JPS6038396A - Preparation of 5-fluorocytidine compound - Google Patents

Preparation of 5-fluorocytidine compound

Info

Publication number
JPS6038396A
JPS6038396A JP14687883A JP14687883A JPS6038396A JP S6038396 A JPS6038396 A JP S6038396A JP 14687883 A JP14687883 A JP 14687883A JP 14687883 A JP14687883 A JP 14687883A JP S6038396 A JPS6038396 A JP S6038396A
Authority
JP
Japan
Prior art keywords
compound
fluorocytidine
formula
halogenated
give
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14687883A
Other languages
Japanese (ja)
Other versions
JPS6316397B2 (en
Inventor
Takao Takahara
高原 孝郎
Yoshisato Hisanaga
久永 順郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Daikin Kogyo Co Ltd filed Critical Daikin Industries Ltd
Priority to JP14687883A priority Critical patent/JPS6038396A/en
Publication of JPS6038396A publication Critical patent/JPS6038396A/en
Publication of JPS6316397B2 publication Critical patent/JPS6316397B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a carcinostatic agent and antiviral agent in high yield efficiently, by reacting a cytidine compound with fluorinating agent in a mixed solvent containing hydrogen fluoride and a carboxylic acid, etc. to give an intermediate, reacting it with ammonia, etc. CONSTITUTION:A cytidine compound shown by the formula I (R<1>-R<4> are H, or lower acyl) is reacted with a fluorinating agent (e.g., F2, CF3OF, etc., usually diluted in an inert gas such as N2 to 50mol% and used) in a mixed solvent of (A) hydrogen fluoride and (B) a carboxylic acid shown by the formula R<5>OH [R<5> is (halogenated)lower acyl, or halogenated lower alkyl] or a halogenated alcohol (preferably acetic acid, or trifluoroacetic acid) (preferably 5-80wt% component A, <=500ppm water content) to give a 5-fluorocytidine intermediate shown by the formula II. This compound is reacted with ammonia or an amine, to give the desired compound by the formula III.

Description

【発明の詳細な説明】 本発明は、5−フルオロシチジン化合物の製法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing 5-fluorocytidine compounds.

5−フルオロシチジン化合物、例えば式:で表わされる
5−フルオロンチジンは、抗癌剤や抗ウィルス剤として
利用されている。
5-Fluorocytidine compounds, such as 5-fluorontidine represented by the formula: are used as anticancer agents and antiviral agents.

5−フルオロシチジン化合物を合成するには、従来数反
応工程よりなる全合成によらなければならず、全反応を
通しての収率は、低いものであった。
Conventionally, the synthesis of 5-fluorocytidine compounds requires total synthesis consisting of several reaction steps, and the yield throughout the entire reaction has been low.

これを改善する目的で、シチジン化合物を種々のフッ素
化剤を用い直接フッ素化し、5−フルオロシチジン化合
物を収率よ〈合成する試みがこれまでになされてきた。
In order to improve this problem, attempts have been made to directly fluorinate cytidine compounds using various fluorinating agents to synthesize 5-fluorocytidine compounds in good yields.

例えば、特公昭55−45560号公報には、シチジン
化合物と不活性気体で稲沢したフッ素と全反応させるこ
とにより、5−フルオロシチジン化合物が製造できる旨
が開示されている。しかしながらこの製法によれば、1
〜10ミリモルのシチジン化合物をフッ素化するのに6
〜10時間も必要とし、さらに反応生成物は、シリカゲ
ルカラム等で面倒な精製を行なわなければならない。
For example, Japanese Patent Publication No. 55-45560 discloses that a 5-fluorocytidine compound can be produced by completely reacting a cytidine compound with fluorine treated with an inert gas. However, according to this manufacturing method, 1
6 to fluorinate ~10 mmol of cytidine compound.
It takes up to 10 hours, and furthermore, the reaction product must undergo troublesome purification using a silica gel column or the like.

また、上記フッ素以外のフッ素化剤を用いるシチジン化
合物の直接フツ素化方法についても上記と同様の問題を
有している。
Further, a method for directly fluorinating a cytidine compound using a fluorinating agent other than the above-mentioned fluorine also has the same problem as above.

本発明は、上記問題を解決し、効率よ〈5−フルオロシ
チジン化合物を製造する方法を提供することを目的とし
、5−フルオロシチジン化合物を製造するにあたり、(
a)シチジン化合物とフッ素化剤とを (i) フッ化水素 および (iリ カルボン酸またはハロゲン化アルコールを含有
する混合溶媒中で反応させ5−フルオロシチジン中間体
をr! 、 (b)この5−フルオロシチジン中間体と
アンモニアまたはアミンとを反応させる仁とを要旨とす
る。
The purpose of the present invention is to solve the above problems and provide a method for efficiently producing a 5-fluorocytidine compound.
a) A cytidine compound and a fluorinating agent are reacted in a mixed solvent containing (i) hydrogen fluoride and (i) a carboxylic acid or a halogenated alcohol to form a 5-fluorocytidine intermediate, (b) this 5 - A method for reacting a fluorocytidine intermediate with ammonia or an amine.

本発明の(a)工程の出発物質となるシチジン化合(式
中、R1−R4は同一または相異なり、水素または低級
アシに基を示す。) で表わされる化合物である。
The compound is a cytidine compound (wherein R1 to R4 are the same or different and represent hydrogen or a lower acyl group) and is a starting material for step (a) of the present invention.

本発明の(a)工程で用いられるフッ素化剤としては、
F2. CF30F等が例示でき、通常N2等の不活性
気体で5θモル%以下に希釈して使用する。
The fluorinating agent used in step (a) of the present invention includes:
F2. Examples include CF30F, which is usually used after being diluted with an inert gas such as N2 to a concentration of 5θ mol % or less.

本発明の(a)工程で溶媒として用いられるかMポン酸
またはへロゲン化アルコールu、一般式:(式中、R5
は低級アシル基、ハロゲン化低紙アシル基またはハロゲ
ン化低級アルキル基を示す。) で表わされる化合物で、酢酸、プロピオン酸、ト5− リフルオロ酢酸、 X (CFx ) It CHxO
H(式中、Xは水素またはフッ素、1に=1〜8を示す
。)が例示でき、好ましくは酢酸またはトリフルオロ酢
酸である。
The acid used as a solvent in step (a) of the present invention or the hydrogenated alcohol u, general formula: (wherein R5
represents a lower acyl group, a halogenated lower acyl group, or a halogenated lower alkyl group. ) Compounds represented by acetic acid, propionic acid, trifluoroacetic acid, X (CFx ) It CHxO
Examples include H (in the formula, X is hydrogen or fluorine, 1 = 1 to 8), and preferably acetic acid or trifluoroacetic acid.

本発明で用いられる溶媒の(i)フッ化水素および回カ
ルボン酸またはハロゲン化アルコールの混合割合は、特
に限定されることはないが%(i)フッ化水素が溶媒全
量に対し5〜80重量%であることが(a)工程の反応
速度を高める上で、また取り扱い上好ましく、またOi
)カルボン酸またはハロゲン化フルコールは、出発物質
であるシチジン化合物に対し等モル以上反応系内に存在
することが(a)工程の収率を高める上で好ましい。
The mixing ratio of (i) hydrogen fluoride and dicarboxylic acid or halogenated alcohol in the solvent used in the present invention is not particularly limited, but (i) hydrogen fluoride is 5 to 80% by weight based on the total amount of the solvent. % is preferable in terms of increasing the reaction rate of step (a) and in terms of handling;
) It is preferred that the carboxylic acid or halogenated furcol be present in the reaction system in an amount equal to or more than the same mole relative to the cytidine compound as the starting material in order to increase the yield of step (a).

上記溶媒(りおよび回の他、さらに通常F!等をフッ素
化剤として利用する反応に用いられている溶媒、例えば
ハロゲン化炭化水素およびニトリル類も(a)工程の共
溶媒として利用できる。
In addition to the above-mentioned solvents, solvents commonly used in reactions using F! and the like as fluorinating agents, such as halogenated hydrocarbons and nitriles, can also be used as co-solvents in step (a).

この(a)工程では、溶媒中に水分が存在すると収率が
低下する。溶媒中の水分は、溶媒に対し50〇−以下で
あることが好ましい。
In this step (a), the yield decreases if water is present in the solvent. The water content in the solvent is preferably 500° or less relative to the solvent.

6− (a)工程の反応温度は1通常室温以下、溶媒の凝固点
以上の範囲が採用される。
The reaction temperature in step 6-(a) is usually below room temperature and above the freezing point of the solvent.

(a)反応工程では、一般式: (式中、Rl、 Rsは前記と同じ。)で表わされる5
−フルオロシチジン中間体が生成する。
(a) In the reaction step, 5 represented by the general formula: (wherein Rl and Rs are the same as above)
- A fluorocytidine intermediate is formed.

シチジン化合物は、その類縁化合物のウリジン化合物と
は異なり、pg等でフッ素化する際の反応速度は、著し
く小さいものであった。
Unlike its related compound, the uridine compound, the reaction rate of the cytidine compound when fluorinated with pg or the like was extremely low.

本発明者らは1本発明の(a)工程において、フッ化水
素が溶媒中に存在すると、前記フッ素化反応の反応速度
が高められることを見い出した。
The present inventors have discovered that in step (a) of the present invention, when hydrogen fluoride is present in the solvent, the reaction rate of the fluorination reaction is increased.

この(a)工程で得られた5−フルオロシチジン中間体
は、(a)工程の溶媒と分離した後、例えば減圧下に該
溶媒を除いた後、次に(b)工程でアンモニアまたはア
ミン(1〜3級アミンのいずれも利用できる)と反応さ
せることにより、一般式:(式中、Rylは前記と同じ
。) で表わされる5−フルオロシチジン化合物に変換するこ
とができる。
The 5-fluorocytidine intermediate obtained in step (a) is separated from the solvent in step (a), for example, after removing the solvent under reduced pressure, and then in step (b), ammonia or amine ( By reacting with any of the primary to tertiary amines (any of which can be used), it can be converted to a 5-fluorocytidine compound represented by the general formula: (wherein Ryl is the same as above).

上記アンモニアまたはアミンは、通常予めメタノール等
の低級アルコールに溶解させておき、前記(−)工程で
得られた5−フルオロシチジン中間体に添加して反応さ
せる。
The above ammonia or amine is usually dissolved in a lower alcohol such as methanol in advance, and is added to the 5-fluorocytidine intermediate obtained in the (-) step to react.

この(b)工程の反応温度は、通常室温で、反応時間は
5時間以内である。
The reaction temperature in this step (b) is usually room temperature, and the reaction time is within 5 hours.

次に実施例および比較例を示し、本発明の詳細な説明す
る。実施例および比較例中の(a)および(b)はそれ
ぞれ前記(a)工程および(b)工程を擢味する。
Next, Examples and Comparative Examples will be shown to provide a detailed explanation of the present invention. (a) and (b) in Examples and Comparative Examples are based on the above-mentioned steps (a) and (b), respectively.

実施例 (a)シチジ71.21 (5m mol) をフッ化
水素15重量部および酢酸85重量部からなる溶媒25
m/に溶解しだ。この溶液を5°Cに保ち、激しく攪拌
しながらフッ素を窒素で10モル%に希釈した混合ガス
を25d/分の流速で1時間通じた。反応終了後、溶媒
を減圧下に除いた。
Example (a) 71.21 (5 mmol) of Cytidium was dissolved in solvent 25 consisting of 15 parts by weight of hydrogen fluoride and 85 parts by weight of acetic acid.
It dissolves in m/. This solution was maintained at 5° C., and a mixed gas containing fluorine diluted to 10 mol % with nitrogen was passed through the solution for 1 hour at a flow rate of 25 d/min while stirring vigorously. After the reaction was completed, the solvent was removed under reduced pressure.

(b) 上記の残渣にメタノールのアンモニア飽和溶液
をン蚕加し、1時間攪拌した。
(b) A saturated ammonia solution in methanol was added to the above residue, and the mixture was stirred for 1 hour.

次き゛にE記メタノール溶液を陰イオン交換樹脂カラム
に通した後、メタノールを室温で減圧下に除いた。
Next, the methanol solution described in E was passed through an anion exchange resin column, and then methanol was removed under reduced pressure at room temperature.

残渣をエタノールに溶解し、少量のエーテルを加え再結
晶を行い5−フルオロシチジン(融点:193°C) 
1.1 F (4,2mmol、収率84%)を得た。
Dissolve the residue in ethanol, add a small amount of ether and recrystallize to obtain 5-fluorocytidine (melting point: 193°C)
1.1 F (4.2 mmol, yield 84%) was obtained.

比較例 (a)溶媒として酢酸25 dを用いた他は、実施例と
同様の操作で反応を行った。
Comparative Example (a) A reaction was carried out in the same manner as in Example, except that 25 d of acetic acid was used as the solvent.

(b)この工程についても実施例と同様の反応を行い白
色結晶1.18gを得た。
(b) In this step, the same reaction as in Example was carried out to obtain 1.18 g of white crystals.

高速液体クロマトグラフィーで上記白色結晶を分析シた
ところ、5−フルオロシチジンの生成tはQ、13 /
/ (Q、5 tn +11o1 ) と少なく、未反
応(1) シー?9− ジンがまだ1gも残っていた。
When the above white crystals were analyzed by high performance liquid chromatography, the formation t of 5-fluorocytidine was Q, 13 /
/ (Q, 5 tn +11o1) and unreacted (1) C? 9- There was still 1g of gin left.

以上 特許出願人 ダイキン工業株式会社 10−that's all Patent applicant: Daikin Industries, Ltd. 10-

Claims (1)

【特許請求の範囲】 t(a)一般式: (式中、R1,R4は同一または相異なり水素または低
級アシル基を示す。) で表わされるシチジン化合物とフッ素化剤とを i)フッ化水素 および io一般式: (式中 R6は低級アシル基、ハロゲン化級アシル基ま
たけへロゲン化低級アル キIし基を示す。) で表わされるカルボン酸またはへロゲンアルコールを含
有する混合溶媒中で反応させ、一般式二(式中、R1−
R5は前記と同じ。) で表わされる5−フルオロシチジン中間体ヲ得 (b)この5−フルオロシチジン中間体トアンモニアま
たはアミンとを反応させることからなる一般式: (式中、R1,R4は前記と同じ。) で表わされる5−フルオロシチジン化合物の製法。
[Claims] t(a) General formula: (In the formula, R1 and R4 are the same or different and represent hydrogen or a lower acyl group.) A cytidine compound represented by the following formula and a fluorinating agent are combined into i) hydrogen fluoride. and io general formula: (wherein R6 represents a lower acyl group, a halogenated acyl group, or a halogenated lower alkyl group). and general formula 2 (wherein, R1-
R5 is the same as above. ) to obtain a 5-fluorocytidine intermediate represented by (b) the general formula consisting of reacting this 5-fluorocytidine intermediate with ammonia or an amine: (wherein R1 and R4 are the same as above). A method for producing the represented 5-fluorocytidine compound.
JP14687883A 1983-08-10 1983-08-10 Preparation of 5-fluorocytidine compound Granted JPS6038396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14687883A JPS6038396A (en) 1983-08-10 1983-08-10 Preparation of 5-fluorocytidine compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14687883A JPS6038396A (en) 1983-08-10 1983-08-10 Preparation of 5-fluorocytidine compound

Publications (2)

Publication Number Publication Date
JPS6038396A true JPS6038396A (en) 1985-02-27
JPS6316397B2 JPS6316397B2 (en) 1988-04-08

Family

ID=15417608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14687883A Granted JPS6038396A (en) 1983-08-10 1983-08-10 Preparation of 5-fluorocytidine compound

Country Status (1)

Country Link
JP (1) JPS6038396A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365188B2 (en) 2003-12-22 2008-04-29 Roche Colorado Corporation Process for producing N4-Acyl-5′-deoxy-5-fluorocytidine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7365188B2 (en) 2003-12-22 2008-04-29 Roche Colorado Corporation Process for producing N4-Acyl-5′-deoxy-5-fluorocytidine

Also Published As

Publication number Publication date
JPS6316397B2 (en) 1988-04-08

Similar Documents

Publication Publication Date Title
US4929748A (en) Method of preparing dialkyl dicarbonates
JPH05229976A (en) Production of tetrafluorobisphenol a
US5399767A (en) Process for producing 3,5-difluoraniline
JPS6038396A (en) Preparation of 5-fluorocytidine compound
EP0833811B1 (en) A process for the preparation of esters
JPH0273049A (en) Common prodoction of 3- dialkylaminopropionitrile, bis-(2-cyanoethyl) ether and, if desired, ethylene cyanohidrin
JPS6038395A (en) Preparation of 5-fluorocytidine
JPS61130299A (en) Production of 5-fluorocytidine compound hydrochloride
JPS5824430B2 (en) Method for producing fluorobenzonitrile
JP2574667B2 (en) Novel fluorinated o-diaminobenzo-1,4-dioxene
JP2002532442A (en) Selective hydrodehalogenation method
JP3503993B2 (en) Method for producing N-mono-t-butyloxycarbonylalkylenediamine
JP3061315B2 (en) Method for producing dialkyl dicarbonate
JPH03181458A (en) Production of oxiracetam
JP2000086610A (en) Production of cyanobenzamide
US3835177A (en) Process for the preparation of benzonitrile
JPH01225635A (en) Promotion of formation of amide bond from carboxylic acid and amine
JPH05279359A (en) Production of apovincaminic acid ester
JPS61205220A (en) Selective fluorination of primary alcohols
JPS63192744A (en) Production of aminoketones
JPH045263A (en) Production of quaternary ammonium salt
JPH06157430A (en) Production of amine containing perfluoroalkyl group
JPH06135856A (en) New process for producing fluorinated aromatic compound
JP2002255914A (en) Method for producing mineral acid salt of cis-4-amino-2- cyclopentenecarboxylic acid
JPH08134018A (en) Production of 3-(2-hydroxyphenoxy)propionic acid derivative