JPS6038279A - Displacement type hull structure - Google Patents

Displacement type hull structure

Info

Publication number
JPS6038279A
JPS6038279A JP59148709A JP14870984A JPS6038279A JP S6038279 A JPS6038279 A JP S6038279A JP 59148709 A JP59148709 A JP 59148709A JP 14870984 A JP14870984 A JP 14870984A JP S6038279 A JPS6038279 A JP S6038279A
Authority
JP
Japan
Prior art keywords
hull
waterline
design
length
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59148709A
Other languages
Japanese (ja)
Inventor
ロアー・ラムデ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPS6038279A publication Critical patent/JPS6038279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 び航海の特性を改善し、また船が静水又は波浪中を航行
する際に船体の梁にかかる応力を低減するのを可能とし
た排水普型の船体構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flat-displacement hull structure that improves navigational characteristics and reduces stress on the hull beams when the ship navigates in still water or waves.

設置を水線に対する長さ、幅及び深さの所定の主寸法で
、通常の船体構造は船体の水面下部分の丸みを増大する
ことによって一層大きな死重トン数を得ることができ、
かくし、て総排水量を増大する。
With the installation given the main dimensions of length, width and depth relative to the waterline, a conventional hull structure can obtain greater dead weight tonnage by increasing the roundness of the submerged part of the hull;
Thus, increasing the total drainage volume.

高い初期重心と称される普通に形成した船体の横安定性
を改良するため、船体の幅は、水線での一層大きな慣性
モーメントを得るよう増大し得、水面下の船体の容積重
心をも随童に上けることができる。
To improve the lateral stability of a conventionally formed hull, referred to as a high initial center of gravity, the width of the hull can be increased to obtain a larger moment of inertia at the waterline, which also increases the volumetric center of gravity of the hull below the waterline. Can be promoted to Zuido.

しかし乃・がら、わ!の安定性及び速度上昇の要望とし
て、この人@ζ(丸み及び幅の増加)の変更は、結局静
水並びに激しい波浪での推進に対して普通の船の抵抗は
許容し得ないtlど増大するだろう。
But no/gara, wow! As a desire for stability and increased speed, this modification (increase in roundness and width) eventually increases to such an extent that the resistance of a normal ship to propulsion in still water as well as in heavy waves becomes unacceptable. right.

横軸紗の囲りの船の角運動(ピッチング)、垂直運動(
ヒープく上下運動ン)及び静かな海における抵抗と比較
した推進抵抗の増大量と称される普通の船体構造の航行
特性を改善するため、この振動数は可能な限シ船が遭遇
する波の長さの振動数と一致しないようなピッチングと
上下揺れ(ヒービング)の船の自然振動数を変えること
を見出した。
Angular motion (pitching), vertical motion (
This frequency is designed to minimize the waves encountered by the ship to the greatest extent possible in order to improve the sailing characteristics of conventional ship structures, referred to as heave motion and increased propulsion resistance compared to the resistance in calm seas. They found that pitching and heaving change the ship's natural frequency so that it does not match the length frequency.

普通の船体構造の場合に、船の航行生性を僅かに改善す
ることとなシ、また極端なピッチングと上下揺れ、及び
推進に対する抵抗の大きな増大は、優勢な波長が喫水線
で船の長さとtlぼ等しいとき、船が波浪中を航行する
際に生じるだろう。
In the case of ordinary hull construction, a slight improvement in the ship's navigability, and extreme pitching and heaving, as well as a large increase in the resistance to propulsion, is due to the length and tl of the ship, where the dominant wavelength is at the waterline. This will occur when a ship is sailing through waves.

船のタイプ及びその速度に基き、かかる同期運動は波浪
に関して速度を低減し或はコースを変更することが通常
の船では必要であシ、かくして波の周期が船のピッチン
グと上下揺れの自然振動数と一致しないよう波との遭遇
のサイクルを変える。
Depending on the type of ship and its speed, such synchronous motion may be necessary for normal ships to reduce speed or change course with respect to the waves, so that the period of the waves is consistent with the natural oscillations of the ship's pitching and heaving. Change the cycle of wave encounters so that they do not match the numbers.

大体長方形の排水苛分布を有している通常の船体構造は
、増大する寸法の作用として曲げ及びせん断応力を受け
、これらは極めて大きな寸法の材料を必要とし、また特
別な場合には貨物及び/又はパラストの配分をも制限す
る。
Typical hull structures with a roughly rectangular displacement distribution are subject to bending and shear stresses as a function of increasing dimensions, which require extremely large dimensions of material and, in special cases, cargo and/or Or also limit the distribution of palast.

本発明によれば、死重トン数、横安定性、航行特性及び
船体の梁にかかるかなシの曲げ及びせん断応力の量が上
述した欠点をこうむることなく改良し得る。本発明は船
体を先の尖った線L/v≠の術語で表わされる通常の船
形よシも一層丸い線で作ることができ、ここでLは夏期
フリーボードに対する深さTに対応する設計水線での船
体の長さであシ、またVは設計水線での船体の排水量で
あシ、またVV1/3は通常の船形と比較した推進に対
する特別な4抵抗を増大することなく約3又は3以上で
あシ得、一方同時に船体の幅Bはt/ B比が約2又は
、2v上であシ得るように増大し得、ここでBは設計水
線での船体の最大幅であシ、かくして船体の重心の萬さ
は同じ長さの通常の船形に関して二倍以上にし得る。
According to the invention, the dead weight tonnage, lateral stability, sailing characteristics and the amount of bending and shear stresses on the beams of the hull can be improved without suffering the above-mentioned disadvantages. The present invention allows the hull to be made with a more rounded line than the usual hull shape expressed by the nomenclature of a pointed line L/v≠, where L is the design water corresponding to the depth T for summer freeboard. V is the length of the hull at the line, and V is the displacement of the hull at the design waterline, and VV1/3 is approximately 3 without increasing the extra 4 resistance to propulsion compared to the normal hull form. or 3 or more, while at the same time the width B of the hull can be increased such that the t/B ratio can be about 2 or above 2v, where B is the maximum width of the hull at the design waterline. Thus, the center of gravity of the hull can be more than doubled with respect to a normal hull shape of the same length.

波浪中を航行する通常の船形として臨界波長対船体の長
さの比で、本発明の船形の航海特性は改良され、従って
船体のピッチングと上下運動は同一の速度で航行してい
る通常の船体の運動と比較して低減され、またこれらの
運動は波長対船体の長さの比か2倍と同等以上となるま
で改良した船体は対応して大きな運動を示さないよう遅
らきれ、一方向時に改良した船体の推進に対する抵抗は
同程度に低減される。
At the ratio of critical wavelength to hull length as a normal ship shape sailing in waves, the sailing characteristics of the ship form of the present invention are improved, so that the pitching and up-and-down motion of the hull is as low as that of a normal ship sailing at the same speed. , and these movements are reduced to the extent that these movements are equal to or more than twice the wavelength-to-hull length ratio, so that a hull modified so that it does not exhibit correspondingly large movements, and these movements are slowed down so that they do not exhibit correspondingly large movements. Sometimes the resistance to propulsion of improved hulls is reduced to the same extent.

本発明によれば、縦方向における排水y分布はレーυ−
(Rayleigh ) 曲線に近づき、こえは通常の
貸物の分布にょシ普通の船体に較べて約Sθチの船体ビ
ームの縦方向面はモーメントの減少となるだろう。上述
した改善を得るため、本発明による船体形状は、船体の
111方と後方端部位置の捷わ如の端末点をもつ、直角
に切断した#l司゛調和した正弦波水WM(dwl、1
.コ、3)によって形成され、水線の基線(o dwl
−01e 02 I o3)が設置F水線(dwコ)か
らの深さの増加と共に基線がL/2で基面(g)と接線
方向となるまで前方の推進方向に次オに変移され、これ
によシ基線(o awl。
According to the present invention, the drainage y distribution in the longitudinal direction is
As the Rayleigh curve approaches, the longitudinal plane of the hull beam of approximately Sθ will result in a reduction in moment compared to a normal hull distribution. In order to obtain the above-mentioned improvements, the hull shape according to the present invention is constructed using a right angle cut #1 harmonized sinusoidal water WM (dwl, 1
.. 3) and the baseline of the water line (o dwl
-01e 02 I o3) is shifted to the next O in the forward propulsion direction as the depth from the installation F water line (dw) increases until the base line becomes tangential to the base surface (g) at L/2, In addition to this, there is a baseline (o awl).

01 * 02 * o3)を通るおおよその傾斜m1
(θ)が船体の船尾手部分で広い端末部を形成し、前記
傾斜面下方に横に位置しかつ横軸線のまゎシに固定又は
回転し得る流線形の支持面(p)が水平面内に取付けら
れ、前記支持面がその後縁部に一個以上の水平舵(h)
が随意に設けられる支持体(q)に関して水平軸線に固
定され或はこの@綜のまゎシに回転し得、また複数個の
推進ユニッ) (r)が支持面のStJ方又は後方縁部
で支持面の上方又は下方に据付けられる。
Approximate slope m1 through 01 * 02 * o3)
(θ) forms a wide end at the stern portion of the hull, and a streamlined support surface (p) located laterally below the inclined surface and capable of being fixed or rotated along the transverse axis lies within the horizontal plane. mounted on the support surface, said support surface having one or more horizontal rudders (h) on its rear edge;
(r) is fixed on a horizontal axis with respect to an optionally provided support (q) or can be rotated around this axis, and a plurality of propulsion units) (r) is the StJ side or rear edge of the support surface. installed above or below the supporting surface.

本発明によれば、船尾から約θ、 /3Lの距離で設計
水線(clwl )下方の船体形状を通る横断面は設計
水線での幅(Bl)と同じ水線がら測定した船体の深さ
くtl)との間の比率を有し、これは約3又は幅(B2
)と深さくt2)が同様に測定されるTJ/2の部分と
して対応する比率よシも大きいだろう。
According to the present invention, the cross section passing through the hull shape below the design waterline (clwl) at a distance of about θ, /3L from the stern is the depth of the hull measured from the waterline that is equal to the width (Bl) at the design waterline. width (B2), which has a ratio between approximately 3 or width (B2
) and depth t2) will also be larger than the corresponding ratios as part of TJ/2, which is similarly measured.

本発明の結果として、船体の・ぐラメータθ−〇p +
c dwlが約7又はlよシ大きく、cpが設計水m 
(d、w+ )に対する排水ivと、設計水m (6w
1)までの横断面によって伊成されがっ設計水線の長さ
Lを掛けたA−I、/2で示される前記水線の長さLの
半分を通遜する本体の容積との曲の比として表わされる
縦方向分光係数として限定され、これは弐〇 p ”−
V/A Ty’2・L によって表わし得、またcdw
lが設81水線のm積と設計水線の最大幅Bを掛けた設
側水線の最大長さLとの間の比によって表わきれる水線
係数として隊定され、こtけ式c awl −A dW
I / LBによって表わし得る。
As a result of the present invention, the hull parameter θ−〇p +
c dwl is about 7 or larger than l, cp is design water m
(d, w+) and design water m (6w
1) A-I multiplied by the length L of the designed water line by the cross section up to 1), the curve with the volume of the main body that intersects half of the length L of the water line, which is indicated by /2 is defined as the longitudinal spectral coefficient expressed as the ratio of 2〇 p ”−
It can be expressed by V/A Ty'2・L and cdw
l is determined as the water line coefficient expressed by the ratio between the m product of the designed water line and the maximum length L of the constructed water line multiplied by the maximum width B of the design water line, and the formula is c awl -A dW
It can be expressed by I/LB.

本発明の結果として、設計重心の面積重心(LOF )
はL/2の後方の約0..2Lに位置され、また船の容
積(浮力)重心(LOB )は面積1心の前方の約0.
07!;Lで設計水線(d、wl)の派さに位置され、
こむは1.cF’ −LCB = 0.075 Lとし
て表わされる。
As a result of the present invention, the design center of gravity (LOF)
is approximately 0. behind L/2. .. 2L, and the volume (buoyancy) center of gravity (LOB) of the ship is approximately 0.2L in front of the center of area.
07! ; Located at the point of the design water line (d, wl) at L,
Komu is 1. Expressed as cF'-LCB = 0.075L.

本発明による船体(14造には、船体の底部と側部との
間の変移部で船体の両(B11部に、その表面に関して
#jは垂面に取付けかつ船体の船尾端から約0.3L以
内で流線方向に取付けた、1個又はそれ以上の固定又は
可撓性の板状付加物(V)を設けられ、或は仙馴面(8
)の後方部分には縦方向に配向し、また尖った、矩形又
は波状の溝(X)が設けられ、これらの溝か約θ、3L
で終シかつナハ斜面(θ)と−j(シ、またそれらの深
さくd)は通常約Q、(/u Bである。
The hull according to the invention (14 construction) is mounted on both sides of the hull (B11) at the transition between the bottom and the sides of the hull, #j with respect to its surface is attached vertically and from the stern end of the hull to about 0. Provided with one or more fixed or flexible plate-like appendages (V) mounted streamlined within 3L or with a sacrofacial surface (8
) is provided with longitudinally oriented and pointed, rectangular or wavy grooves (X), which are approximately θ, 3L.
The slopes (θ) and -j (and their depth d) are usually about Q, (/u B).

本発明の改良された船体形状はyt、、2.、y。The improved hull shape of the present invention is yt, 2. ,y.

ダ、S、A図及び銅7図に示される。Figures D, S, A and Copper 7 are shown.

第1図は改良した船体形状の直、角に切断した、船体の
船首と船尾端のまわシに末端点をもつ設計水線(dvl
 )のまわりで(’a?¥胛和した正弦波水Milを示
し、L/2 (r、は設計水線の長さ)の後方に約0、
、!LOigi積重心(Lay )が位置され、また設
計水線の長さ対幅の比L/Bがコとして示されている。
Figure 1 shows the design waterline (DVL) of the improved hull shape, which is cut straight and squarely and has termination points around the bow and stern ends of the hull.
) around ('a?¥indicates the summed sinusoidal water Mil, approximately 0 behind L/2 (r is the length of the design water line).
,! The LOigi center of gravity (Lay) is located and the design waterline length-to-width ratio L/B is shown as .

第2図は設計水M ((iWl )下方の改良した船体
を垂直断面で示し、船の前方推進方向に変移する傾斜面
(8)に沿って直角に切断した、??i?¥調和したわ
ん曲水側’ (0”1.01,02s03 )の基線が
約L/2で基面(g)と一致し1、首だ船体の面積重心
(LOF )と浮力重心(LOB )との間の距離が設
計水線(dWI、 )の深さで約0.075’Lである
ことがこの図から判かる。
Figure 2 shows the modified hull below the design water M ((iWl) in vertical section, cut at right angles along the inclined plane (8) transitioning in the direction of forward propulsion of the ship. The base line of the curved water side'(0"1.01,02s03) coincides with the base surface (g) at approximately L/2, and is between the area center of gravity (LOF) and the buoyancy center of gravity (LOB) of the bowed hull. It can be seen from this figure that the distance is approximately 0.075'L at the depth of the design water line (dWI, ).

皺3ν!は水線dw1 、1 、2 、3及びgによる
水平投影における1、2図の改良した船体形状を示し、
この例で船体の船首端でUフレームをもつが他の周知の
フレーム形状も必要に応じて用い得る。
Wrinkles 3ν! shows the improved hull shape of Figures 1 and 2 in horizontal projection by water lines dw1, 1, 2, 3 and g,
Although this example has a U-frame at the bow end of the hull, other known frame shapes may be used as desired.

第一図と鮪3図は船尾から約0./LとL/2での断面
に対して幅と深さの独得な比率を示し、それぞれ幅と深
さはBlとB2及びtlとt2で示される。
Figure 1 and Figure 3 of Tuna are about 0.00 meters from the stern. It shows a unique ratio of width and depth for the cross-sections at /L and L/2, where the width and depth are denoted Bl and B2 and tl and t2, respectively.

m4図は基面(g)、傾斜面(8)、支持体(q)、支
持面(p)、水平舵(h)、推進ユニツ) (f)及び
垂直舵(r)をもつ船体の船尾部分における中心面付近
の垂直断面を示し、この実施例で推進ユニット(f)は
支持面(p)の前方でその下方に示されたが、推進装置
は支持面の後方又は上方にも据付は得る。
Figure m4 shows the stern of a ship with base (g), inclined surface (8), support (q), support surface (p), horizontal rudder (h), propulsion unit (f), and vertical rudder (r). In this example, the propulsion unit (f) is shown in front of and below the support surface (p), but the propulsion device may also be installed behind or above the support surface. obtain.

第S図は傾斜面(8)と平行でかつその下方の断面を示
し、支持面(p)、支持体(q)、水平舵(h)、設計
水線(dWI )の上に位置する輪郭及び推進ユニッ)
 (f)が示され、この実施例で推進ユニットは支持面
の前縁部に4個取付けられる。
FIG. and propulsion unit)
(f) is shown, in which four propulsion units are attached to the front edge of the support surface.

第6図は改良した船体形状の設計水線(dwl )を示
す。図の上半部には、傾斜面(s)に関して増付けられ
るフィン状の付加物(マ)の配置の一例が示される0図
の下半部には、傾斜面(8)の溝模様部分(X)の−例
が示される。これら両者は図に破線で示される。
FIG. 6 shows the design waterline (dwl) of the improved hull shape. In the upper half of the figure, an example of the arrangement of the fin-shaped appendages (ma) added to the inclined surface (s) is shown. In the lower half of the figure, the groove pattern part of the inclined surface (8) An example of (X) is shown. Both of these are shown in dashed lines in the figure.

第7図は傾斜面(B)の船尾部分を通る第6図のA−A
線に沿う横断面図であシ、図の左手伸には乱流制御の固
定又杖可撓件の付加物(V)が示され、また図の右手側
には縦方向に配向された溝又は隆起(X)の−例がまた
傾斜面(8)に関する溝の大体の深さくd)が示される
Figure 7 shows A-A in Figure 6 passing through the stern part of the slope (B).
A cross-sectional view taken along a line showing the turbulence control fixed or flexible appendage (V) on the left-hand side of the figure, and the longitudinally oriented groove on the right-hand side of the figure. or of a ridge (X) - the approximate depth d) of the groove with respect to the inclined surface (8) is also shown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による改良した船体形状の水線を示し、
第一図は設計水線下方の改良した船体の垂直断面図であ
シ、ぎ13図は第、−図の船体の水線の各レベルに沿う
水平投影図であシ、第4図は船体の船尾部分における垂
直断面図であシ、第S図は第4図の底面を示す図であシ
、第を図は船体傾斜部に設けられる付加物又は溝を示す
底面図であシ、また第7図は第6図のムーA線に沿う横
断面図である。 dvrl、 、 、設計水線 Oawl 、 01 s
 og I 0316.基! L、、、船体の長さ B
o、。 船体の幅 8−1111#I斜面 pol、支持部f0
0.推進ユニット Voo、付加物100.溝又は隆起 、l、!、− 手続補正書(方式)′ 昭和59年 8月13日 特許庁長官殿 1、事件の表示 昭和59年 特許願 第148709号2、発明の名称 排水量型の船体構造 3、補正をする者 事件との関係 特許出願人 住所 ノルウェー国、ホルテン、エヌー3190・ログ
ネスチェン。 氏 名 ロアー・ラムダ 4、代理人 〒105住所 東京都港区西新橋1丁目1番15号物産
ビル別館 電話(591) 0261明細書 6、補正の内容
FIG. 1 shows the waterline of the improved hull shape according to the invention,
Figure 1 is a vertical cross-sectional view of the improved hull below the design waterline, Figure 13 is a horizontal projection view along each level of the waterline of the hull in Figures 1 and 4, and Figure 4 is a vertical cross-sectional view of the improved hull below the design waterline. FIG. S is a bottom view of FIG. 4, and FIG. FIG. 7 is a cross-sectional view taken along line A in FIG. dvrl, , design waterline Oawl, 01s
og I 0316. Base! L,,,hull length B
o. Hull width 8-1111#I slope pol, support part f0
0. Propulsion unit Voo, appendage 100. Grooves or ridges, l,! , - Procedural amendment (method)' August 13, 1980 Mr. Commissioner of the Japan Patent Office 1, Indication of the case 1982 Patent Application No. 148709 2, Title of invention Displacement type hull structure 3, Person making the amendment Case Relationship with Patent Applicant Address: Rogneschen, 3190 Enu, Horten, Norway. Name: Lower Lambda 4, Agent 105 Address: Bussan Building Annex, 1-1-15 Nishi-Shinbashi, Minato-ku, Tokyo Telephone: (591) 0261 Specification 6, Contents of amendment

Claims (1)

【特許請求の範囲】 l 船体の前方と後方端部位置のまわシの端末点をもつ
、直角に切断したほぼ調和した正弦波水線によって形成
され、水線の基線(odwl、 Ol 。 02e05 )が設計水線(dwl)からの深さの増加
と共に基1fBがV2で基面(g)と接線方向となるま
で前方の推進方向に次オに変移され、これによシ基紐(
oawl、ol 02,03 )を通るおおよその傾斜
面(日)が船体の船尾手部分で広い端末部を形成し、前
記傾斜面下方に横に位置しかつ横軸線のまわシに固定又
は回転し得る支持面(p)が水平面内に取付けられ、前
記支持面にはその幅を横切って配置されかつ支持面の前
方又は後方縁部で支持面の上方又は下方に据付けられる
推進ユニッ) ’(f)が設けられることを特徴とした
排水量型の船体構造。 2 縦方向の排水量がほぼレーリー曲線上に分布される
特許請求の範囲flI/項に記載の船体構造。 3 船体のパラメータθ−Op +c dwl が約l
又はlより大きく、cpか設計水線(dWI )に対す
る排水itvと、設計水yH+ (dWl ) ’4で
の横断面によって構成されかつ設計水剤1の長さLを社
1けたAL/2で示される前記水しの長さLの半分を通
過する本体の容積との間の比として表わされる縦方向分
光係数として限定され、またO d、Wlか設il水糾
の面積と設計水線の最大幅Bを掛けた設計水線の最大長
さLとの間の比によって表わされる水線係数として限定
される特許請求の範囲&/項又は第一項に記載の船体構
造。 e 先が細くとがったa L/v”/3を表わす数が3
又は3よシ大きく、”は設計水線の長さであシ、tfC
vは船体が設計される最大深さくT)に対する設計水線
(1iW1 )下方の船体形状の排水量である特許請求
の範囲第1項に記載の船体構造。 ま 船体の最大長と、船体が設計される最大深さくT)
での水線で洞定される幅と・の間の比が約コ又はコよシ
大きい特許請求の範囲第7項に記載の船体構造。 ム 横の幅(Bl、B2)と深さくtl、t2)との間
の比が約0.5Lで測定した部分でLAで測定した部分
よシ少なくとも3倍大きく、Lは船体が設計される水線
の長さである特許請求の範囲第1項に記載の船体構造。 2 縦断面における傾斜ffi+(s)がL/2での末
端点と船体の船尾端と共にははサイン波を形成する特許
請求の範囲か1項に記載の船体構造。 g 船体の底部と一部との間の変移部で船体の両側部、
に、その表面に関してほぼ垂直に取(=jけかつ船体の
船尾端から約0.3L以内で流線方向に取付けた、1個
又はそれ以上の固定又tま可撓性の板状付加物(V)を
設けることを特徴とする特許請求の範囲第7項に記載の
船体構造。 デ 傾斜mj(的の後方部分には縦方向に配向し、また
尖った、矩形又は波状の溝(X)が設けられ、これらの
溝が約0.3Lで終シかつ傾斜面(8)と一致する特許
請求の範囲第1狛に記載Ω船体構造。
[Scope of Claims] l Formed by a substantially harmonious sinusoidal waterline cut at right angles, with terminal points of the turn at the forward and aft end positions of the hull, the baseline of the waterline (odwl, Ol. 02e05) As the depth from the design water line (dwl) increases, the base 1fB is shifted to the next O in the forward propulsion direction until it becomes tangential to the base (g) at V2, and this causes the base string (
oawl, ol 02,03) forming a broad end in the stern part of the hull, located laterally below said ramp and fixed or rotating on the transverse axis. A support surface (p) to obtain is mounted in a horizontal plane, on said support surface a propulsion unit (f) arranged across its width and mounted above or below the support surface at its front or rear edge. ) Displacement type hull structure. 2. The hull structure according to claim flI/, in which the displacement in the longitudinal direction is distributed approximately on a Rayleigh curve. 3 The hull parameter θ−Op +c dwl is approximately l
or greater than l, and is composed of cp, the drainage itv to the design water line (dWI), and the cross section at the design water yH+ (dWl) '4, and the length L of the design water agent 1 is 1 digit AL/2. It is defined as the longitudinal spectral coefficient expressed as the ratio between the volume of the body passing through half the length L of the water basin shown, and O d, Wl or the area of the designed water line and the design water line. The hull structure according to claim &/or claim 1, which is limited as a waterline coefficient expressed by the ratio between the maximum length L of the design waterline multiplied by the maximum width B. e Tapered and pointed a The number representing L/v”/3 is 3
or greater than 3, where ``is the length of the design waterline, tfC
The hull structure according to claim 1, wherein v is the displacement of the hull shape below the design waterline (1iW1) with respect to the maximum depth (T) for which the hull is designed. The maximum length of the hull and the maximum depth for which the hull is designed (T)
8. The hull structure of claim 7, wherein the ratio between the width defined at the waterline and the width at the waterline is about or greater. The ratio between the transverse width (Bl, B2) and the depth tl, t2) is approximately 0.5L and is at least three times larger than the area measured at LA, where L is the area for which the hull is designed. The hull structure according to claim 1, wherein the length of the water line is the length of the water line. 2. The hull structure according to claim 1, wherein the inclination ffi+(s) in the longitudinal section forms a sine wave between the end point at L/2 and the stern end of the hull. g. On both sides of the hull at the transition between the bottom and part of the hull,
one or more fixed or flexible plate-like appendages mounted approximately perpendicularly to the surface of the hull and streamlined within approximately 0.3L from the stern end of the hull. The hull structure according to claim 7, characterized in that (V) is provided with a slope mj (in the rear part of the target, a longitudinally oriented groove and a pointed, rectangular or wavy groove (X ), and these grooves end in approximately 0.3L and coincide with the inclined surface (8).
JP59148709A 1983-07-19 1984-07-19 Displacement type hull structure Pending JPS6038279A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO832617 1983-07-19
NO832617 1983-07-19
NO840609 1984-02-20

Publications (1)

Publication Number Publication Date
JPS6038279A true JPS6038279A (en) 1985-02-27

Family

ID=19887166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59148709A Pending JPS6038279A (en) 1983-07-19 1984-07-19 Displacement type hull structure

Country Status (1)

Country Link
JP (1) JPS6038279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913138A (en) * 1987-11-07 1990-04-03 Haruo Yoshida Adhesive bandage for personal use

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558982A (en) * 1978-06-30 1980-01-22 Mitsui Eng & Shipbuild Co Ltd Method of turning sailing of vessel at frozen sea and construction of hull

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558982A (en) * 1978-06-30 1980-01-22 Mitsui Eng & Shipbuild Co Ltd Method of turning sailing of vessel at frozen sea and construction of hull

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913138A (en) * 1987-11-07 1990-04-03 Haruo Yoshida Adhesive bandage for personal use

Similar Documents

Publication Publication Date Title
CA1198938A (en) Boat
AU693858B2 (en) Hull configuration
US5711239A (en) Propeller configuration for sinusoidal waterline ships
EP0134767B1 (en) Hull configuration
KR100806227B1 (en) Low drag submerged asymmetric displacement lifting body, watercraft including the same and watercraft hull having the same
US6112687A (en) Ship hull
JPS6038279A (en) Displacement type hull structure
US5701835A (en) Production vessel with sinusoidal waterline hull
CA2069751C (en) Boat hull
EP0268711B1 (en) Hull forms
KR20010079920A (en) Sea-going vessel and hull for sea-going vessel
WO1997024256A1 (en) Sinusoidal waterline hull configuration with skeg
WO2000007872A1 (en) Hull shape i
JP3866278B2 (en) Drainage ship with stable pitching
JP2007522032A (en) Transonic hull and transonic hydrofield (III)
JPH03186496A (en) Submerged ship hull for high speed ship
EP2842861A2 (en) Wakesurfing boat and hull for a wakesurfing boat
US4434737A (en) Displacement, planing sailboard
KR100405197B1 (en) Hull gonfiguration
WO1997024253A1 (en) Sinusoidal waterline hull configuration with bulge
US7353763B2 (en) Ship
EP0873934A2 (en) A vessel with a hull supported by totally submerged ellipsoidal floats
WO1997024255A1 (en) Oblique plane angle and froude number for hull with sinusoidal waterlines
GB2347117A (en) Production vessel with a sinusoidal waterline and a horizontally and vertically extending bulge
NZ314874A (en) Hull configuration comprises a "ramform" type with side hull bulges, stabilizing fins, a propeller or slope surface with froude number between 0.1 and 0.35