JPS6038477B2 - How to energize - Google Patents

How to energize

Info

Publication number
JPS6038477B2
JPS6038477B2 JP52126746A JP12674677A JPS6038477B2 JP S6038477 B2 JPS6038477 B2 JP S6038477B2 JP 52126746 A JP52126746 A JP 52126746A JP 12674677 A JP12674677 A JP 12674677A JP S6038477 B2 JPS6038477 B2 JP S6038477B2
Authority
JP
Japan
Prior art keywords
resistance
sub
switch
parallel
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52126746A
Other languages
Japanese (ja)
Other versions
JPS5461080A (en
Inventor
岑生 丸山
津一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP52126746A priority Critical patent/JPS6038477B2/en
Publication of JPS5461080A publication Critical patent/JPS5461080A/en
Publication of JPS6038477B2 publication Critical patent/JPS6038477B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells

Description

【発明の詳細な説明】 本発明は整流器に対して並列に複数n個のイオン交換膜
法電槽C,乃至Cnが接続される方式の電槽群において
、該露槽群に属する任意の停止しているCi電槽を他の
雷槽の運転中に運転状態を実質的に変更することなく起
動する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides, in a cell group in which a plurality of n ion-exchange membrane method cell cells C, to Cn are connected in parallel to a rectifier, any stop that belongs to the dew cell group. The present invention relates to a method for starting a Ci battery cell that is currently in operation without substantially changing the operating state while other detonation cells are in operation.

イオン交換膜法電槽は例えば食塩の電解等において比較
的狭い陰極室及び陽極室内でそれそれガスを発生するた
め、初期の泡抜けがスムーズに行かないため一度に定常
の電流を流すことは困難となる。このため通常電流を徐
々に増加して定常値に上げるように操作する。この場合
各電槽に夫々1個宛整流器があれば上記操作は容易に行
い得る。しかしながら、整流器は相当に高価であり、可
能な限り大型の整流器1つで多くの露槽を運転するのが
有利となる。このためには複数の露槽が整流器に対して
並列に接続することになる。またしかし、このような場
合に例えば1糟だけ遅れて起動する場合等は全檀を一旦
停止して起動する亀槽を継ぎ込んだ後、全槽を徐々に起
動させなければならない。この間全槽の運転状況が低下
するための損失は大きい。本発明は、上述の如き損失を
来たさない継ぎ込みの方法を提供するものである。
In ion-exchange membrane cells, for example, gas is generated in the relatively narrow cathode and anode chambers during the electrolysis of salt, so it is difficult to pass a steady current at once because initial bubbles cannot be removed smoothly. becomes. For this reason, the normal current is gradually increased to a steady value. In this case, if each battery case has one rectifier, the above operation can be easily performed. However, rectifiers are fairly expensive and it is advantageous to operate as many tanks as possible with one large rectifier. For this purpose, multiple dew tanks are connected in parallel to the rectifier. However, in such a case, for example, if the tank is to be started with a delay of one tank, it is necessary to temporarily stop all the tanks, insert the turtle tank to be started, and then gradually start all the tanks. During this time, the operational status of all tanks deteriorates, resulting in large losses. The present invention provides a method of splicing without causing losses as described above.

即ち、本発明はn個のイオン交換膜法電槽C,〜C8が
整流器に対して並列に接続される方式の電槽群において
、該露槽群に属するCi電槽を他の露槽の運転状態を実
質的に変更することなく、起動する方法として、Ci電
横と整流器の間に抵抗体を介在させ、該抵抗を大きい抵
抗から”頂次小さい抵抗へと変化させ、最終的に該抵抗
を除去することを特徴とする。本発明にあっては、上述
の如く、起動する蟹槽に係わる回路の電気抵抗を変化さ
せて、これに流れる電流量をコントロールし、起動時の
トラブルを解消するものである。このように抵抗によっ
て電流量をコントロールすることは熱の発生等によるエ
ネルギーの損失を来たすが、イオン交換膜法電槽にあっ
ては比較的短時間の間に間歌的に抵抗値を低下させ得る
ことを知った。従って、電気エネルギーの損失となる抵
抗を付加している時間は極めて短かいため、本発明の方
法によって極めて容易に且つ雷槽運転の総合的見地から
有利に継ぎ込めるのである。以下図面を用いて本発明を
説明する。
That is, in the present invention, in a battery case group in which n ion-exchange membrane method battery cells C, to C8 are connected in parallel to a rectifier, a Ci battery cell belonging to the dew tank group is connected to another dew tank. As a method for starting without substantially changing the operating condition, a resistor is interposed between the Ci electric wire and the rectifier, and the resistance is changed from a large resistance to a small resistance at the top, and finally the The present invention is characterized by eliminating resistance.As mentioned above, the present invention changes the electrical resistance of the circuit related to the starting crab tank, controls the amount of current flowing through it, and prevents troubles during starting. Controlling the amount of current using resistance in this way causes energy loss due to heat generation, etc., but with ion-exchange membrane method batteries, there is a loss of energy in a relatively short period of time. Therefore, since the time for adding resistance, which causes loss of electrical energy, is extremely short, the method of the present invention can be used very easily and from a comprehensive standpoint of detonator tank operation. The present invention will be explained below with reference to the drawings.

第1図は本発明を適用する函槽群であり、整流器1に対
して露槽C,〜Cnが並列に接続されており、各電槽に
は主断路器S,〜Snが設置されている。本例ではCi
を遅れて起動する例であって、起動用スイッチ2をA、
B点に接続してある。第2図は抵抗体を適宜介在させる
ための通電用スイッチの構造の一例である。
Figure 1 shows a group of box tanks to which the present invention is applied, in which dew tanks C, ~Cn are connected in parallel to a rectifier 1, and main disconnectors S, ~Sn are installed in each container. There is. In this example, Ci
This is an example of starting up with a delay, and the starting switch 2 is set to A,
It is connected to point B. FIG. 2 shows an example of the structure of an energizing switch in which a resistor is appropriately inserted.

本例では両端子A,B間にサブスイッチB乃至Bpまで
p個が並列に接続されており、更に該サプスィッチの任
意のBiに対応して抵抗Riが、抵抗素子y.・・…・
yi・・・・・・ypによってZryとなるよう援競さ
れた構造である。即ちあらかじめB〜Bpは全て開とな
っており、まずBを閉じることによってA,B間には抵
抗素子y.・・・・・・ッpのp個が介在し全抵抗R,
はy,十y2十……yi+……十ypとなる。次に&を
閉じると全抵抗R2はy2 十・・・・・・yi+・・
・・.・十ypとなり、R,>R2の関係となるためA
,B間にはより多くの電流が流れる。以下Biを閉じた
時にはRiはyi+……+yp則ち2fyとなる。また
Ri−,>Ri>RMの関係があり、サブスィッチをB
から&,B3・・・・・・Bpと順次閉じることによっ
て抵抗を次第に小さくすることができるのである。従っ
て、サブスィツチBpを入れた後、主断路器Siを入れ
ることによって何んの支障もなく継ぎ込めるのである。
このようにサブスイツチを次々と入れる(切りかえる場
合もある)速度は、イオン交換膜法電槽の状態によって
決められる。
In this example, p sub-switches B to Bp are connected in parallel between both terminals A and B, and a resistor Ri corresponding to any Bi of the sub-switches is connected to a resistor element y.・・・・・・・
yi...This is a structure reinforced by yp to become Zry. That is, B to Bp are all open in advance, and by first closing B, a resistive element y. There are p intervening p pieces, and the total resistance R,
becomes y, 10y20...yi+...10yp. Next, when & is closed, the total resistance R2 is y2 10...yi+...
・・・.・Since it becomes 10 yp and the relationship R, > R2, A
, B more current flows between them. Hereinafter, when Bi is closed, Ri becomes yi+...+yp, that is, 2fy. Also, there is a relationship Ri−,>Ri>RM, and the subswitch is
By sequentially closing from &, B3, . . ., Bp, the resistance can be gradually reduced. Therefore, after turning on the sub-switch Bp, the main disconnector Si can be turned on without any problem.
The speed at which the sub-switches are turned on (in some cases switched) one after another is determined by the state of the ion-exchange membrane cell.

即ち、一般に蟹構内の陰極室と陽極室との圧力差が水柱
で5仇豚を越えないよう、陰極室又は陽極室のいずれか
の内圧は大気圧以上10仇岬を越えないよう操作するの
がよい。このためサブスィッチB及び抵抗素子yの数は
、イオン交換膜有効面積、亀槽の電圧降下量及び定常時
の電流密度によっても異なるが、一つの目安として、定
常時に流す電流量(キロアンベア)により、その値の1
/2〜1/4の範囲内の段階にする。第3図は通電スイ
ッチの別の態様である。
In other words, in general, the pressure difference between the cathode chamber and the anode chamber in the crab house should not exceed 5 meters in water column, and the internal pressure of either the cathode chamber or the anode chamber should not exceed atmospheric pressure or more than 10 meters. Good. For this reason, the number of sub-switches B and resistance elements y will vary depending on the effective area of the ion exchange membrane, the amount of voltage drop in the turtle tank, and the current density at steady state, but as a guideline, the number of sub-switches B and resistance elements y will vary depending on the amount of current (kiloampere) flowing at steady state. 1 of that value
The stage should be within the range of /2 to 1/4. FIG. 3 shows another embodiment of the energizing switch.

この場合もサブスィッチB,〜Bpははじめ全て開いて
おり、Bを閉じることによりA,B間の抵抗R,はッ,
となる。次にB2を閉じることより全抵抗R2は1/(
1/y,十1/y2 )となる。このように次々とサブ
スィツチを閉じBiを閉じた時Riは・/(1/y.十
・/y2十……・/ツi)となる。この場合も当然Ri
‐,>Ri>Ri十,の関係となり、Bpを閉じた時則
ちB.〜Bpが全て閉じられた時が最も抵抗が小さくな
り、次いで主断路器Siを閉じるのである。第2図にあ
っても、第3図にあっても、露槽に及ぼす影響は同じで
あり、第2図について行ったサブスイツチの数がその閉
じ方についての説明は、第3図についても適用されるも
のであるから省略する。
In this case as well, sub-switches B and ~Bp are all open at first, and by closing B, the resistance R between A and B increases,
becomes. Next, by closing B2, the total resistance R2 is 1/(
1/y, 11/y2). When the subswitches are closed one after another in this way and Bi is closed, Ri becomes ./(1/y.0./y20.../tsui). In this case as well, of course Ri
-,>Ri>Ri0, and when Bp is closed, B. The resistance becomes the lowest when all of ~Bp are closed, and then the main disconnector Si is closed. The effect on the dew tank is the same whether it is in Figure 2 or Figure 3, and the explanation about the number of sub-switches and the way they are closed applied to Figure 2 also applies to Figure 3. It is omitted because it is a

また本明細書に述べた抵抗素子は全て同一種類であって
も、また異なったものであってもよいが、一般に冷却装
置を施しておくのがよい。
The resistance elements described in this specification may all be of the same type or of different types, but it is generally advisable to provide them with a cooling device.

例有効面積約1.8あのイオン交換膜法ユニットセル8
対よりなる露槽3槽を整流器に並列に継ぐ。
Example: Effective area: approx. 1.8 That ion exchange membrane method unit cell 8
Three pairs of dew tanks are connected in parallel to a rectifier.

あらかじめ2槽は30A/d〆の定常状態で運転してお
り、これに新たに1糟を継ぎ込んだ。第1図に示す如き
通電用スイッチであって、抵抗素子yは全て同種とし、
各々0.003オームとなるよう水冷式金属パイプを用
いた。サブスィッチは2段階として、3段目は主断路器
を入れる。このようにして第1段サブスィッチを閉じて
2晩砂後に第2段サブスィッチを閉じ、更に1鼠砂後に
主断路器を閉じたが、何んの支障もなく継ぎ込むことが
できた。
The two tanks were previously operated in a steady state at 30 A/d, and one new tank was injected into them. In the energizing switch as shown in FIG. 1, all the resistance elements y are of the same type,
Water-cooled metal pipes were used so that each had a resistance of 0.003 ohm. There will be two stages of sub-switches, and the third stage will be a main disconnect switch. In this way, the first stage sub-switch was closed, the second stage sub-switch was closed after two nights of sanding, and the main disconnector was closed after one more night of sanding, but the connection could be made without any problems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はイオン交換膜法電槽を並例に接続した電槽群と
通電スイッチの接続点を示す図である。 第2図及び第3図は通電スイッチの構造を示す図である
。図中1は整流器、2は通電スイッチ、C,〜Cnは電
槽、S.〜Snは主断路器、B,〜Bpはサブスィッチ
、y,〜ypは抵抗素子を夫々表わす。 第1図第2図 第3図
FIG. 1 is a diagram showing connection points between a battery case group in which ion-exchange membrane method batteries are connected in a parallel manner and an energization switch. FIGS. 2 and 3 are diagrams showing the structure of the energizing switch. In the figure, 1 is a rectifier, 2 is an energizing switch, C, to Cn are battery containers, and S. ~Sn represents a main disconnector, B and ~Bp represent sub-switches, and y and ~yp represent resistance elements, respectively. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 n個のイオン交換膜法電槽にC_1〜C_nが整流
器に対して並列に接続される方式の電槽群において、該
電槽群に属するC_i電槽を他の電槽の運転状態を実質
的に変更することなく、起動する方法としてC_i電槽
と整流器の間に抵抗体を介在させ、該抵抗を大きい抵抗
から順次小さい抵抗へと変化させ、最終的に該抵抗を除
去することを特徴とする通電方法。 2 C_i電槽に付属する主断路器と並列に下記構造の
通電用スイツチを接続し、サブスイツチB_1から順次
B_pまでスイツチを入れた後主断路器を閉じることを
特徴とする特許請求の範囲第1項記載の方法。 通電用スイツチは、その端子間にサブスイツチB_1
……B_i……B_pのp個が並列に接続されており、
更に該サブスイツチB_iに対応して、抵抗R_iがΣ
^p_iγとなるようにp個の抵抗素子γ_1……γ_
i……γ_pが接続された構造である。 3 C_i電槽に付属する主断路器と並列に下記構造の
通電用スイツチを接続し、サブスイツチB_1から順次
B_pまでスイツチを入れた後主断路器を閉じることを
特徴とする特許請求の範囲第1項記載の方法。 通電用スイツチは、その端子間にサブスイツチB_1
……B_i……B_pのp個及び抵抗素子γ_1……γ
_i……γ_pのp個が夫々並列に接続された構造であ
る。
[Claims] In a battery case group in which C_1 to C_n are connected in parallel to a rectifier in 1n ion-exchange membrane method battery cells, C_i battery case belonging to the battery case group is connected to other batteries. As a method for starting without substantially changing the operating state of the tank, a resistor is interposed between the C_i battery tank and the rectifier, and the resistance is gradually changed from a large resistance to a small resistance, and finally the resistance An energization method characterized by removing. 2. Claim 1, characterized in that an energizing switch having the following structure is connected in parallel with the main disconnector attached to the C_i battery case, and the main disconnector is closed after the sub-switches B_1 to B_p are sequentially turned on. The method described in section. The energizing switch has sub-switch B_1 between its terminals.
...B_i...p pieces of B_p are connected in parallel,
Furthermore, corresponding to the sub-switch B_i, the resistance R_i is Σ
p resistive elements γ_1...γ_ so that ^p_iγ
i... is a structure in which γ_p are connected. 3. Claim 1, characterized in that an energizing switch having the following structure is connected in parallel with the main disconnector attached to the C_i battery case, and the main disconnector is closed after the sub-switches B_1 to B_p are sequentially turned on. The method described in section. The energizing switch has sub-switch B_1 between its terminals.
...B_i...p pieces of B_p and resistance element γ_1...γ
It has a structure in which p pieces of _i...γ_p are each connected in parallel.
JP52126746A 1977-10-24 1977-10-24 How to energize Expired JPS6038477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52126746A JPS6038477B2 (en) 1977-10-24 1977-10-24 How to energize

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52126746A JPS6038477B2 (en) 1977-10-24 1977-10-24 How to energize

Publications (2)

Publication Number Publication Date
JPS5461080A JPS5461080A (en) 1979-05-17
JPS6038477B2 true JPS6038477B2 (en) 1985-08-31

Family

ID=14942873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52126746A Expired JPS6038477B2 (en) 1977-10-24 1977-10-24 How to energize

Country Status (1)

Country Link
JP (1) JPS6038477B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421263Y2 (en) * 1988-03-18 1992-05-14

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4490230A (en) * 1983-03-10 1984-12-25 At&T Technologies, Inc. Electroplating apparatus
GB9219399D0 (en) * 1992-09-12 1992-10-28 Sewell Anthony J Deterrent devices for animals

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421263Y2 (en) * 1988-03-18 1992-05-14

Also Published As

Publication number Publication date
JPS5461080A (en) 1979-05-17

Similar Documents

Publication Publication Date Title
CA1156717A (en) Zinc-chlorine battery plant system and method
US4274043A (en) Efficient, high power battery module; D.C. transformers and multi-terminal D.C. power networks utilizing same
US4502000A (en) Device for balancing parallel strings
JPS62200668A (en) Battery device
US3240688A (en) Aluminum alloy electrode
SE510853C2 (en) Bipolar battery
US3099587A (en) Fuel cells
JPS6038477B2 (en) How to energize
US4251334A (en) Method and apparatus for controlled, low current start-up of one of a series of electrolytic cells
US4421614A (en) Method of bypassing electric current of electrolytic cells
CN209561547U (en) Fuel cell
JP2001043884A (en) Redox flow type secondary battery and its operation method
JPH07331474A (en) Operation control system of water electrolysis device using solar battery as power source.
JP3505116B2 (en) Method of charging sodium-sulfur battery
CN108964254A (en) A kind of alternating current and start battery power control method
Thaller et al. Electrolyte management considerations in modern nickel/hydrogen and nickel/cadmium cell and battery designs
CN208939851U (en) A kind of generating set starting storage battery protection apparatus preventing reverse connection
JPS6286667A (en) Electrolyte flowing type cell system and operating method thereof
KR102054049B1 (en) Cell voltage recovering apparatus for fuel cell and the method thereof
JP3264108B2 (en) Control method for zinc-bromine battery for power storage
JPS60148061A (en) Manufacture of sealed lead-acid battery
JPS61233974A (en) Main terminal voltage control device of fuel cell
US3573189A (en) Electrical bus bar grounding
Krauthamer Electrochemical energy storage systems for solar thermal applications
Whittlesey et al. Zinc-chlorine battery plant system and method