JPS6038820B2 - High pressure sodium lamp and its manufacturing method - Google Patents

High pressure sodium lamp and its manufacturing method

Info

Publication number
JPS6038820B2
JPS6038820B2 JP51027345A JP2734576A JPS6038820B2 JP S6038820 B2 JPS6038820 B2 JP S6038820B2 JP 51027345 A JP51027345 A JP 51027345A JP 2734576 A JP2734576 A JP 2734576A JP S6038820 B2 JPS6038820 B2 JP S6038820B2
Authority
JP
Japan
Prior art keywords
sodium
lamp
arc tube
mercury
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51027345A
Other languages
Japanese (ja)
Other versions
JPS52111284A (en
Inventor
晴夫 古久保
弥三郎 竹治
賢次 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP51027345A priority Critical patent/JPS6038820B2/en
Publication of JPS52111284A publication Critical patent/JPS52111284A/en
Publication of JPS6038820B2 publication Critical patent/JPS6038820B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Discharge Lamp (AREA)

Description

【発明の詳細な説明】 アルミナセラミック発光管内にナトリウム、水銀および
始動用希ガスを封入した高圧ナトリウムランプは一般照
明用として広く用いられている。
DETAILED DESCRIPTION OF THE INVENTION High-pressure sodium lamps, in which sodium, mercury, and a starting rare gas are sealed in an alumina ceramic arc tube, are widely used for general lighting purposes.

従来のこの種ランプは封入物が発光管内で蒸発気化する
量以上に封入され大部分のナトリウムが水銀とともに余
剰アマルガムとして発光管内最冷部分に蓄えられている
いわゆる飽和蒸気圧型の放電灯である。このため発光管
内のナトリウム蒸気圧は発光管内最冷部温度の変化に応
じて変動しその結果としてランプ点灯特性特に管電圧に
大きな変動を生じる欠点があった。封入ナトリウムおよ
び水銀銀の量を限定し、点灯状態において全て蒸発気化
した状態とするいわゆる不飽和蒸気圧型とすることによ
り最袷部温度が変化しても管内蒸気圧は殆んど変らず、
したがってランプ点灯時、管電圧が安定したものとなる
ことは既に知られている。またそのため許容最大限の封
入物量もある程度計算により引き出すことが出来る。し
かしながらこの種の不飽和蒸気圧型の高圧ナトリウムラ
ンプを完成するには極めて徴量の封入物を封入する必要
があり、かつナトリウムはきわめて化学的活性の元素で
空気中では直ちに酸化を生ずることおよび水銀は比重大
で表面張力も大きいため精確な量の微小粒を生成するこ
とがむつかしいことなどの封入技術上の困難のために、
従釆適当な封入量の正しい設定がなされていなかった。
Conventional lamps of this kind are so-called saturated vapor pressure discharge lamps, in which the amount of fill material exceeds the amount that evaporates in the arc tube, and most of the sodium is stored together with mercury as surplus amalgam in the coldest part of the arc tube. For this reason, the sodium vapor pressure within the arc tube fluctuates in response to changes in the temperature of the coldest part within the arc tube, resulting in large fluctuations in the lamp lighting characteristics, particularly the tube voltage. By limiting the amount of sodium and mercury contained in the tube and making it a so-called unsaturated vapor pressure type, in which all of the sodium and mercury is evaporated in the lit state, the vapor pressure inside the tube hardly changes even if the temperature at the innermost part changes.
Therefore, it is already known that the tube voltage becomes stable when the lamp is lit. Therefore, the maximum allowable amount of inclusions can be calculated to some extent. However, in order to complete this type of unsaturated vapor pressure type high-pressure sodium lamp, it is necessary to fill in an extremely large amount of filler material, and sodium is an extremely chemically active element that readily oxidizes in the air, and mercury Due to difficulties in encapsulation technology, such as the difficulty in producing precise amounts of microparticles due to their relative gravity and large surface tension,
The appropriate amount of inclusion was not set correctly.

放電灯が実用に供されるためには、光色が適当であって
効率が経済的水準を保つことの他に、経済的な安定器に
よって点灯され得るランプ特性を有しなければならない
。不飽和蒸気圧型放電灯の場合、これらの要因は第一義
的に封入物量によって決定されるため、最適量の封入物
を均各灯に均等に封入することが須不可欠の条件である
。発明者らは徴量のナトリウムおよび水銀銀の一定量を
精確にかつ空気その他不純物の影さようを完全に除いた
封入技術を駆使することにより、徴量封入量とランプ特
性をの関係を調べ最適の封入量を設定することができた
。すなわちナトリウム量を発光管内客績1地当り0.0
07のタ乃至0.018の9好まし〈は0.01の9乃
至0.01&9とし、水銀銀を同じく1の当り0.05
4の9以上0.6爪9未満とすることにより実用上好適
な不飽和蒸気圧型高圧ナトリウムランプを完成すること
ができた。
In order for a discharge lamp to be put to practical use, it must not only have a suitable light color and an economical efficiency, but also have lamp characteristics that allow it to be operated with an economical ballast. In the case of unsaturated vapor pressure discharge lamps, these factors are primarily determined by the amount of fill material, so it is an essential condition to uniformly fill each lamp with an optimum amount of fill material. The inventors investigated the relationship between the amount of charged sodium and mercury and the characteristics of the lamp by making full use of an encapsulation technique that accurately and completely excluded the shadows of air and other impurities. We were able to set the optimal amount of inclusion. In other words, the amount of sodium is 0.0 per area in the arc tube.
07 ta to 0.018 9 preferably < is 0.01 9 to 0.01&9, and mercury silver is also 0.05 per 1
A practically suitable unsaturated vapor pressure type high-pressure sodium lamp could be completed by setting the ratio to 4.9 or more and 0.6 to less than 9.

本発明の詳細を具体的実旋例につき図面を用いて説明す
る。
The details of the present invention will be explained with reference to the drawings with reference to concrete examples.

第1図は高圧ナトリウムランプ発光管の一部欠裁正面図
で従来のものも本発明にかかる不飽和蒸気圧型のものそ
の構造は基本的には変らない。
FIG. 1 is a partially cutaway front view of a high-pressure sodium lamp arc tube, and the structure of the conventional one and the unsaturated vapor pressure type according to the present invention are basically the same.

1は透光性アルミナ管で多結晶質アルミナセラミック管
でもよいが、単結晶質アルミナ(サファイア)管の方が
寿命中のランプ特性の安定性が良好である。
1 is a translucent alumina tube, which may be a polycrystalline alumina ceramic tube, but a single crystal alumina (sapphire) tube has better stability of lamp characteristics during its life.

2,2はアルミナよりなる閉寒体、3,3は閉寒体2,
2の中央孔を貫通し内側端面にタングステン製電極4,
4を備え外側に突出したニオブ製排気管で、これら3種
の部村はセラミック質ろう材を用いて互いに気密に封着
されている。
2, 2 is a closed body made of alumina, 3, 3 is a closed body 2,
A tungsten electrode 4 penetrates through the center hole of 2 and is attached to the inner end surface.
These three sections are hermetically sealed to each other using a ceramic brazing material.

第2図は徴量封入物の封入方法を説明するための製造途
中の発光管の要部欠戦正面図で第1図と同一符号はそれ
ぞれ同一部品を示す。ナトリウムと窒素の化合物である
アジ化ナトリウムNaN3は常温空気中で安定な白色粉
末で水にはよく溶けるが溶媒の蒸発乾燥の便を考慮して
メチルアルコールに溶かすのがよい。
FIG. 2 is a front view of the main parts of the arc tube in the process of being manufactured to explain the method of enclosing the required inclusions, and the same reference numerals as in FIG. 1 indicate the same parts. Sodium azide NaN3, which is a compound of sodium and nitrogen, is a white powder that is stable in air at room temperature and is easily soluble in water, but it is better to dissolve it in methyl alcohol to avoid evaporation and drying of the solvent.

たとえば100机【のメチルアルコールにアジ化ナトリ
ウム0.5夕を溶かす。400ワットランプ用発光管1
本に対してはこの溶液の0.04の‘を小型注射器を用
いて封入物容器5の中に注入する。
For example, dissolve 0.5 parts of sodium azide in 100 parts of methyl alcohol. Arc tube 1 for 400 watt lamp
For books, 0.04' of this solution is injected into the enclosure container 5 using a small syringe.

封入物容器5はたとえばステンレス鋼のごとき耐熱性金
属をカップ状もしくは一端を閉寒した長管状に成型した
ものを用いる。このものを常温もしくは加温乾燥するこ
とにより溶媒であるメチルアルコールは、蒸発して容器
5中にはアジ化ナトリウムが残りその量は精機こ50。
X殻:。・2の9でぁる。つぎにアルミニウムージルコ
ニウムー水銀の三元合金(AI−Zr一日g)を容器5
の中に装入する。
The enclosure container 5 is made of a heat-resistant metal such as stainless steel and molded into a cup shape or a long tube shape with one end closed. By drying this product at room temperature or heating, the solvent methyl alcohol evaporates and sodium azide remains in the container 5 in an amount of 50%.
X shell:.・It's 2 of 9. Next, a ternary alloy of aluminum-zirconium-mercury (AI-Zr per day) was placed in a container 5.
Insert into.

この合金は米国特許3,203,901号などにもとづ
いて製造され「マーキュリーディスペンサー」として粉
末状もしくは成型品として市販されているものを用いる
のが便利である。このものの10の9を容器5中に装入
する。第2図に符号6で示したものがアジ化ナトリウム
とマーキュリーディスペンサーの混合物である。製造途
中の発光管は排気管3,3の外端がともに開□したまま
であり一方の排気管3の端部閉口部より混合封入物6を
収容した容器5が装入され、その末端開口部は圧着およ
び溶融により封止閉寒される。他の排気管3′の端部は
排気系(図示せず)に接続されて発光管内部を真空にす
る。つぎに排気管3の容器5を収容した部分を約400
℃に加熱する。このとき容器5中のNaN3は次式の熱
分解反応により単体のナトリウムと窒素ガスが発生する
。州aN3一がa+洲2 容器5中の0.2の9のNaN3より発生するナトリウ
ム量は定量的に0.07の9である。
It is convenient to use the alloy manufactured in accordance with US Pat. No. 3,203,901, etc., which is commercially available as "Mercury Dispenser" in the form of a powder or a molded product. Nine out of ten of this material is charged into container 5. What is shown with reference numeral 6 in FIG. 2 is a mixture of sodium azide and a Mercury dispenser. In the arc tube that is being manufactured, the outer ends of the exhaust pipes 3 and 3 are both open □, and the container 5 containing the mixed filler 6 is inserted from the closed end of one of the exhaust pipes 3, The parts are sealed and closed by crimping and melting. The other end of the exhaust pipe 3' is connected to an exhaust system (not shown) to evacuate the interior of the arc tube. Next, the portion of the exhaust pipe 3 that accommodates the container 5 is approximately 400 mm
Heat to ℃. At this time, NaN3 in the container 5 generates elemental sodium and nitrogen gas through a thermal decomposition reaction according to the following equation. state aN3 - a + state 2 The amount of sodium generated from 0.2 9 NaN3 in container 5 is quantitatively 0.07 9.

同時に発生したN2ガスは排気管3′を通じて排気され
る。つぎに排気管3の部分を約700ooに加熱すると
マーキュリーディスペンサーより水銀が分離する。合金
10の9より約2級の水銀が分離する。
The N2 gas generated at the same time is exhausted through the exhaust pipe 3'. Next, when the exhaust pipe 3 is heated to about 700 oo, mercury is separated from the Mercury dispenser. About 2nd grade mercury is separated from Alloy 10-9.

発生したナトリウムと水銀は高温度のため蒸発して排気
管3より逸出し、低温のままに保たれてある。発光管1
の内部に沈着する。つぎに排気管3を冷却し排気管3′
よりクセノン20トールを始動用ガスとして発光管内に
導入したのち排気管3,3′を所定の長さの部位で圧着
溶断して封止する。始めに装入された容器5は排気器3
の溶断・除去された部分の中にあり完成した発光管内部
に残らなし、ようにすることができるが発光管内部に残
るように実旋してもよい。上記の封入操作はその打倒序
もし〈は実旋態様を一部変更して行うこともできるが、
要するにアジ化ナトリウムを利用することにより、徴量
のナトリウムを不純物による汚染を蒙ることなく精確な
量的規制のもとに工業的に封入工程を実族することがで
きる。またマーキュリーディスペンサーを用いることに
より微小量の水銀を定量的に容易に封入することができ
る。このようにして第1図に示したごとき発光管完成品
ができ、この発光管を従来行なわれているごとき方法で
ガラス製品外球内に機械的に装着し、電気的接続を旋し
て外観上従来の高圧ナトリウムランプと同様のランプが
完成する。このランプを適合安定器を用いて点灯し、答
電流と管電圧との関係曲線をえがくと第3図のaのごと
く、管電流の小さい間は管電流の増加に応じて管電圧も
上昇するが或管電流の値に達するとそれ以上管電流が増
加しても管電圧は一定の値を保つようになる。この屈折
点Cがすなわち管内封入物が全て蒸発し終った点であり
C点より右側の部分は不飽和蒸気圧型点灯状態であるこ
とを示す。このランプの定格出力を400ワットとすれ
ば管電力400ワットの点すなわちDが管電圧の平坦直
線部分すなわち不飽和蒸気圧型点灯状態にあることが本
発明の基本的特長である。これに対し従来の高圧ナトリ
ウムランプでは第3図のbのごとく管電流の増加によっ
て管電圧は増加する一方である。不飽和状態を示す管電
圧の値を仮りにVsaと表すとすれば、Vsaは封入し
たNaとHgの量によって決定される。Na量の増加に
よってVsaの値は上昇するがそれとともに発光の分光
特性が変化し効率、演色性も変化する。Hgの量の増加
によってVsaの値は上昇するが発光の分光特性にはあ
まり影響を与えない。したがって効率、演色性が実用的
な値をもつようにNaの封入量を定め、つぎにVsaが
適当な値になるようにHgの量を定めるのが便利である
。Vsaの値が高過ぎても低過ぎても、使用する安定器
はきわめて高価なものとなり実用的ではない。
The generated sodium and mercury evaporate due to the high temperature and escape from the exhaust pipe 3, and are kept at a low temperature. Luminous tube 1
deposited inside the. Next, the exhaust pipe 3 is cooled and the exhaust pipe 3'
After 20 torr of xenon is introduced into the arc tube as a starting gas, the exhaust pipes 3, 3' are sealed by pressing and melting at a predetermined length. The first charged container 5 is the exhauster 3
It is possible that the material is in the fused and removed portion and does not remain inside the completed arc tube, but it may be actually rotated so that it remains inside the arc tube. The above-mentioned encapsulation operation can also be performed by partially changing the actual rotation mode, but
In short, by using sodium azide, the encapsulation process can be carried out industrially under precise quantitative control without contaminating the collected sodium with impurities. Further, by using a Mercury dispenser, a minute amount of mercury can be easily and quantitatively encapsulated. In this way, a completed arc tube product as shown in Figure 1 is produced, and this arc tube is mechanically mounted inside the outer sphere of the glass product in the conventional manner, and the electrical connections are made to give an appearance. A lamp similar to the conventional high-pressure sodium lamp is completed. When this lamp is lit using a compatible ballast and the relationship curve between the response current and tube voltage is drawn, as shown in Figure 3 a, while the tube current is small, the tube voltage increases as the tube current increases. When the tube current reaches a certain value, the tube voltage will maintain a constant value even if the tube current increases further. This refraction point C is the point at which all the contents in the tube have completely evaporated, and the area to the right of point C indicates an unsaturated vapor pressure type lighting state. If the rated output of this lamp is 400 watts, the basic feature of the present invention is that the point D at which the tube power is 400 watts is a flat linear portion of the tube voltage, that is, the unsaturated vapor pressure type lighting state. On the other hand, in conventional high-pressure sodium lamps, the tube voltage increases as the tube current increases, as shown in FIG. 3b. If the value of tube voltage indicating an unsaturated state is expressed as Vsa, Vsa is determined by the amounts of Na and Hg enclosed. As the amount of Na increases, the value of Vsa increases, but at the same time, the spectral characteristics of light emission change, and the efficiency and color rendering properties also change. Although the value of Vsa increases with an increase in the amount of Hg, it does not significantly affect the spectral characteristics of light emission. Therefore, it is convenient to determine the amount of Na included so that the efficiency and color rendering properties have practical values, and then determine the amount of Hg so that Vsa becomes an appropriate value. If the value of Vsa is too high or too low, the ballast used will be extremely expensive and impractical.

経済的なVsaの範囲は70V〜140Vである。実旋
例で述べた400ワット用ランプの場合Naは0.07
の9,Hgは2の9である。この発光管の内容綾は5.
6めであり1の当り封入量はNao.0126の夕Hg
0.357爪9である。このランプは定格電力すなわち
400ワットにおいてVsa=110V、管電流4.3
A,効率1101m/w,および従来と同程度の演色性
が得られた。種々のランプ機種および異なった発光管仕
様のランプにつき実験を行った結果Na封入量が発光管
内客鰭1の当り0.007の9より小であると発光の効
率が小となり、0.018の9より大であるとランプの
寿命的安定性が劣る。
The economical Vsa range is 70V to 140V. In the case of the 400 watt lamp mentioned in the practical example, Na is 0.07.
9, Hg is 2 of 9. The contents of this arc tube are 5.
It is the 6th one and the amount of inclusion per 1 is Nao. 0126 evening Hg
0.357 claw 9. This lamp has a rated power of 400 watts, Vsa=110V, and a tube current of 4.3
A, an efficiency of 1101 m/w, and a color rendering property comparable to that of the conventional method were obtained. As a result of experiments conducted on various lamp models and lamps with different arc tube specifications, it was found that if the amount of Na filled in was less than 9 of 0.007 per 1 part of the customer fin in the arc tube, the luminous efficiency would be low; If it is greater than 9, the stability of the lamp life will be poor.

好ましくは0.01の9ないし0.018の9が最適で
ある。またHg封入量が発光管内客績1の当り0.05
4雌より小であると管電圧調整能力が不足し、0.6の
9以上であると管電圧が高くなりすぎて経済的な安定器
で点灯することが不可能であると共に灯の光色が赤色を
帯びて一般照明用に適さない。このような不都合が生じ
ることは後述の試験結果からも明らかである。なお、前
記灯の光色が赤色を帯びる理由は現在のところ明らかで
ないが、水銀原子の濃度が大であることによりナトリウ
ム原子の濃度勾配が変化するためか、あるいはHg−N
a分子の生成により分光分布が変化するためであろうと
思われる。次に前記実旋例で述べた発光管を用い種々の
封入量で灯を完成し、400Wで動作せしめた時の特性
の数例を第1に示す。第 1 表 表中、寿命中のランプ電圧変化は試作ランプについて4
00W安定器(ランプ電圧が100Vのときのランプ電
力が400Wとなる安定器)で寿命試験を行ったときの
点灯時間100餌時間当りのランプ電圧変化(各3灯の
平均値)を示す。
Preferably, 9 of 0.01 to 9 of 0.018 is optimal. In addition, the amount of Hg enclosed is 0.05 per 1 in the arc tube.
If it is less than 4 female, the tube voltage adjustment ability will be insufficient, and if it is 0.6 or more, the tube voltage will be too high and it will be impossible to light it with an economical ballast, and the light color of the lamp will be affected. has a red tinge and is not suitable for general lighting. It is clear from the test results described below that such inconvenience occurs. The reason why the light color of the lamp is red is not clear at present, but it may be because the concentration gradient of sodium atoms changes due to the high concentration of mercury atoms, or because the concentration gradient of sodium atoms changes due to the high concentration of mercury atoms.
This is probably because the spectral distribution changes due to the generation of a molecules. Next, several examples of characteristics when lamps were completed using the arc tubes described in the practical example with various filling amounts and operated at 400 W will be shown first. In Table 1, the lamp voltage change during the life is 4 for the prototype lamp.
The table shows the change in lamp voltage (average value for each 3 lamps) per 100 bait hours of lighting time when a life test was conducted with a 00W ballast (a ballast whose lamp power is 400W when the lamp voltage is 100V).

この値が−2.5より小さいと、1200畑時間点灯後
のランプ電圧が初期ランプ電圧に比べ30V以上低下す
るため、実用上好ましくない。また第1表より次のこと
が分った。
If this value is smaller than -2.5, the lamp voltage after lighting for 1200 hours will drop by 30V or more compared to the initial lamp voltage, which is not preferred in practice. In addition, the following was found from Table 1.

m 実用的な効率100〆仇/W以上を得るためには、
Naの封入量は0.007mg/の以上でなければなら
ない。
m To obtain a practical efficiency of 100〆/W or more,
The amount of Na enclosed must be 0.007 mg/or more.

■ 実用的な寿命特性を得るためには、Naの封入量は
0.018mg/c虎以下でなければならない。
■ In order to obtain practical life characteristics, the amount of Na enclosed must be 0.018 mg/c or less.

【3} 実用的なランプ電圧範囲(70〜140V)を
得るためには、凶 Na封入量の上限値とHg封入量の
下限値との組合せにおけるランプ電圧の値がランプ電圧
下限値(70V)以上でなければならない。
[3] In order to obtain a practical lamp voltage range (70 to 140V), the lamp voltage value for the combination of the upper limit of the amount of Na and the lower limit of the amount of Hg must be set to the lower limit of the lamp voltage (70V). Must be above.

即ち、Hg封入量の下限値は0.054の9/めである
。‘Bー Na封入量の下限値とH史封入量の上限値と
の組み合せにおけるランプ電圧がランプ電圧の上限値(
140V)以下でなければならない。
That is, the lower limit of the amount of Hg enclosed is 9/9 of 0.054. 'B - The lamp voltage for the combination of the lower limit of the Na charge amount and the upper limit of the H history charge amount is the upper limit of the lamp voltage (
140V) or less.

即ち、Hg封入量の上限値は0.6の9/地禾満でなけ
ればならない。上記のごとく封入量を規制することによ
り高圧ナトリウムランプの特長である100その/W以
上の高効率と良好な演色性および寿命的安定性を有しか
つ経済的な不飽和蒸気圧型ランプを実用化することがで
きその工業的価値はきわめて大きい。
That is, the upper limit of the amount of Hg enclosed must be 0.6 9/Earth. By regulating the fill amount as described above, we have commercialized an economical unsaturated vapor pressure lamp that has the characteristics of high-pressure sodium lamps, such as high efficiency of 100 Sodium/W or more, good color rendering properties, and long-term stability. Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は高圧ナトリウムランプ発光管の一部欠教正面図
、第2図は本発明実旋例の封入操作を説明するための製
造途中未完成品発光管の菱部欠戦正面図、第3図は高圧
ナトリウムランプの管電流と管電圧との関係を示した図
で、曲線aは本発明にかかる不飽和蒸気圧型のもの、曲
線bは従来の不飽和蒸気圧型のものである。 1……透光性アルミナ管、2,2′……封塞体、3,3
′排気管、4・…・・電極、6・・・・・・混合封入物
。 そ’図 ※2頭 葬る図.
Fig. 1 is a front view of a high-pressure sodium lamp arc tube with some parts missing; Fig. 2 is a front view of an unfinished arc tube in the middle of manufacture for explaining the enclosing operation of an example of the present invention; FIG. 3 is a diagram showing the relationship between tube current and tube voltage of a high-pressure sodium lamp, where curve a is for the unsaturated vapor pressure type according to the present invention, and curve b is for the conventional unsaturated vapor pressure type. 1... Translucent alumina tube, 2, 2'... Sealing body, 3, 3
'Exhaust pipe, 4... Electrode, 6... Mixed inclusions. A picture of burying two heads.

Claims (1)

【特許請求の範囲】 1 耐熱透光性管体よりなる発光管内にナトリウム、水
銀および始動用不活性ガスを封入し、ランプに定められ
た定格もしくは定格に近い点燈状態にてこれらの封入物
をすべて蒸発気化せしめる不飽和蒸気圧形高圧ナトリウ
ムランプにおいて、ナトリウムを発光管内容績1cm^
3当り0.007mg乃至0.018mg、水銀を同じ
く1cm^3当り0.054mg以上0.6mg未満封
入したことを特徴とする高圧ナトリウムランプ。 2 耐熱透光性管体よりなる発光管内にナトリウムを発
光管内容績1cm^3当り0.007mg乃至0.01
8mg、水銀を同じく1cm^3当り0.054mg以
上0.6mg末満、および始動用不活性ガスを封入し、
ランプに定められた定格もしくは定格に近い点燈状態で
これら封入物を全て蒸発気化せしめるものにおいて、ア
ジ化ナトリウムNaN_3の稀薄溶液の所定量を発光管
内または発光管内に連通する部分に挿入し、不活性ガス
雰囲気または真空中において、前記稀薄溶液を乾操させ
た後、この部分を加熱することによりナトリウムを遊離
生成せしめる反応を利用して発光管内に所定量のナトリ
ウムを封入することを特徴とする高圧ナトリウムランプ
の製造方法。
[Scope of Claims] 1. Sodium, mercury, and an inert starting gas are sealed in an arc tube made of a heat-resistant, light-transmitting tube body, and these filled materials are lit in a lighting state at or close to the rating specified for the lamp. In an unsaturated vapor pressure type high-pressure sodium lamp that evaporates all of the
A high-pressure sodium lamp characterized in that 0.007 mg to 0.018 mg of mercury is filled per cm^3, and 0.054 mg or more and less than 0.6 mg of mercury per cm^3. 2. Sodium in the arc tube made of a heat-resistant, light-transmitting tube at a concentration of 0.007 mg to 0.01 per cm^3 of the arc tube interior.
8mg, mercury of 0.054mg to 0.6mg per 1cm^3, and an inert gas for starting,
In a lamp that evaporates all of these substances under lighting conditions that are at or close to the specified rating for the lamp, a predetermined amount of a dilute solution of sodium azide, NaN_3, is inserted into the arc tube or the part that communicates with the arc tube, and the The diluted solution is dried in an active gas atmosphere or in a vacuum, and then a predetermined amount of sodium is sealed in the arc tube using a reaction in which sodium is liberated by heating this part. Method of manufacturing high pressure sodium lamps.
JP51027345A 1976-03-12 1976-03-12 High pressure sodium lamp and its manufacturing method Expired JPS6038820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51027345A JPS6038820B2 (en) 1976-03-12 1976-03-12 High pressure sodium lamp and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51027345A JPS6038820B2 (en) 1976-03-12 1976-03-12 High pressure sodium lamp and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS52111284A JPS52111284A (en) 1977-09-17
JPS6038820B2 true JPS6038820B2 (en) 1985-09-03

Family

ID=12218446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51027345A Expired JPS6038820B2 (en) 1976-03-12 1976-03-12 High pressure sodium lamp and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS6038820B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533186B2 (en) * 1985-09-21 1993-05-18 Nissan Motor
JPH0534967Y2 (en) * 1987-01-09 1993-09-06

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182656A (en) * 1984-09-17 1986-04-26 Iwasaki Electric Co Ltd Metallic vapor discharge lamp
JPH02236943A (en) * 1989-03-09 1990-09-19 Toshiba Lighting & Technol Corp High pressure sodium lamp

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833679A (en) * 1971-09-03 1973-05-11
JPS5041363A (en) * 1973-08-15 1975-04-15
JPS5056145A (en) * 1973-09-13 1975-05-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4833679A (en) * 1971-09-03 1973-05-11
JPS5041363A (en) * 1973-08-15 1975-04-15
JPS5056145A (en) * 1973-09-13 1975-05-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533186B2 (en) * 1985-09-21 1993-05-18 Nissan Motor
JPH0534967Y2 (en) * 1987-01-09 1993-09-06

Also Published As

Publication number Publication date
JPS52111284A (en) 1977-09-17

Similar Documents

Publication Publication Date Title
US4156550A (en) Process for fabricating high sodium vapor lamp
US3979624A (en) High-efficiency discharge lamp which incorporates a small molar excess of alkali metal halide as compared to scandium halide
US3384798A (en) High pressure saturation vapor sodium lamp containing mercury
US3453477A (en) Alumina-ceramic sodium vapor lamp
US4093889A (en) Low-pressure mercury vapor discharge lamp
US4387319A (en) Metal halide lamp containing ScI3 with added cadmium or zinc
JP2726443B2 (en) Low pressure mercury vapor discharge lamp
JPS6038820B2 (en) High pressure sodium lamp and its manufacturing method
JPS60207241A (en) Low voltage mercury vapor discharge lamp
JPH09199080A (en) High-efficiency discharge lamp
JP4228046B2 (en) Amalgam pellets for fluorescent lamps and fluorescent lamps using the same
US20020180340A1 (en) Materials and methods for mercury vapor pressure control in discharge devices
JPH02177245A (en) Metal halide discharge lamp, color rendering characteristic of which is improved
JPH06203793A (en) Low-pressure discharge lamp and its manufacture
US2761087A (en) Electric discharge lamp
JPS5818742B2 (en) High pressure sodium lamp and its manufacturing method
JP2545910B2 (en) Electric discharge lamp for growing plants
JP3403319B2 (en) Light bulb type fluorescent lamp
JPH01220358A (en) Unsaturated sodium lamp
US3845342A (en) Electric discharge device containing thorium, mercury and iodine
JPS60127633A (en) Production of metal vapor discharge lamp
JPH053017A (en) Fluorescent lamp
JPS59171447A (en) Electrode for discharge lamp
JPH0676797A (en) Low pressure mercury vapor discharge lamp
JPS63174258A (en) Halide metal display lamp