon Inc Developing device
GB8409073D0 (en) * 1984-04-07 1984-05-16 Inter Metals & Minerals Sa Electrodeposition of chromium &c
TW338071B (en) * 1996-05-09 1998-08-11 Toyo Koban Kk A battery container and surface treated steel sheet for battery container
AU4084497A (en) * 1996-09-03 1998-03-26 Ag Industries, Inc. Improved mold surface for continuous casting and process for making

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224610Y2 (en) * 1986-10-24 1990-07-05

Also Published As

Publication number Publication date
JPS5768249A (en) 1982-04-26

Similar Documents

Publication Publication Date Title
KR850007817A (en) Method of Making Cord Castings with Wear Resistant Layers
JPS6039455B2 (en) Mold for continuous casting equipment
JPS5953143B2 (en) Continuous casting mold
JPS5973153A (en) Mold for continuous casting and its production
JPS5838637A (en) Repairing method for mold for continuous casting
JPS595385B2 (en) Continuous casting mold
JPS6039454B2 (en) Mold pieces for continuous casting equipment
JPS6146228B2 (en)
JPS60145247A (en) Mold for continuous casting and its production
JP2001205399A (en) Cooling drum for twin-drum type continuous casting of thin slab and continuous casting method
JPS58151941A (en) Casting mold for continuous casting
JP3709038B2 (en) Mold for casting of metal containing Zn
JP2000263190A (en) Mold for continuous casting
JP3908902B2 (en) Cooling drum for continuous casting of thin-walled slab and continuous casting method of thin-walled slab
WO2024095958A1 (en) Mold copper plate, casting mold for continuous casting, and method for slab casting
JP3055590B2 (en) Cooling drum for continuous casting of thin cast slab and method of manufacturing the same
JP3634422B2 (en) Continuous casting mold
JP3687839B2 (en) Foot roll for continuous casting
JPS5853170Y2 (en) Push-up rod for mold release of cast anode plate
JP2004533934A (en) Continuous casting roller for molten bath casting and method for producing said continuous casting roller
JPH06182498A (en) Mold for continuous casting
JPH0824997A (en) Mold for continuous casting
JPH01233047A (en) Production of mold for continuous casting
JPS5813257B2 (en) Continuous casting mold
JPH0130580B2 (en)