JPS6039344B2 - Method for producing 6- or 7-alkyne-11-one - Google Patents

Method for producing 6- or 7-alkyne-11-one

Info

Publication number
JPS6039344B2
JPS6039344B2 JP1667382A JP1667382A JPS6039344B2 JP S6039344 B2 JPS6039344 B2 JP S6039344B2 JP 1667382 A JP1667382 A JP 1667382A JP 1667382 A JP1667382 A JP 1667382A JP S6039344 B2 JPS6039344 B2 JP S6039344B2
Authority
JP
Japan
Prior art keywords
reaction
formula
general formula
producing
alkyne
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1667382A
Other languages
Japanese (ja)
Other versions
JPS58134047A (en
Inventor
祥太 伊東
功夫 斎藤
清隆 畑田
隆 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1667382A priority Critical patent/JPS6039344B2/en
Publication of JPS58134047A publication Critical patent/JPS58134047A/en
Publication of JPS6039344B2 publication Critical patent/JPS6039344B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、ある種のガの性フェロモン成分であり、その
駆除剤として有用な不飽和ケトンの製造中間体の新規な
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel method for producing an intermediate for producing an unsaturated ketone, which is a sex pheromone component of certain moths and is useful as a repellent.

式C比(CH2)4CH ニCH(CH2)3C。Formula C ratio (CH2)4CH niCH(CH2)3C.

(CH2)9CH3で表わされるシスー6ーヘンヱィコ
セン−11−オンは北米西部で針葉樹を食害するある種
のガ(Douglasfirt順sock moth)
の性フェロモン成分であり、また式 CH3(CH2)5CH =CH(CQ)2C0(CH2)7CH3で表わされる
シス−7−ノナデセン−11−オンと、式CH3(CH
2)5CH=CH(CH2)2C。
Cis-6-hendicosene-11-one, represented by (CH2)9CH3, is a species of moth (Douglasfirth order sock moth) that damages coniferous trees in western North America.
cis-7-nonadecen-11-one, represented by the formula CH3(CH2)5CH=CH(CQ)2C0(CH2)7CH3;
2) 5CH=CH(CH2)2C.

(CH2)8CH3で表わされるシスー7−ェィコセン
−11−オンは、わが国においてもも、りんご、なしな
どの果実を食害し大きな被害を与えるモモヒメシンクィ
ガの性フェロモン成分であって、それらの害虫の駆除に
利用されている。これらの化合物の製造方法としては、
これまでいくつかの方法が知られているが、これらの化
合物はいずれもシス型の二重結合を有するため先ず対応
する三重結合をもつアセチレン系ケトンを製造し、その
三重結合を還元して二重結合を形成する方法が工業的に
有利である。
Cis-7-eicosen-11-one, represented by (CH2)8CH3, is a sex pheromone component of the Japanese peach moth, which causes great damage by feeding on fruits such as peaches, apples, and pears in Japan. It is used to exterminate pests. The methods for producing these compounds include:
Several methods have been known so far, but since all of these compounds have a cis-type double bond, first an acetylenic ketone with the corresponding triple bond is produced, and then the triple bond is reduced to produce a double bond. The method of forming double bonds is industrially advantageous.

しかし、上記化合物の製造中間体となるアセチレン系ケ
トンを、製造するために知られている公知方法は、いず
れも原料の入手が困難、反応操作がはん雑あるいは収率
が低い等の難点があり工業的に実施する場合には満足し
うるものではなかった。
However, all of the known methods for producing acetylenic ketones, which are intermediates for producing the above compounds, have drawbacks such as difficulty in obtaining raw materials, complicated reaction operations, and low yields. However, it was not satisfactory for industrial implementation.

本発明者らは、前記したフェロモン成分の製造中間体で
あるアセチレン系ケトン類を効率よく製造するため工業
的に実施可能な方法を開発するために鋭意研究を重ねた
結果、1−ハロゲン−2−ノニンー又は1ーハロゲンー
3−ノニンと3−オキソカルポン酸ェステルとを反応さ
せ、その反応生成物を加水分解と同時に脱炭酸すること
により、その目的を達成しうろことを見出し、本発明を
なすに至った。
The present inventors have conducted intensive research to develop an industrially practicable method for efficiently producing acetylene ketones, which are intermediates for producing the pheromone component described above. They discovered that the object could be achieved by reacting -nonine or 1-halogen-3-nonine with 3-oxocarboxylic acid ester and decarboxylating the reaction product at the same time as hydrolyzing it, leading to the present invention. Ta.

すなわち、本発明は、一般式 CH3(CH2)mC三C(CH2)6−mX .
..(1)(式中のXはハロゲン原子、mは4又は5の
整数である)で表わされるハロゲン化アルキンと、一般
式CH3(CH2)nCOCQC02R ・・
・(0)(式中のRは低級アルキル基、nは7〜9の整
数である)で表わされる3−オキソカルボン酸ェステル
とを塩基の存在下で反応させたのち、酸又はアルカリ水
溶液と加熱して加水分解及び脱炭酸することを特徴とす
る一般式CH3(CH2)mC …C(C広)7‐mC○(CH2)nCH3 ・・・(
m)(式中のm及びnは前記と同じ意味をもつ)で表わ
される6一又は7−アルキン−11−オンの製造方法を
提供する。
That is, the present invention relates to a compound having the general formula CH3(CH2)mC3C(CH2)6-mX .
.. .. (1) (in the formula, X is a halogen atom, m is an integer of 4 or 5) and a halogenated alkyne with the general formula CH3(CH2)nCOCQC02R...
・After reacting with a 3-oxocarboxylic acid ester represented by (0) (in the formula, R is a lower alkyl group and n is an integer of 7 to 9) in the presence of a base, the reaction is performed with an acid or alkali aqueous solution. General formula CH3(CH2)mC...C(C-wide)7-mC○(CH2)nCH3...(
m) (wherein m and n have the same meanings as above) provides a method for producing 6-1 or 7-alkyne-11-one.

本発明の製造方法に用いる前記式(1)の化合物は、1
−ハロゲン−2−ノニン,1−ハロゲン−3−ノニンな
どであって、ハロゲンとしては特に塩素又は臭素が有利
に用いられる。
The compound of formula (1) used in the production method of the present invention is 1
-halogen-2-nonine, 1-halogen-3-nonine, etc., and chlorine or bromine is particularly advantageously used as the halogen.

また、前記式(ロ)で表わされる化合物は、3−オキソ
カルボン酸低級アルキルェステル,3−オキソトリデカ
ン酸低級アルキルェステル又は3ーオキソテトラデカン
酸低級アルキルヱステル類で、該ェステルの低級アルキ
ル基は炭素数4以下のメチル、エチル、プロピル及びブ
チル基から選択されるが、特にメチル基が好ましい。上
記式(1)及び(0)で表わされる化合物は、通常溶剤
中で反応させる。
Further, the compound represented by the above formula (b) is a lower alkyl ester of 3-oxocarboxylic acid, a lower alkyl ester of 3-oxotridecanoate, or a lower alkyl ester of 3-oxotetradecanoate, and a lower alkyl ester of the ester The alkyl group is selected from methyl, ethyl, propyl and butyl groups having up to 4 carbon atoms, with methyl being particularly preferred. The compounds represented by formulas (1) and (0) above are usually reacted in a solvent.

そのような溶剤は、これら両反応成分を溶解し、かつ両
成分と反応しないものであれば、特に制限されないが、
例えばベンゼン、トルェンなどの芳香族炭化水素類;ペ
ンタン、ヘキサンなどの脂肪族炭化水素類;エーテル、
テトラヒドロフランなどのェーナル類;ジメチルホルム
アミド、ジメチルスルホキシドなどのような非プロトン
性の極性溶剤などを好適なものとして挙げることができ
る。これらは単独で用いてもよいし、2種以上を組み合
わせて用いることもできる。また、反応系には塩基を存
在させることが必要である。
Such a solvent is not particularly limited as long as it dissolves both of these reaction components and does not react with both components, but
For example, aromatic hydrocarbons such as benzene and toluene; aliphatic hydrocarbons such as pentane and hexane; ether,
Preferred examples include solvents such as tetrahydrofuran; aprotic polar solvents such as dimethylformamide and dimethyl sulfoxide. These may be used alone or in combination of two or more. Furthermore, it is necessary to have a base present in the reaction system.

そのような塩基としては、例えばナトリウムアルコラー
ト、水素化ナトリウム、金属ナトリウム、ナトリウムア
ミドなどの極めて好ましいものとして挙げることができ
るが、3−ケトェステルのェノレートを生成させうる塩
基であればすべて使用できる。これら塩基は単独で用い
てもよいし、2種以上を組み合わせて使用してもよい。
反応温度は極端な低温や高温は好ましくなく、通常使用
した溶剤が比較的緩やかに還流する程度の温度が好適で
ある。また、反応時間は用いる塩基、溶剤の種類や量な
どによって異なるが、一般に1項欧時間ないし数日間を
要する。また、この反応は、反応系に水分が存在するる
と著しく反応が阻害されるので、湿気を遮断することが
重要である。このようにして反応を終了させたのち、用
いた溶剤を留去して残留する反応生成物は加水分解及び
脱炭酸処理に付される。
Examples of such bases include highly preferred ones such as sodium alcoholate, sodium hydride, sodium metal, and sodium amide, but any base that can form a phenolate of 3-ketester can be used. These bases may be used alone or in combination of two or more.
Extremely low or high temperatures are not preferred for the reaction temperature, and a temperature at which the commonly used solvent refluxes relatively slowly is preferred. Although the reaction time varies depending on the base used, the type and amount of the solvent, etc., it generally takes from one European hour to several days. Furthermore, since this reaction is significantly inhibited by the presence of moisture in the reaction system, it is important to block moisture. After the reaction is completed in this manner, the solvent used is distilled off and the remaining reaction product is subjected to hydrolysis and decarboxylation treatment.

この処理は酸性又はアルカリ性条件で行われる。酸性条
件は、好ましくは鉱酸の水溶液、またアルカリ性条件は
、例えば水酸化ナトリウム、水酸化カリウムのようなア
ルカリ金属酸化物の水溶液が好都合に適用される。酸性
条件を用いることもできるが、その場合には鉱酸と併用
することが望ましい。これらの酸又はアルカリは、あま
り濃厚なものは好ましくなく、通常1〜25重量%程度
の水溶液が有利に用いられる。この加水分解及び脱炭酸
処理に際し、上記の溶剤を轡去した反応生成物は精製し
てもよいが、精製することなくそのまま次の加水分解及
び脱炭酸反応を行うことができるので極めて有利である
。水解脱炭酸反応は、通常加熱下で行われ、酸又はアル
カリ水溶液を加えた反応濠液が緩やかに還流する程度の
温度が実用上有利に採用される。
This treatment is performed under acidic or alkaline conditions. Acidic conditions are preferably applied with aqueous solutions of mineral acids, and alkaline conditions are conveniently applied with aqueous solutions of alkali metal oxides such as sodium hydroxide, potassium hydroxide. Acidic conditions can also be used, but in that case it is desirable to use them in combination with mineral acids. It is not preferable for these acids or alkalis to be too concentrated, and an aqueous solution of about 1 to 25% by weight is usually advantageously used. During this hydrolysis and decarboxylation treatment, the reaction product from which the solvent has been removed may be purified, but it is extremely advantageous because it can be directly subjected to the next hydrolysis and decarboxylation reaction without being purified. . The hydrolytic decarboxylation reaction is usually carried out under heating, and a temperature at which the reaction solution to which an acid or alkali aqueous solution is added is gently refluxed is advantageously employed in practice.

反応時間は、用いる酸やアルカリの種類や濃度及び温度
によって異なるが、通常数時間ないし数1餌時間の範囲
である。反応終了後、目的化合物は常法により取り出す
ことができる。
The reaction time varies depending on the type and concentration of the acid or alkali used and the temperature, but is usually in the range of several hours to several feeding hours. After the reaction is completed, the target compound can be taken out by a conventional method.

例えば反応液を室温まで冷却し、酸性で反応を行った場
合には、氷水中に注ぎ、食塩を加えて飽和させ、またア
ルカリ性で反応させた場合には、塩酸を含む氷水中に注
いで中和し、食塩を飽和させる。次いで、これを例えば
ェーナルのような水不混和性溶剤で抽出処理し、ェーナ
ル層を炭酸水素ナトリウムの水溶液及び食塩水で順次洗
い、乾燥したのち溶剤を留去して目的物を取得すること
ができる。高純度の目的物を取るには通常知られた方法
、例えば蒸留やクロマトグラフなどの精製手段を用いる
ことができる。本発明の方法によれば、従来全く異なっ
た方法でしか製造できなかった6−アルキンー11−オ
ンと7−アルキソ−11−オンを同機な反応工程で製造
することができ、さらに本発明の方法は従来法に比べて
はるかに簡便かつ高収率で目的物を製造することができ
るので、工業的に極めて有利であり、優れた実用性を有
する。
For example, the reaction solution is cooled to room temperature, and when the reaction is carried out in an acidic environment, it is poured into ice water and added with salt to saturate it, and when the reaction is carried out in an alkaline environment, it is poured into ice water containing hydrochloric acid and the solution is poured into ice water. Mix to saturate with salt. Next, this is extracted with a water-immiscible solvent such as enamel, and the enamel layer is sequentially washed with an aqueous solution of sodium bicarbonate and brine, dried, and then the solvent is distilled off to obtain the target product. can. In order to obtain a highly pure target product, commonly known methods such as purification means such as distillation and chromatography can be used. According to the method of the present invention, 6-alkyne-11-one and 7-alxo-11-one, which could only be produced by completely different methods in the past, can be produced in the same reaction process, and furthermore, the method of the present invention Since the method can produce the desired product much more easily and with a higher yield than conventional methods, it is extremely advantageous industrially and has excellent practicality.

次に、実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例 1 上端に塩化カルシウム管を付した冷却管及び滴下漏斗を
備えた2その三つ口フラスコに100舷の乾燥トルェン
を取り、これに乾燥ジメチルホルムアミド10の‘及び
水素化ナトリウム2.45夕を加えてかきまぜた。
Example 1 Into a three-neck flask equipped with a cooling tube with a calcium chloride tube at the top and a dropping funnel, 100 g of dry toluene was added, and 10 g of dry dimethylformamide and 2.45 g of sodium hydride were added. and stirred.

第3の口には栓をし、滴下漏斗に24.2夕の3ーオキ
ソテトラデカン酸メチルと150の上の乾燥トルェンと
の混合物を入れ、フラスコ内をマグネチックスターラ−
でかさまぜながら漏斗より混合物をゆっくり滴下した。
フラスコ内は25℃以下に保たれるように滴下をコント
ロールし、また随時水浴を用いて冷却した。滴下終了後
、さらに11時間室温でかさまぜた。その間フラスコ内
の液の粘性がいくらか高くなったので少量の乾燥トルェ
ンを注加した。次いで、第3の口から乾燥したョゥ化ナ
トリウムの粉末を加え、一方滴下漏斗には1−クロロ−
3ーノニン18夕を入れ、これを少しずつゆっくりフラ
スコ内に加えた。
Seal the third spout, add a mixture of 24.2 g of methyl 3-oxotetradecanoate and 150 g of dry toluene to the dropping funnel, and stir the inside of the flask using a magnetic stirrer.
The mixture was slowly added dropwise through the funnel while stirring.
Dripping was controlled so that the inside of the flask was maintained at 25° C. or lower, and a water bath was used for cooling from time to time. After the dropwise addition was completed, the mixture was further stirred at room temperature for 11 hours. During this time, the viscosity of the liquid in the flask became somewhat high, so a small amount of dry toluene was added. Dry sodium iodide powder was then added through the third neck, while 1-chloro-
3 and 18 minutes were added to the flask little by little.

次にマントルヒーターを用いてフラスコを加熱し、内容
物を還流条件下に20時間保って反応させた。反応終了
後、トルェンを減圧下で蟹去し、残留物に10%水酸化
ナトリウム水溶液300私を加えて再びフラスコを加熱
し、2の時間還流を続けた。
The flask was then heated using a heating mantle, and the contents were kept under reflux conditions for 20 hours to react. After the reaction was completed, toluene was removed under reduced pressure, 300 g of 10% aqueous sodium hydroxide solution was added to the residue, the flask was heated again, and reflux was continued for 2 hours.

得られた反応液を2そのビーカーに移し、氷水で冷却し
ながら濃塩酸を加えてpH球茎度の弱酸性に調整した。
これを400叫のエーテルで2回抽出し、ェーナル層を
一緒にして、10%炭酸水素ナトリウム溶液100泌で
洗い、さらに飽和食塩水loo似で2回洗ったのち、無
水硫酸マグネシウムで乾燥した。
The resulting reaction solution was transferred to two beakers, and while cooling with ice water, concentrated hydrochloric acid was added to adjust the pH to slightly acidic.
This was extracted twice with 400 μl of ether, and the combined ether layers were washed with 100 μl of 10% sodium bicarbonate solution, twice with saturated saline solution, and then dried over anhydrous magnesium sulfate.

次いでこれを蒸留してエーテルを留去し、残留物を減圧
蒸留して6ーヘンェイコシンー11ーオン25.2夕(
収率82%)を得た。このものの沸点は162〜165
℃(0.01tom)で、冷所に放置するとワックス状
に固化するが明確な融点は示さない。NMRスペクトル
(6)2.00〜2.33(4日多重線、C三C−CH
2)2.26〜2.60(4日多重線、C&C=○)実
施例 2 3ーオキソトリデカン酸メチル22.8夕及び1−クロ
ルー2−ノニン18夕を用い実施例1と同じ条件で反応
させ処理して、7−ェィコシン−11−オン24.6夕
を得た(収率84%)。
Next, this was distilled to remove ether, and the residue was distilled under reduced pressure to give 25.2 hours of 6-heneikosyn-11-one (
A yield of 82%) was obtained. The boiling point of this thing is 162-165
℃ (0.01 tom), and when left in a cold place, it solidifies into a waxy state, but does not show a clear melting point. NMR spectrum (6) 2.00-2.33 (4-day multiplet, C3C-CH
2) 2.26 to 2.60 (4-day multiplet, C&C=○) Example 2 Same conditions as Example 1 using methyl 3-oxotridecanoate 22.8 days and 1-chloro-2-nonine 18 days 24.6% of 7-eicosyn-11-one was obtained (yield: 84%).

その沸点は152〜155qo(0.7torr)で、
放置するとワックス状の固体とあるが明確な融点は示さ
ない。NMRスペクトル(6)1.90〜2.23(4
日多重線CニC−C基)2.26〜2.60(4日多重
線、CH曲C=0)実施例 3反応成分として3−オキ
ソドデカン酸メチル21.6夕及び1ークロロー2ーノ
ニン18夕を用いて、実施例1と同様にして7−ノナデ
シン11−オン23.7夕を得た(収率85%)。その
沸点は143〜14600(0.7torr)で、放置
するとワックス状の固体となるが、明確な融点は示さな
い。NMRスペクトル(6)1.72〜2.22(4日
多重線C三CCH2)2.26〜2.62(4日多重線
CH2Cこ〇)。
Its boiling point is 152-155 qo (0.7 torr),
When left undisturbed, it becomes a wax-like solid, but it does not show a clear melting point. NMR spectrum (6) 1.90-2.23 (4
Daily multiplet C-C group) 2.26-2.60 (4-day multiplet, CH curve C=0) Example 3 Methyl 3-oxododecanoate 21.6% and 1-chloro2nonine as reaction components 23.7 days of 7-nonadecin-11-one was obtained in the same manner as in Example 1 using 18 days of use (yield: 85%). Its boiling point is 143 to 14,600 (0.7 torr), and when left to stand, it becomes a waxy solid, but it does not show a clear melting point. NMR spectrum (6) 1.72-2.22 (4-day multiplet C3CCH2) 2.26-2.62 (4-day multiplet CH2C〇).

Claims (1)

【特許請求の範囲】 1 一般式 CH_3(CH_2)_mC■C(CH_2)_6_−
_mX(式中のXはハロゲン原子、mは4又は5の整数
である)で表わされるハロゲン化アルキンと、一般式C
H_3(CH_2)_nCOCH_2CO_2R(式中
のRは低級アルキル基、nは7〜9の整数である)で表
わされる3−オキソカルボン酸エステルとを塩基の存在
下で反応せたのち、反応生成物を酸又はアルカリ水溶液
と加熱して加水分解及び脱炭酸することを特徴とする一
般式CH_3(CH_2)_mC ■C(CH_2)_7_−_mCO(CH_2)_nC
H_3(式中のm及びnは前記と同じ意味をもつ)で表
わされる6−又は7−アルキン−11−オンの製造方法
。 2 一般式中のmが4及びnが9である特許請求の範囲
第1項記載の製造方法。 3 一般式中のmが5及びnが7又は8である特許請求
の範囲第1項記載の製造方法。
[Claims] 1 General formula CH_3(CH_2)_mC■C(CH_2)_6_-
_mX (in the formula, X is a halogen atom, m is an integer of 4 or 5) and a halogenated alkyne represented by the general formula C
After reacting with a 3-oxocarboxylic acid ester represented by H_3(CH_2)_nCOCH_2CO_2R (in the formula, R is a lower alkyl group and n is an integer of 7 to 9) in the presence of a base, the reaction product is General formula CH_3(CH_2)_mC ■C(CH_2)_7_-_mCO(CH_2)_nC characterized by hydrolysis and decarboxylation by heating with acid or alkaline aqueous solution
A method for producing 6- or 7-alkyne-11-one represented by H_3 (m and n in the formula have the same meanings as above). 2. The manufacturing method according to claim 1, wherein m in the general formula is 4 and n is 9. 3. The manufacturing method according to claim 1, wherein m in the general formula is 5 and n is 7 or 8.
JP1667382A 1982-02-03 1982-02-03 Method for producing 6- or 7-alkyne-11-one Expired JPS6039344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1667382A JPS6039344B2 (en) 1982-02-03 1982-02-03 Method for producing 6- or 7-alkyne-11-one

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1667382A JPS6039344B2 (en) 1982-02-03 1982-02-03 Method for producing 6- or 7-alkyne-11-one

Publications (2)

Publication Number Publication Date
JPS58134047A JPS58134047A (en) 1983-08-10
JPS6039344B2 true JPS6039344B2 (en) 1985-09-05

Family

ID=11922825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1667382A Expired JPS6039344B2 (en) 1982-02-03 1982-02-03 Method for producing 6- or 7-alkyne-11-one

Country Status (1)

Country Link
JP (1) JPS6039344B2 (en)

Also Published As

Publication number Publication date
JPS58134047A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
JPH11349536A (en) Synthesis of monoester or diester of 9,10-endoethano-9,10-dihydroanthracene-11,11-dicarboxylic acid and new monoester or diester obtained by the method
JPH05306248A (en) New derivative of benzyl alcohol
US4144397A (en) Preparation of 2-aryl-propionic acids by direct coupling utilizing a mixed magnesium halide complex
JP4881298B2 (en) Method for producing indenol ester or ether
JP3659995B2 (en) Production of alkylcyclopentadienes
US4168280A (en) Method for synthesis of 2-hydroxy-3-methyl cyclopent-2-ene-1-one
JPS6039344B2 (en) Method for producing 6- or 7-alkyne-11-one
JPS6344544A (en) Manufacture of dihydrocyclocitral and optically active stereoisomer thereof
Linstead et al. CCLXVI.—Investigations of the olefinic acids. Part III. Homologues of teraconic, terebic, and pyroterebic acids. Further evidence of the effect of two γ-alkyl groups on three-carbon tautomerism
US4203907A (en) Process for preparing a furanic compound
JPH11509534A (en) Process for producing cyclopropanecarboxylic acid and intermediates thereof
US4234741A (en) Process for the preparation of γ, δ-unsaturated esters and acids
US4336401A (en) Process for the preparation of damascenone
US4188492A (en) Process for converting 2,2-dichlorovinylcyclopropanes to dibromovinyl analogs
JP2662607B2 (en) Bicyclo [8.3.0] trideca-9,13-diene-2,7-diyne derivative
JPH02165A (en) Preparation of 1-crotonoyl-2,6,6- trimethylcyclohexa-1,3-diene
US4032577A (en) Unsaturated ketones
JPH06166680A (en) Production of alkyl 3-oxo-2-pentyl-1-cyclopenteneacetate, and epoxy ester as starting material
EP0021521A2 (en) Process for the preparation of dihalovinyl compounds
US4071542A (en) Synthesis of hydroxycyclopenten-1-ones
JPS6393748A (en) Production of 2-(4-substituted phenyl)proponic acid derivative
JPH0145460B2 (en)
JPS6241510B2 (en)
JPS5976039A (en) (s)-2,3-diacetyl-1-benzyl glycerol
JPS6240347B2 (en)