JPS6038508A - Condensed water recovering pump device - Google Patents

Condensed water recovering pump device

Info

Publication number
JPS6038508A
JPS6038508A JP14785483A JP14785483A JPS6038508A JP S6038508 A JPS6038508 A JP S6038508A JP 14785483 A JP14785483 A JP 14785483A JP 14785483 A JP14785483 A JP 14785483A JP S6038508 A JPS6038508 A JP S6038508A
Authority
JP
Japan
Prior art keywords
condensate
tank
water level
pressure
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14785483A
Other languages
Japanese (ja)
Other versions
JPH0454123B2 (en
Inventor
大岩 謙二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TLV Co Ltd
Original Assignee
TLV Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TLV Co Ltd filed Critical TLV Co Ltd
Priority to JP14785483A priority Critical patent/JPS6038508A/en
Publication of JPS6038508A publication Critical patent/JPS6038508A/en
Publication of JPH0454123B2 publication Critical patent/JPH0454123B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (目的) 本発明は蒸気使用機器に発生する復水(高(品水)を、
電動ポンプを用いて、ボイラ等の発生点よりも高圧個所
に圧送する復水回収ポンプ装置に関りる。
[Detailed Description of the Invention] (Objective) The present invention aims to reduce condensate (high quality water) generated in steam-using equipment.
It relates to a condensate recovery pump device that uses an electric pump to pump condensate to a location with higher pressure than the point of generation, such as a boiler.

この場合、電動ポンプでキャビテーションか生じないよ
うに、ポンプの吸込口ては復水を過小f’、II状態に
する必要がある。かつ、蒸気使用機器からの復水の排出
を妨げてはならない。ここで光重7.11状態とは、流
体の:温度がその圧力に対応した飽ill温度よりも低
い状態、換呂づれば、圧力か飽和圧力よりも高い状態を
言い、復水回収ポンプ装置においては、通常0.5にり
/’ CI!’程度の過圧(過冷fill )状態が必
要である。
In this case, in order to prevent cavitation from occurring in the electric pump, it is necessary to bring the condensate at the suction port of the pump into an extremely small f', II state. In addition, the discharge of condensate from steam-using equipment shall not be obstructed. Here, the light gravity 7.11 state refers to a state where the temperature of the fluid is lower than the saturation temperature corresponding to its pressure, or in other words, a state where the pressure or saturation pressure is higher than the fluid temperature, and in the condensate recovery pump device. is usually 0.5/' CI! An overpressure (supercooled fill) state of about 100 liters is required.

復水の排出を妨げずに、ポンプの吸込口で復水を過冷却
状態にするために、従来、シェラI〜・11吏ンプが用
いられた。これは、電動ポンプのl出水の一部を循環さ
せてエゼクタ構造のジ1ツ1−・ポンプを駆動するもの
で、蒸気使用機器の復水をノズル周辺の低圧域に導いて
吸込み、ディツユ−4J−て増圧して復水を過冷却状態
にし、ポンプの吸込口に送り込むものである。しかし、
この場合は、シェフ1〜・ポンプで吸込む復水量の21
8程度を循環させな()ればならず、大容量のポンプを
必要とし、そのランニング・コストが嵩む。
In order to bring the condensate into a supercooled state at the suction port of the pump without interfering with the discharge of the condensate, a Sierra I-11 pump has conventionally been used. This system circulates a portion of the water discharged from the electric pump to drive the ejector-structured jet pump, which guides condensate from steam-using equipment to a low-pressure area around the nozzle and sucks it into the diesel pump. The pressure is increased by 4 J to bring the condensate into a supercooled state, and the condensate is sent to the suction port of the pump. but,
In this case, chef 1 ~ 21 of the amount of condensate sucked by the pump
8 or so must be circulated, requiring a large-capacity pump, which increases running costs.

復水タンクを高所に架設して、タンクから電動ポンプま
でを立ち下かり管で連結し、立ち下かり管内の復水の自
重(水頭圧力)でポンプの吸込口の復水を過冷却状態に
することも従来j1われでいた。この場合(ま、復水タ
ンクを地上から5m程痕高い所に配置しなi−Jればな
らないので、鉄塔や基礎工事に多額の費用を必要とづる
1、また、自刃では高架タンクまでのぼれない低圧の復
水(よ回収できない。
The condensate tank is built at a high location, and the tank is connected to the electric pump with a down pipe, and the condensate at the pump suction port is supercooled by the weight of the condensate (head pressure) in the down pipe. Previously, it was also my responsibility to do so. In this case (well, the condensate tank has to be placed about 5m above the ground), which requires a large amount of money for the tower and foundation work. There is no low pressure condensate (it cannot be recovered).

そこで、地上に置いたタンク【こ復水を導入し、圧送時
には圧縮空気や蒸気等の加圧気体をタンクに圧入して復
水を湯冷ムIJ状態にりることを考えた。
Therefore, we thought of introducing condensate into a tank placed on the ground, and when pumping, pressurized gas such as compressed air or steam would be injected into the tank to turn the condensate into a hot water cooling system.

タンクを2基δ9けて、常に何れか一方のタンクを低圧
に維持すれば、蒸気使用)幾器の復水を、排水を妨げず
にタンクに導入できる。このとさ、 i’+i定墨の復
水が先に溜った方のタンクを優先1. ’c lf送し
、復水がタンクに入りきらないのて捨てな()1)はな
らない1幾会や、タンクに溜めてお(間の敢然旦を少な
くづるべぎである。
By using two tanks δ9 and always maintaining one tank at a low pressure, it is possible to introduce condensate (using steam) into the tank without interfering with drainage. At this point, give priority to the tank in which the condensate of i'+i has accumulated first.1. 'c lf is sent, and the condensate cannot fit into the tank, so it must be discarded (1), or it must be stored in the tank (the time in between should be reduced).

本発明の技術的課題は、2基のタンクの両プラを同時に
加圧づることなく、所定mの復水か先に溜った方のタン
クに加圧気体を圧入してこのタンクの復水を優先して圧
送づ−るようiこJることて(繁)る。
The technical problem of the present invention is to inject pressurized gas into the tank in which a predetermined meter of condensate has accumulated first, without pressurizing both plastics of the two tanks at the same time. It is often said that priority should be given to pumping.

(構成) 上記課題を解決でるために講じた本発明の技1)J的手
段は次の通りである。すなわら、(イ)゛電動ポンプの
吸込口側に復水タンクを2重亜列に置()、く口)各タ
ンクに、復水が流入てきるように内部を低圧に維持する
手段と、内部に溜った1反水を過冷却状態にするために
加圧気体を導入づる手1すとを設(ブ、(ハ)各タンク
に上下2水位を)9011する水位計を取りイ」け、(
ニ)先に上水位に達した方のタンクの復水を、そのタン
クの水位が一■・ボ(V′71ス下に下がるまで、優先
して圧送し続(プる様に低圧維1)手段ど加圧気体導入
手段を制御づるコン1〜ローラを設(プる。
(Structure) Techniques of the present invention taken to solve the above problems 1) J means are as follows. In other words, (a) ``Place condensate tanks in a double subrow on the suction side of the electric pump (), ``Means to maintain the internal pressure at low pressure so that condensate flows into each tank'' Then, install a means to introduce pressurized gas to supercool the water that has accumulated inside (B, (C) 2 water levels, upper and lower, in each tank) and remove the water level gauge. "hair,(
d) Condensate from the tank that reached the upper water level first is given priority and continues to be pumped until the water level in that tank drops below 1 inch (V'71). ) A controller 1 to rollers are installed to control the pressurized gas introduction means.

上記手段は、次のように作用り−る。づ−なわち、タン
ク内の水位は水位側で検出され、何れか一方のタンクの
水位がその上水位に達づれは、加圧気体導入手段が作用
して、そのタンクに加圧気体が圧入される。覆ると、そ
の内部の圧力か高まるので、復水は過冷却状態になって
電動ポンプて圧送される。この圧送iよそのタンクの水
位が上水位以下に下がるまで続き、池のタンクは、低圧
維持手段の作用で、その間その水位にかかわらず低圧に
維持され、復水か流入して溜る。この優先状態は、先の
タンクの水位が上水位以下に下がったときに解除される
The above means works as follows. In other words, the water level in the tank is detected on the water level side, and when the water level in either tank reaches the upper water level, the pressurized gas introducing means acts and pressurized gas is injected into that tank. be done. When covered, the pressure inside increases, so the condensate becomes supercooled and is pumped out using an electric pump. This pumping continues until the water level in the other tank falls below the upper water level, and the pond tank is maintained at a low pressure during that time regardless of its water level due to the action of the low pressure maintaining means, and condensate flows in and accumulates. This priority state is canceled when the water level in the previous tank falls below the upper water level.

(特有の効果) 本発明の上記手段は下記の特有の効果を秦づる。(Special effect) The above means of the present invention provides the following unique effects.

ジ1ツi〜・ポンプを用いた場合は、多量の水を循環さ
せるためにランニング・コストが嵩むが、本発明では、
復水タンクを加圧づるとさに’jJ−1ij ??気あ
るいは蒸気を少邑消費するだ()である。
If a pump is used, the running cost increases because it circulates a large amount of water, but in the present invention,
How to pressurize the condensate tank? ? It consumes a small amount of energy or steam ().

本発明では、復水タンクを高所架設ηる必乃がないから
、設備費用がかがらない。
In the present invention, there is no need to erect the condensate tank at a high place, so the equipment cost is not increased.

水元1il)で1よ、上水位に先に達した方のタンクの
復水を優先して圧送するので、常にJ、すg 77iの
1)水が溜っている方のタンクを先に圧jZして、Ii
l<空にすることになり、タンクに入りきら一す゛に捨
4f(プればならない復水mが少ない。
77i 1) Since the condensate from the tank that reached the upper water level first is pumped with priority, the tank containing water is always pressurized first. jZ, Ii
Since the tank has to be emptied, 4f of condensate must be discarded (there is less m of condensate to be pumped).

(実施例〉 本発明の具体的な一例を説明りろく第1図、第2図参照
)。
(Example> For a description of a specific example of the present invention, see FIGS. 1 and 2).

復水導入通路11と圧送通路12の間に、2」1Lの復
水タンク13.14を並列に配置Jる。前人通路11は
蒸気使用機器(図示l!づ゛〉に、月−送迎路12はボ
イラ等の几送先(図示けず)に連結1゛る。
Between the condensate introduction passage 11 and the pressure feeding passage 12, two 1L condensate tanks 13 and 14 are arranged in parallel. The steam passageway 11 is connected to steam-using equipment (not shown), and the moon-shipping path 12 is connected to a destination (not shown) such as a boiler.

復水導入通路11は分岐して各タンク13.’14の上
部に接続し、その分岐部分に逆止ti’ 15 。
The condensate introduction passage 11 branches into each tank 13. Connect to the top of '14, and check the branch part with a backstop ti'15.

16を取り(Iプる。各タンクの下部に接続した復水圧
送通路12に電動ポンプ17.’18と逆止弁19.2
0を取り付【プる。これらの復水圧送通路12は逆止弁
19,20の先で一本の復水圧送通路12に合流づ−る 各タンク13.14の上部に加圧気体導入通路21.2
2を接続し、当該通路21.22に電動弁23.24を
取り付りる。各タンク13.14の上部には、ざらに、
排気通路25.26を接続し、各J)1気通路25.2
6に一次圧調節弁27゜28と重置1弁29.30を取
り付ける。
16 (Pull it.) Connect the electric pump 17.'18 and check valve 19.2 to the condensate pressure feeding passage 12 connected to the bottom of each tank.
Install 0. These condensate pressure feed passages 12 merge into one condensate pressure feed passage 12 at the end of the check valves 19, 20, and a pressurized gas introduction passage 21.2 is formed in the upper part of each tank 13.14.
2 is connected, and an electric valve 23.24 is attached to the passage 21.22. At the top of each tank 13.14, roughly
Connect the exhaust passages 25.26, each J) 1 air passage 25.2
Attach the primary pressure regulating valve 27°28 and the superposed 1 valve 29.30 to 6.

−次I丁調節弁27.28は一次側、すなわち、タンク
13.1’lの圧力が設定値を越えたときに聞(もので
、タンク13.14内を大気圧以上に保って、1001
哀C以上の復水を回収する場合、電磁弁29.30より
もタンク13.14側に取りイー」けて用いる。
- The next control valve 27.28 is used when the pressure in the primary side, that is, the tank 13.1'l, exceeds the set value.
When collecting condensate with a temperature higher than C, it is used by placing it closer to the tank 13, 14 than the solenoid valve 29, 30.

各タンク13.14には水位fft31.32を取りイ
」(プる。水位計31.32は電極棒を有し、タンク内
の水位が所定の上下水位に達したか否かを検出する。
Each tank 13.14 has a water level fft31.32. The water level gauge 31.32 has an electrode rod and detects whether the water level in the tank has reached a predetermined water level.

水位計31.32、電動ポンプ17.IE3.7h動弁
23,24.電磁弁29.30はコント]−1−ラ(図
示ゼず)で、第2図に示す様に電気的に連結されている
Water level gauge 31.32, electric pump 17. IE3.7h valve train 23, 24. The solenoid valves 29 and 30 are controllers (not shown) and are electrically connected as shown in FIG.

@2図に於いて、上の結線端a、1)は下のlX+ I
!jl端a 、b に連結する。図中で記号の接尾C1
宇1゜2はそれぞれタンク13.14に関係したちの1
あることを示している。端子R,S、王(ま電源(ご接
続づ゛る。
@ In figure 2, the upper connection end a, 1) is the lower lX+I
! Connect to jl ends a and b. In the diagram, the symbol suffix C1
U1 and 2 are related to tanks 13 and 14, respectively.
It shows that there is. Terminals R, S, and (also power supply)

記号Pl 、p2はそれぞれ電動ポンプ17,18 ’
) % !JJ1m ヲ、Ml、M21.を上記N動を
幾’\0) nX力供給回路を開閉する接点を示す。
Symbols Pl and p2 are electric pumps 17 and 18', respectively.
)%! JJ1m wo, Ml, M21. The above N motion is expressed as '\0) nX Indicates the contact that opens and closes the force supply circuit.

参照番号51.52はそれぞれ水位i131 、32の
スイッチ回路素子を、53.5/lは電lii件を、5
5.56はタンク13.14の水位が」−ン1しく。
Reference number 51.52 indicates water level i131, 32 switch circuit elements, 53.5/l indicates electric current, 5
At 5.56, the water level in tank 13.14 was about 1.

上水位に達するとで閉じ上水位まで下がると聞く水位接
点を示す。
It shows the water level contact point that I hear closes when it reaches the upper water level and drops to the upper water level.

円内の記号X1 、X2はリレーを、Xl 、 X2は
リレー接点を示す。円内のTl 、T2はタイマーを、
丁11丁2はタイマー接点を示ず。タイマーTI、T2
は通電すると所定時間後に接点TI。
Symbols X1 and X2 inside the circle represent relays, and Xl and X2 represent relay contacts. Tl and T2 in the circle are timers,
D11 D2 does not show a timer contact. Timer TI, T2
When energized, contact TI will close after a predetermined time.

丁2をliJじ、通電が正まると瞬時に接点TI、T2
を開く。
When energization is correct, contacts TI and T2 are connected instantly.
open.

円内の記@M1.〜・12はマグネッ1−・スイッチを
示し、上記接点M1.M2を開閉する。円内の記S;V
1 、 V2 LL電動弁23.24を、si、s2は
電磁弁29.30を示す。
Note inside the circle @M1. . . . 12 indicates a magnet 1 switch, and the contact M1 . Open and close M2. Notes inside the circle S; V
1, V2 LL electric valve 23.24, si, s2 solenoid valve 29.30.

上記各接点に於いて、中抜きの小火はメーク接点を、中
黒の小火(まブレーク接点を示す。
For each of the above contacts, the hollow hollow indicates the make contact, and the hollow hollow indicates the break contact.

下記に作動の概要を説明する。The outline of the operation is explained below.

始動時は、両方のタンク13.14は空で、水位接点5
5.56が聞いているので、リレーX1゜×2も、タイ
マーT1.T2も作動せず、電動ポンプ17.18は停
止し、電動弁23.24は閉じ、電磁弁29.30は冊
いている。従って、両方のタンク13.1/lは低圧で
、復水が導入通路11を通って流入する。
At start-up, both tanks 13,14 are empty and the water level contact 5
5.56 is listening, so relay X1゜×2 also switches on timer T1. T2 is also not activated, electric pumps 17, 18 are stopped, electric valves 23, 24 are closed, and solenoid valves 29, 30 are closed. Both tanks 13.1/l are therefore at low pressure and condensate enters through the inlet channel 11.

一方のタンク、例えばタンク13の水位か他fjのタン
ク14よりも先に所定の上水位に)ヱηると、水位計3
1の水位接点55が閉しるので、す1ノー×1が通電し
、電動弁23 (Vl ) カ開t5、rls l:1
1弁29 (81)が閉じると共に、タイマー−11か
作動し始める。従って、加圧気体か導入通路21を通っ
てタンク13に流入づる。このどさタンク13は逆止弁
15の作用で復水尋人通路1′1から遮断され、逆止弁
19の二次側には高圧か作用して開かず復水圧送通路1
2かう遮断され(いるので、タンク13内は圧力が高ま
り、復水tJ過r’+)JJI状態になる。ぞして所定
時間が紅過するど、タイマーT1の作用でタイマー接点
1−1が■1シ、ンクネット・スイッチM1が通電して
、その接点1〜・11が閉じるので、電動ポンプ1 t
 <Pl )か起動1゜て、タンク13内の復水を圧送
通路12へ)ム出ゴ。
When the water level of one tank, for example tank 13, reaches a predetermined water level earlier than the tank 14 of the other fj), the water level gauge 3
Since the water level contact 55 of No. 1 is closed, S1 NOx1 is energized, and the motor-operated valve 23 (Vl) is opened t5, rls l:1
As the 1 valve 29 (81) closes, the timer 11 starts operating. Therefore, pressurized gas flows into the tank 13 through the introduction passage 21. This dosing tank 13 is shut off from the condensate passage 1'1 by the action of the check valve 15, and the secondary side of the check valve 19 is not opened due to high pressure and the condensate pressure feeding passage 1
2, the pressure inside the tank 13 increases and the condensate becomes in the JJI state. Then, when the predetermined period of time has elapsed, the timer contact 1-1 turns on due to the action of the timer T1, and the link net switch M1 becomes energized, closing its contacts 1 to 11.
<Pl) After 1 degree of startup, the condensate in the tank 13 is pumped out to the pressure-feeding passage 12).

上記の圧送によって、タンク13内の水位が所定の上水
位まで下がると、水位接点55が開さ、電動ポンプ17
は停止し、電動弁23はrl]し、電磁弁2つは開き、
元の復水が流入する状態に戻る。
When the water level in the tank 13 falls to a predetermined upper water level due to the above-mentioned pressure feeding, the water level contact 55 opens and the electric pump 17
stops, the electric valve 23 does [rl], and the two solenoid valves open,
The state returns to the original condition where condensate flows in.

タンク13の水位が上水位まで下からない内に、タンク
14の水位が上水位に達しても、リレーX1の作用で水
位接点56に直列のブレーク接点X1か開いているので
、リレー×2には通電されないから、タンク14は復水
か71E入する状態に維持される。タンク14に入りき
らない復水は排気通路2Gを通って流出する。
Even if the water level in the tank 14 reaches the upper water level before the water level in the tank 13 reaches the upper water level, the break contact X1 connected in series with the water level contact 56 is open due to the action of the relay Since the tank 14 is not energized, the tank 14 is maintained in a state where the condensate 71E is filled. Condensate that cannot fit into the tank 14 flows out through the exhaust passage 2G.

タンク14の水位がタンク13よりも先に上水位に達し
た場合も、上記と同位に作動する。これは装置の構成が
タンク13とタンク14に関して対称に作られているか
らで、作動のVt明は省略ブる。
Even if the water level in the tank 14 reaches the upper water level before the water level in the tank 13, the same operation as above will occur. This is because the structure of the device is made symmetrically with respect to the tank 13 and the tank 14, so the operation Vt light is omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による復水回収ポンプ装置の一実施例の
概略とその配笛状態を示す図であり、第2図はコントロ
ーラの電気的結線図である。 1に復水導入通路 12:復水圧送通路 13.14:復水タンク 17.18:電動ポンプ 21.22:加圧気体導入通路 23.24:電動弁 25.26:排気通路 29.30:電磁弁 31.32:水位泪 特許出願人
FIG. 1 is a diagram showing an outline of an embodiment of a condensate recovery pump device according to the present invention and its whistle distribution state, and FIG. 2 is an electrical wiring diagram of a controller. 1: Condensate introduction passage 12: Condensate pressure feeding passage 13.14: Condensate tank 17.18: Electric pump 21.22: Pressurized gas introduction passage 23.24: Electric valve 25.26: Exhaust passage 29.30: Solenoid valve 31.32: Water level patent applicant

Claims (1)

【特許請求の範囲】[Claims] (1) 電動ポンプの吸込口側に復水タンクを2基並列
に設け、各タンクに、復水か流入できるように内部を低
圧に維持する手段と、内部に溜った復水を過冷却状態に
するために加圧気体を導入する手段とを設け、各タンク
に上下2水位を検出する水位計を取り付け、先に上水位
に達した方のタンクの復水を、その上水位に3!4する
まで、優先して圧送し続()る様に低圧維持手段と加圧
気体導入手段を制御するコントローオを設けた復水回収
ポンプ装置。
(1) Two condensate tanks are installed in parallel on the suction port side of the electric pump, and a means is provided to maintain the internal pressure at a low level so that condensate can flow into each tank, and to supercool the condensate accumulated inside the tank. A means for introducing pressurized gas is installed in each tank to detect the upper and lower water levels, and the condensate from the tank that reaches the upper water level first is added to the upper water level. The condensate recovery pump device is equipped with a controller that controls the low pressure maintaining means and the pressurized gas introducing means so as to continue pressure feeding with priority until 4.
JP14785483A 1983-08-11 1983-08-11 Condensed water recovering pump device Granted JPS6038508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14785483A JPS6038508A (en) 1983-08-11 1983-08-11 Condensed water recovering pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14785483A JPS6038508A (en) 1983-08-11 1983-08-11 Condensed water recovering pump device

Publications (2)

Publication Number Publication Date
JPS6038508A true JPS6038508A (en) 1985-02-28
JPH0454123B2 JPH0454123B2 (en) 1992-08-28

Family

ID=15439754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14785483A Granted JPS6038508A (en) 1983-08-11 1983-08-11 Condensed water recovering pump device

Country Status (1)

Country Link
JP (1) JPS6038508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170798A (en) * 1986-01-22 1987-07-27 Matsushita Electric Works Ltd Extracting method for liquid under vacuum

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125903A (en) * 1976-05-26 1977-10-22 Hori Shiyouji Kk Vapor warm water circulating device
JPS5343106A (en) * 1976-10-01 1978-04-19 Ikehara Kikai Yuugen Closed system circulating method of boiler
JPS5751971A (en) * 1980-09-13 1982-03-27 Toshiba Corp Apparatus for preventing cavitation of pump
JPS57164206A (en) * 1981-04-01 1982-10-08 Tlv Co Ltd Condensate recovry pump apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52125903A (en) * 1976-05-26 1977-10-22 Hori Shiyouji Kk Vapor warm water circulating device
JPS5343106A (en) * 1976-10-01 1978-04-19 Ikehara Kikai Yuugen Closed system circulating method of boiler
JPS5751971A (en) * 1980-09-13 1982-03-27 Toshiba Corp Apparatus for preventing cavitation of pump
JPS57164206A (en) * 1981-04-01 1982-10-08 Tlv Co Ltd Condensate recovry pump apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170798A (en) * 1986-01-22 1987-07-27 Matsushita Electric Works Ltd Extracting method for liquid under vacuum

Also Published As

Publication number Publication date
JPH0454123B2 (en) 1992-08-28

Similar Documents

Publication Publication Date Title
WO1994003397A1 (en) Improvement to membrane type deaerator
US3487656A (en) Refrigeration system with refrigerant return means
JPS6038508A (en) Condensed water recovering pump device
CN210350887U (en) Generator stator bar maintains device
CN212902111U (en) Refrigerant outlet side refrigerant gas-liquid separation system of organic Rankine generator set heat exchanger
CN208564519U (en) A kind of instant re-injection system of novel oilfield testing well sewage
JPH0874514A (en) Auxiliary power supply facility of steam turbine plant
CN2191309Y (en) Pneumatic liquid conveyer
CN1029529C (en) Steam heat supply closed circulation equipment
JPS5948244B2 (en) Multiple flexible membrane undulating weir
JPH0239533Y2 (en)
GB2090963A (en) Solar powered heating apparatus
CN207423551U (en) A kind of recovery type heat commodity inspection device for water heater
JP2000054999A (en) Liquid force-feed device
JPH08576Y2 (en) Condensate recovery device
CN213870476U (en) Integrated hydraulic control device
JPS639700A (en) Discharge of gas in syphon conduit in syphon type liquid taking out device
CN211619987U (en) Double-water-injection vacuum degassing machine with normal water injection pipeline and intermittent water injection pipeline
CN209312552U (en) The controllable transformer vacuum of flow velocity infuses machine of draining the oil
JPH08165107A (en) Device to generate nitrogen with high pressure
JP3503843B2 (en) Water supply method to fuel cell cooling water system
CN2237278Y (en) Swinging sheet flow switch
JPH08327010A (en) Water hammer preventing apparatus for water supply system
SU1760135A1 (en) Peak-load power plant
JPH02171592A (en) Heat pipe and method of supplying heat transfer medium thereto