JPS6038638B2 - gas cooling device - Google Patents
gas cooling deviceInfo
- Publication number
- JPS6038638B2 JPS6038638B2 JP17261079A JP17261079A JPS6038638B2 JP S6038638 B2 JPS6038638 B2 JP S6038638B2 JP 17261079 A JP17261079 A JP 17261079A JP 17261079 A JP17261079 A JP 17261079A JP S6038638 B2 JPS6038638 B2 JP S6038638B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- cooling device
- velocity
- gas cooling
- diffuser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Description
【発明の詳細な説明】
高温ガス(含空気)1を目的に応じて適度に冷却するた
めに頃霧注水2し、その蒸発潜熱を利用する、所謂蒸発
冷却装置3は、従来よく知られ、大別して第1図及び第
2図のものがある。DETAILED DESCRIPTION OF THE INVENTION The so-called evaporative cooling device 3, which injects water 2 into a high temperature gas (air-containing air) 1 to appropriately cool it according to the purpose and uses the latent heat of evaporation, is conventionally well known. It can be roughly divided into those shown in Figures 1 and 2.
なお図中4は低温ガスである。第1図は上方流入形、第
2図は下方流入形であり、第1図のものが一般的である
が、関連設備との配置構成上、第2図の方法を採用しな
ければならないことがある。この第2図の下方流入形蒸
発冷却装置では、噴射水滴径の比較的大粒子が下方に落
下し、装置低部でのスラリ化及び腐触等の弊害が発生し
易いので、次のA,Bの対策が実施されている。Note that 4 in the figure is a low-temperature gas. Figure 1 shows the upward flow type, and Figure 2 shows the downward flow type. Although the type shown in Figure 1 is common, the method shown in Figure 2 must be adopted due to the layout and configuration of related equipment. There is. In the downward flow type evaporative cooling device shown in Fig. 2, relatively large particles of injected water droplets fall downward, which tends to cause problems such as slurry formation and corrosion at the bottom of the device. Measure B is being implemented.
A ノズル5の位置を十分高くする方法。A: A method of positioning the nozzle 5 sufficiently high.
この方法は底部とノズル間の距離が十分あるので、落下
水滴は底部に至るまでに或程度蒸発し、底部に達する水
量になると考えられる。In this method, since there is a sufficient distance between the bottom and the nozzle, it is thought that the falling water droplets will evaporate to some extent before reaching the bottom, resulting in the amount of water reaching the bottom.
しかしこの方法は、プラント条件(特にガス量)が変動
(特に減少)する場合、通常は落下し難い水滴も落ち、
弊害が助長される。またノズル位置が高いので冷却塔が
大形となり、コストアップの原因となっていた。B 冷
却装置の塔の全体或は下部を二重構造とし、排ガスによ
りヒートアップする方法。However, with this method, when plant conditions (especially gas amount) change (especially decrease), water droplets that would normally be difficult to fall will also fall.
Harmful effects are encouraged. Furthermore, since the nozzle is located high, the cooling tower becomes large, which causes an increase in costs. B. A method in which the entire or lower part of the tower of the cooling device has a double structure and heats up using exhaust gas.
この方法は、たとえ水滴落下があっても、十分に底部が
ヒートアップされているので、この熱で蒸発させること
を目的としている。The purpose of this method is to use the heat to evaporate even if water droplets fall, since the bottom is sufficiently heated.
しかしこの方法もプラント条件の変動(ガス量の減少)
には対処出釆難かった。また多量の落下水滴を蒸発させ
るには無理があり、かつ二重構造となっているので、コ
ストアップとなる欠点があった。本発明は前記従来の欠
点を解消するために提案されたもので、高温被冷却ガス
が下方から流入する直立又は傾斜形注水蒸発ガス冷却装
置に於いて、冷却装置下方内部にガス速度を予想し得る
最小ガス量において予想最大水滴径の自然落下速度より
大とする狭小部と、拡がり角を1oo以上20o以下に
したガスディフューザを設けることにより、従来に比べ
冷却装置の高さを著しく縮めることが可能なガス冷却装
置を提供せんとするものである。However, this method is also subject to fluctuations in plant conditions (reduction in gas amount).
It was difficult to deal with it. Furthermore, it is difficult to evaporate a large amount of falling water droplets, and since it has a double structure, it has the drawback of increasing costs. The present invention has been proposed in order to solve the above-mentioned conventional drawbacks, and it is possible to predict the gas velocity inside the lower part of the cooling device in an upright or inclined type water injection evaporative gas cooling device in which high temperature gas to be cooled flows in from below. The height of the cooling device can be significantly reduced compared to conventional methods by providing a narrow part whose minimum gas amount to be obtained is greater than the natural falling speed of the expected maximum water droplet diameter, and a gas diffuser with a spread angle of 1 to 20 degrees. The purpose is to provide a gas cooling device that is possible.
以下本発明の実施例を図面について説明すると、第3図
は本発明の実施例を示し、高温被冷却ガス6が下方から
ガス偏向装置7、ガス整流装置8を経て流入する直立形
(懐斜形でもよい)注水ガス冷却装置9を示し、低温ガ
ス10は上端から排出されるようになっている。11は
頃霧注水装置で、同装置11の下方内部にはガスデイフ
ューザ12が設けられている。Embodiments of the present invention will be explained below with reference to the drawings. FIG. A water injection gas cooling device 9 is shown (which may be in the form of a water injection gas cooling device 9), with cold gas 10 being discharged from the top. Reference numeral 11 denotes a mist water injection device, and a gas diffuser 12 is provided inside the device 11 below.
ガスディフューザ12の寸法aはガス速度vg2を生ぜ
しめる寸法、c,>c2、c,三(全ガス量の約10%
相当ガス量を通過せしめるに足る寸法)、拡がり角bニ
10〜20oとした時、また噴霧注水装置11は寸法d
が蟹霧液満座とガス速度の相関によって最適距離となる
ように配設し、また寸法e、fは高温被冷却ガス6及び
低温ガス7の温度、ガス量、注水液滴径などによって定
まる値とした時に於いて、完全な蒸発冷却効果が得られ
ることが立証できる。即ち、ガスディフューザ12下部
に於けるガス速度vg2を予想し得る最少ガス量で選定
しておき、かつ子想最大水滴径の自然落下速度(500
仏程度の水滴ならば約7〜1血/s)より大きく、例え
ば13m/s以上にしているので、水滴落下により弊害
が避けられる。The dimension a of the gas diffuser 12 is the dimension that produces the gas velocity vg2, c,>c2, c,3 (approximately 10% of the total gas volume)
(dimensions sufficient to allow a corresponding amount of gas to pass through), when the spread angle b is 10 to 20o, and the spray water injection device 11 has dimensions d
are arranged so that they are at the optimum distance depending on the correlation between the crab mist level and the gas velocity, and the dimensions e and f are determined by the temperature of the high-temperature cooled gas 6 and the low-temperature gas 7, the gas amount, the water injection droplet diameter, etc. It can be demonstrated that a complete evaporative cooling effect can be obtained when That is, the gas velocity vg2 at the bottom of the gas diffuser 12 is selected to be the minimum amount of gas that can be expected, and the natural falling velocity of the maximum water droplet diameter (500
If the water droplet is about the size of a Buddha, the speed is larger than about 7 to 1 blood/s, for example, 13 m/s or more, so that harmful effects caused by falling water droplets can be avoided.
また水滴落下しても、ディフューザを十分加熱すれば、
その熱で蒸発が可能であり、そのためにc,及びc2の
隙間をあげ、ディフューザ部の内部寸法aと外部の隙間
c,、c2にガス量を9:1程度に分配できるように設
定する。Also, even if water drops fall, if the diffuser is heated enough,
Evaporation is possible with the heat, and for this purpose, the gaps c and c2 are increased so that the amount of gas can be distributed between the internal dimension a of the diffuser section and the external gaps c, c2 at a ratio of about 9:1.
c,及びc2寸法はガス量、塔径で変化するから、一概
には云えないし、妥当ではないが、通常の設計では9:
1程度を指標にすれば十分である。またディフューザ1
2の拡がり角bはガス流が乱れない程度とし、b=10
〜2ぴ以下にする必要がある。The dimensions c and c2 vary depending on the gas amount and column diameter, so it cannot be stated unconditionally and is not valid, but in a normal design, 9:
It is sufficient to use around 1 as an indicator. Also diffuser 1
The spread angle b of 2 should be such that the gas flow is not disturbed, and b = 10
It is necessary to keep it below ~2 pi.
次に第4図に於いて
vgl:空塔ガス速度
vf:最大液滴粒子13の沈降速度
V滋:v財・pg>vf・pfなるように定めたガス速
度Pg:ガス密度
pf:噴霧液滴の密度
とした時には、最大液滴粒子は冷却装置下部(底部)に
落下することはない。Next, in Fig. 4, vgl: superficial gas velocity vf: sedimentation velocity of maximum droplet particle 13 V: gas velocity determined so that v material pg > vf pf Pg: gas density pf: spray liquid Given the droplet density, the largest droplet particles will not fall to the bottom of the cooling device.
但し、vgl及びVg2は予期最小値をとるものとする
。ディフューザギャップc,及びc2を前記の値とする
ことにより、c,及びc2を通る高温ガスによってトデ
ィフューザ12及びガス冷却装置9の下方は十分に加熱
されるから、方一噴霧液滴粒子がディフューザ12及び
/又はガス冷却装置9に接触しても再蒸発し得るので、
液滴のままで本体下方(底部)に落下して障害となるよ
うなことはない。However, it is assumed that vgl and Vg2 take the expected minimum values. By setting the diffuser gaps c and c2 to the above values, the lower part of the diffuser 12 and gas cooling device 9 is sufficiently heated by the high temperature gas passing through c and c2. 12 and/or the gas cooling device 9, it may re-evaporate.
There is no chance that droplets will fall below the main body (bottom) and cause an obstruction.
以上詳細に説明した如く本発明は、冷却装置下方内部に
ガスディフューザを設けたので、完全な蒸発冷却効果が
得られ、従来の前記A法に比べ、ノズル位置を低くする
ことができ、これにより冷却塔の大きさを従釆の1/5
〜1′釘蓮度縮めることができる。As explained in detail above, the present invention provides a gas diffuser inside the lower part of the cooling device, so a complete evaporative cooling effect can be obtained, and compared to the conventional method A, the nozzle position can be lowered. Reduce the size of the cooling tower to 1/5 of the subordinate size.
~1' nail lotus degree can be shortened.
第1図及び第2図は夫々従来の蒸発冷却装置を示す縦断
面図、第3図は本発明の実施例を示すガス冷却装置の縦
断面図、第4図は第3図に於けるディフューザの作用説
明図である。
図の主要部分の説明、6・・・・・・高温被冷却ガス、
9・・・・・・ガス冷却装置、11…・・・噴霧注水装
置(冷却装置)、12・・・・・・ガスデイフューザ。
第1図第2図
第3図
第4図1 and 2 are longitudinal sectional views showing a conventional evaporative cooling device, FIG. 3 is a longitudinal sectional view of a gas cooling device showing an embodiment of the present invention, and FIG. 4 is a longitudinal sectional view of the diffuser in FIG. 3. FIG. Explanation of the main parts of the diagram, 6... High temperature cooled gas,
9...Gas cooling device, 11...Spray water injection device (cooling device), 12...Gas diffuser. Figure 1 Figure 2 Figure 3 Figure 4
Claims (1)
注水蒸発ガス冷却装置に於いて、冷却装置下方内部に、
ガス速度を予想し得る最小ガス量において予想最大水滴
径の自然落下速度より大とする狭小部と、拡がり角を1
0°以上20°以下にしたガスデイフユーザを設けたこ
とを特徴とするガス冷却装置。1. In an upright or inclined water injection evaporative gas cooling system where high-temperature cooled gas flows in from below, there is a
A narrow part where the gas velocity is greater than the natural falling velocity of the expected maximum water droplet diameter at the minimum expected gas amount, and a divergence angle of 1
A gas cooling device characterized by having a gas diff user whose angle is 0° or more and 20° or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17261079A JPS6038638B2 (en) | 1979-12-29 | 1979-12-29 | gas cooling device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17261079A JPS6038638B2 (en) | 1979-12-29 | 1979-12-29 | gas cooling device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5697787A JPS5697787A (en) | 1981-08-06 |
JPS6038638B2 true JPS6038638B2 (en) | 1985-09-02 |
Family
ID=15945055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17261079A Expired JPS6038638B2 (en) | 1979-12-29 | 1979-12-29 | gas cooling device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6038638B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6787013B2 (en) | 2016-10-03 | 2020-11-18 | 日本製鉄株式会社 | Molding material manufacturing method |
-
1979
- 1979-12-29 JP JP17261079A patent/JPS6038638B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5697787A (en) | 1981-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Broniarz-Press et al. | The effect of orifice shape and the injection pressure on enhancement of the atomization process for pressure-swirl atomizers | |
JPS58208386A (en) | High temperature synthetic gas cooling method and device | |
Ruan et al. | Effects of a countercurrent gas flow on falling-film mode transitions between horizontal tubes | |
Ning et al. | Experimental investigation on the performance of wet cooling towers with defects in power plants | |
Pearlmutter et al. | A multi-stage down-draft evaporative cool tower for semi-enclosed spaces: Experiments with a water spraying system | |
Miao et al. | Comparison on cooling performance of pre-cooled natural draft dry cooling towers using nozzles spray and wet medium | |
JPS6038638B2 (en) | gas cooling device | |
Smedman et al. | Turbulent characteristics of a shallow convective internal boundary layer | |
Issa et al. | Numerical model for spray-wall impaction and heat transfer at atmospheric conditions | |
Pang et al. | Nozzle arrangement study for pre-cooling the inlet air of natural draft dry cooling tower under crosswinds | |
Petruchik et al. | Simulation of cooling of water droplet and film flows in large natural wet cooling towers | |
GB1354607A (en) | Injector type evaporative heat exchanger | |
Yamamoto | Natural convection about a heated sphere in a porous medium | |
JP5420776B1 (en) | Spray system for temperature drop in tunnel | |
CN207060953U (en) | A kind of oil tank cooling recirculation system | |
Dobrego et al. | Use of oriented spray nozzles to set the vapor–air flow in rotary motion in the superspray space of the evaporative chimney-type tower | |
Reuter | Performance evaluation of natural draught cooling towers with anisotropic fills | |
Abed et al. | Heat transfer intensification in emergency cooling heat exchanger and dry cooling towers on nuclear power plant using air-water mist flow | |
Wood et al. | A contribution to the theory of natural draught cooling towers | |
Porter et al. | Heat and mass transfer of spray canals | |
Brin' et al. | Mathematical modeling of evaporative cooling of water in a mechanical-draft tower | |
Chow et al. | Critical heat flux in spray cooling | |
Zunaid | Energy and Second Law Analysis of Shower Cooling Tower Used for Air Cooling Application for Human Comfort with Variation in Water to Air Mass Flow Ratio | |
JPS6186922A (en) | Wet exhaust gas treatment apparatus | |
Popovich et al. | Experimental study of the shock wave influence on adiabatic wall temperature in a supersonic air-droplet flow |