JPS6038087A - Drinking water making apparatus - Google Patents

Drinking water making apparatus

Info

Publication number
JPS6038087A
JPS6038087A JP58145167A JP14516783A JPS6038087A JP S6038087 A JPS6038087 A JP S6038087A JP 58145167 A JP58145167 A JP 58145167A JP 14516783 A JP14516783 A JP 14516783A JP S6038087 A JPS6038087 A JP S6038087A
Authority
JP
Japan
Prior art keywords
carbon dioxide
seawater
water
alkalinity
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58145167A
Other languages
Japanese (ja)
Inventor
Kazuhiro Matsumoto
和大 松本
Haruo Kuwabara
桑原 春男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP58145167A priority Critical patent/JPS6038087A/en
Publication of JPS6038087A publication Critical patent/JPS6038087A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/06Flash distillation
    • B01D3/065Multiple-effect flash distillation (more than two traps)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

PURPOSE:To sufficiently perform the dissolution of an alkali stock material into prepared water, by adding an acid to replenished seawater or recirculated brine in an evaporation type seawater desalting apparatus, and adding carbon dioxide generated in an evaporation chamber to prepared water. CONSTITUTION:After the concn. ratio of a multi-stage flash evaporation apparatus is set to 1.8 and the addition amount of sulfuric acid 28 is adjusted by a valve 29, sulfuric acid 28 is added to replenished seawater at the outlet of a degassing tower 6 or recirculated brine at the inlet of a recirculation pump 9. In this case, the addition rate of sulfuric acid is adjusted on the basis or the M- alkalinity of replenished seawater. In order to obtain a carbon dioxide amount 1.86kg-mol/hr required in adding 15ppm of M-alkalinity (on the basis of CaCO3) to prepared water, it is necessary to decompose 53% of total carbonic acid in replenished seawater. By the above mentioned method, the dissolution of an alkali stock material into prepard water can be sufficiently performed and good drinking water is obtained.

Description

【発明の詳細な説明】 本発明は蒸発式海水淡水化装置の製造水の飲料水化装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for converting water produced by an evaporative seawater desalination apparatus into drinking water.

従来の多段7ランノ一式蒸発装置における製造水の飲料
水化装置を第1図の系統図で説明する。
A system for converting produced water into drinking water in a conventional multi-stage 7-run evaporator will be explained with reference to the system diagram shown in FIG.

多段フラッジ一式蒸発装置Aは、原海水を海水供給ポン
プ1によって熱放出部2の伝熱管3に送り、熱放出部の
蒸発室の発生水蒸気と熱交換し水蒸気の方は冷却凝縮さ
れ、海水の方は加熱される。この加熱された海水の一部
は補給海水として補給海水ポンプ4を経て消泡剤5を添
加後、脱気塔6に送られ溶存酸素などのガスを脱気する
。この脱気海水にスケール抑制剤7を添加し、熱放出部
2の最終段蒸発室FLにおいて一部ブローダウンポンプ
8でブロー(ブローダウンブライン)した後の濃縮ブラ
インと混合され、循環ブラインとして循環ポンプ9を経
て熱回収部10の伝熱管11に送られる。熱回収部10
の伝熱管の循環ブラインは、熱回収部10の蒸発室で蒸
発した水蒸気を冷却、凝縮しながら加熱され、温度を高
めながら各段のコンデンザ室を経てブラインヒータ12
に送られる。ブラインヒータ12において蒸気発生装置
から送気された蒸気13によって循環プラインは所定の
温度に加熱されたのち、第1段蒸発室F1に入り遂次次
段の蒸発室に送られる。各蒸発室はエジェクター14に
よって順次最終段側がより低圧となるように減圧されて
いて、各蒸発室で発生した蒸気は伝熱管と接触して熱交
換を行ない、蒸気は凝縮して各蒸発室に設けられた凝縮
水受皿15に集められる。熱回収部10及び熱放出部2
の各蒸発室に設置された凝縮水受皿15は連通していて
、製造水ポンプ16によって飲料水化装置Bに送られる
In the multi-stage flood complete evaporator A, raw seawater is sent to the heat exchanger tube 3 of the heat release section 2 by the seawater supply pump 1, heat is exchanged with the steam generated in the evaporation chamber of the heat release section, and the water vapor is cooled and condensed. The other side is heated. A portion of this heated seawater is supplied as make-up sea water via a make-up sea water pump 4, after which an antifoaming agent 5 is added thereto, and then sent to a degassing tower 6 where gases such as dissolved oxygen are degassed. A scale inhibitor 7 is added to this deaerated seawater, and in the final stage evaporation chamber FL of the heat release section 2, it is mixed with the concentrated brine that has been partially blown with the blowdown pump 8 (blowdown brine) and circulated as circulating brine. The heat is sent to the heat transfer tube 11 of the heat recovery section 10 via the pump 9. Heat recovery section 10
The circulating brine in the heat transfer tubes is heated while cooling and condensing the evaporated water vapor in the evaporation chamber of the heat recovery section 10, and is heated while increasing the temperature through the condenser chambers of each stage to the brine heater 12.
sent to. After the circulation pline is heated to a predetermined temperature by the steam 13 sent from the steam generator in the brine heater 12, it enters the first stage evaporation chamber F1 and is successively sent to the next stage evaporation chamber. Each evaporation chamber is sequentially reduced in pressure by an ejector 14 so that the pressure on the final stage side is lower, and the steam generated in each evaporation chamber contacts the heat transfer tube to exchange heat, and the steam is condensed and sent to each evaporation chamber. The condensed water is collected in a provided condensed water tray 15. Heat recovery section 10 and heat release section 2
The condensed water receivers 15 installed in each evaporation chamber are in communication with each other, and the produced water is sent to the drinking water converting device B by a pump 16.

蒸発室のプラインは第1段から第2段、第3段と逐次次
段の蒸発室を経て熱放出部2の蒸発室に移シ濃縮され濃
縮プラインになる。そして蒸発室で発生する炭酸ガスは
、伝熱管で凝縮されなかった蒸気や蒸発室のリークエア
ーと一緒に抽気ガスとしてエジェクター14で吸引され
る。
The prine in the evaporation chamber is transferred to the evaporation chamber of the heat release section 2 through successive evaporation chambers from the first stage to the second stage and the third stage, where it is concentrated and becomes a concentrated pline. The carbon dioxide gas generated in the evaporation chamber is sucked by the ejector 14 as a bleed gas together with the steam that has not been condensed in the heat transfer tube and the leak air from the evaporation chamber.

飲料水化装置Bにおいて製造水にM−アルカリ度を添加
するだめのアルカリ原料としては通常消石灰2石灰石及
びドロマイト等があるが1本従来例ではドロマイトを用
いた場合で説明する。
The alkaline raw material used to add M-alkalinity to the produced water in the drinking water converting apparatus B usually includes slaked lime, limestone, and dolomite, but in the conventional example, dolomite is used.

ドロマイト(CaO03= 74%、 MgO= 26
%)を溶解するだめの炭酸ガス原料として、エジェクタ
−14出口の炭酸ガスを含んだ抽気ガス17を利用する
場合は、との抽気ガス17をコンプレッサー18で加圧
し製造水に注入する。また炭酸ガス菖原料を別個に設置
した炭酸ガス発生装置19から供給する場合には、所定
濃度のM−アルカリ度の反応溶解に必要な供給量をバル
ブ20で調整しながら、製造水に注入しラインミキサー
21で混合溶解させる。次に炭酸ガスを溶解した製造水
22をドロ1イトフイルター28(粒径約5印φ以下の
ドロマイトを2.0〜2.5mの高さに充填したもの)
に通し、炭酸水を炭酸カルシウムや水酸化マグネシウム
と反応させ2重炭酸カルシウム0a(HCO2)2や重
炭酸マグネシウムMg−(HCOs )2のM−アルカ
リ度を製造水に溶解させ、所定濃度のM−アルカリ度を
添加した硬水を製造し。
Dolomite (CaO03 = 74%, MgO = 26
When using the bleed gas 17 containing carbon dioxide at the outlet of the ejector 14 as the carbon dioxide raw material for dissolving %), the bleed gas 17 is pressurized by the compressor 18 and injected into the produced water. In addition, when the carbon dioxide gas raw material is supplied from a carbon dioxide gas generator 19 installed separately, it is injected into the produced water while adjusting the supply amount necessary for reaction and dissolution of M-alkalinity at a predetermined concentration with the valve 20. Mix and dissolve using the line mixer 21. Next, manufactured water 22 in which carbon dioxide gas has been dissolved is poured into a dolomite filter 28 (filled with dolomite having a particle diameter of approximately 5 marks φ or less to a height of 2.0 to 2.5 m).
The carbonated water is reacted with calcium carbonate and magnesium hydroxide to dissolve the M-alkalinity of calcium bicarbonate 0a(HCO2)2 and magnesium bicarbonate Mg-(HCOs)2 in the produced water, and to obtain a predetermined concentration of M-alkalinity. - Producing hard water with added alkalinity.

貯水タンク24に保管する。そして貯水タンクから硬水
を取り出し、所定濃度の塩素ガス01226を注入後、
水酸化ナトリウムNaOHまだは炭酸ナトリウムNa2
00327 を注入し所定のpHに調整して飲料水25
となる。
It is stored in the water storage tank 24. Then, after taking out the hard water from the water storage tank and injecting chlorine gas 01226 at a predetermined concentration,
Sodium hydroxide, NaOH, still sodium carbonate, Na2
00327 and adjusted to the specified pH to make drinking water 25
becomes.

との多段7ラノシ一式蒸発装置における薬剤添加法のア
ルカリスケール抑制効果は、海水の加熱・濃縮によって
析出する炭酸カルシウム0aO03は水酸化マグネ7ウ
ムMg (OH)2の溶解度を増加させ、その析出を抑
制することが主な効果である。己かし炭酸塩物質である
重炭酸イオンHOOiや炭酸イオンC司−は、 (1)
、’ (2)の反応によって炭酸ガスao2を生成し、
蒸気と共に気相中に炭酸ガスを発生する。
The alkali scale suppression effect of the chemical addition method in a multi-stage 7-ranoshi complete evaporator is that calcium carbonate 0aO03, which is precipitated by heating and concentrating seawater, increases the solubility of magnesium hydroxide Mg(OH)2, and suppresses its precipitation. The main effect is suppression. The bicarbonate ion HOOi and carbonate ion C, which are self-containing carbonate substances, are (1)
, ' Generate carbon dioxide ao2 by the reaction of (2),
Generates carbon dioxide gas in the gas phase along with steam.

↑ 2HCO−3→CO3+C02+H20(1)00%−
+H20→co21+ 20H−(2)この炭酸ガスの
発生を補給海水に含まれる全炭酸(nCo; +ccも
−)を基準に、(3)式のように炭酸ガス発生率として
めると、プライン最高温度(TMAx)や(4)式の濃
縮比によって変化し2通常多段フラノシ一式蒸発装置の
運転においては。
↑ 2HCO-3→CO3+C02+H20(1)00%-
+H20→co21+ 20H- (2) If we calculate this carbon dioxide generation as the carbon dioxide generation rate as shown in equation (3) based on the total carbon dioxide (nCo; +cc is also -) contained in the make-up seawater, then the prine maximum It changes depending on the temperature (TMAx) and the concentration ratio of equation (4), and in the operation of a two-stage, usually multi-stage flannel type evaporator.

第2図に示すような炭酸ガス発生率の特性を示している
The characteristics of carbon dioxide generation rate are shown in FIG.

なお標準海水に近い次の水質 塩素イオン(CI−) = 18000 ppmM−ア
ルカリ度 = 120 /7 (asoao03)pH
= 8.2(aも25℃) 密 度 = 1.02(/7 ) において全炭酸濃度を測定すると+ HOOi + 0
OS−= 2.16mol / rrtであった。それ
に対して飲料水化装置における製造水へのM−アルカリ
度の添加は1通常M−アルカリ度の添加濃度の範囲が5
 (1−150ppm(ascia003)であり、ア
ルカリ原料として消石灰1石灰石及びドロマイトが使用
されている。これらのアルカリ原料と炭酸ガスの反応は
次の通りである。
The following water quality is close to standard seawater: Chlorine ion (CI-) = 18000 ppmM-Alkalinity = 120/7 (asoao03) pH
= 8.2 (a is also 25℃) When measuring the total carbonic acid concentration at density = 1.02 (/7), + HOOi + 0
OS-=2.16 mol/rrt. On the other hand, in the case of adding M-alkalinity to manufactured water in drinking water production equipment, the concentration range of M-alkalinity added is usually 15.
(1-150 ppm (ascia003)), and slaked lime 1 limestone and dolomite are used as alkaline raw materials.The reaction between these alkaline raw materials and carbon dioxide gas is as follows.

消石灰 Oa (OH)2 +2 C!02 →Oa (H2O
2)2 ’ (5)石灰石 0aCO3+ 002十[20−* Ca (HCO3
)2 ((1)ドロマイト(Ca003 = 74%、
 MgO= 26%)CaO03+002+ H2O−
+0a(IIO03)2 (7)MgO+ 2002+
 H20→Mg (aco3 )2(8)ここで多段フ
ラッシュ式蒸発装置の計画条件として、補給海水量= 
1500醒/h、濃縮比=18゜プライン最高温度=9
0℃又は112℃に設定し。
Slaked lime Oa (OH)2 +2 C! 02 →Oa (H2O
2) 2' (5) Limestone 0aCO3+ 002 ten [20-* Ca (HCO3
)2 ((1) Dolomite (Ca003 = 74%,
MgO = 26%) CaO03+002+ H2O-
+0a(IIO03)2 (7)MgO+ 2002+
H20→Mg (aco3)2(8) Here, as a planning condition for the multi-stage flash evaporator, the amount of make-up seawater =
1500 awakenings/h, concentration ratio = 18°, maximum prine temperature = 9
Set to 0℃ or 112℃.

製造水量と炭酸ガス発生量を計算すると次表の通りにな
った。なお炭酸ガス発生率は第2図からめた。
The amount of water produced and the amount of carbon dioxide gas generated were calculated as shown in the table below. The carbon dioxide generation rate was determined from Figure 2.

飲料水化装置においてアルカリ原料にドロマイト(Oa
 003 = 74%、Mg0=26%)を用い、この
製造水G 67 nf / IIK M−アルカリ度を
150 ppm(as Ca00a)を添加する場合、
炭酸ガスの理論量は次の通りになる。
Dolomite (Oa) is used as an alkaline raw material in drinking water production equipment.
003 = 74%, Mg0 = 26%), and when adding this produced water G 67 nf / IIK M-alkalinity to 150 ppm (as Ca00a),
The theoretical amount of carbon dioxide gas is as follows.

Oa (II−T、CO3)2+Mg (uco3)2
 = 15’Opp (aa 0aO03)= 1.5
mo l/r& (as Ca003 )ただし硬水の
密度は1.00とする。
Oa (II-T, CO3)2+Mg (uco3)2
= 15'Opp (aa 0aO03) = 1.5
mol/r& (as Ca003) However, the density of hard water is assumed to be 1.00.

X 1.5mo l/n?X’667n?/bX 10
−” = 0.588kg−mo l/hX 1.5m
o l/rr?X 667m/ b X 10−” =
 0.984kg−mo I/hただし100はCaO
03、40はMgOの分子量である。
X 1.5mol/n? X'667n? /bX 10
-” = 0.588kg-mol/hX 1.5m
o l/rr? X 667m/ b X 10-” =
0.984kg-mo I/h However, 100 is CaO
03 and 40 are the molecular weights of MgO.

Oa 003 十MgOに対するco2反応量= 0.
588kg−mo l/h十0.9 F! 4kg−m
o I/h = 1.467kg mo l/h炭酸ガ
スを溶解した製造水をドロマイトフィルターに通し1M
−アルカリ度= 150 ppm(asoa003)溶
解するだめには、炭酸ガス量は理論量の約1.2倍程度
を必要とするので、炭酸ガスの必要量は1.467kg
−mol/h X 1.2 = 1.760kg−mo
l/b−となる。従って蒸発室で発生する炭酸ガス量で
は次のように不足する。
Oa 003 10 Co2 reaction amount for MgO = 0.
588 kg-mol/h 10.9 F! 4kg-m
o I/h = 1.467 kg mol/h Manufactured water in which carbon dioxide gas was dissolved was passed through a dolomite filter to 1M
-Alkalinity = 150 ppm (asoa003) To dissolve, the amount of carbon dioxide gas is required to be approximately 1.2 times the theoretical amount, so the required amount of carbon dioxide gas is 1.467 kg.
-mol/h x 1.2 = 1.760kg-mo
l/b-. Therefore, the amount of carbon dioxide gas generated in the evaporation chamber is insufficient as follows.

TMAx90℃のcoz不足量= 1.76 okg−
mol/h−” 1.00kg−mol/h二0.76
kg mol/h TMAX]12℃のco2不足量= 1.760kg 
mol/b−138kg−mol/It= 0.481
(g−mol/h よって、従来装置では、炭酸ガスの不足量を他の炭酸ガ
ス発生装置から補給しなければなら々い不具合があった
coz deficiency at TMAx90℃ = 1.76 okg-
mol/h-” 1.00kg-mol/h20.76
kg mol/h TMAX] CO2 deficiency at 12°C = 1.760 kg
mol/b-138kg-mol/It=0.481
(g-mol/h) Therefore, in the conventional device, there was a serious problem in that the insufficient amount of carbon dioxide gas had to be replenished from another carbon dioxide gas generating device.

そこで本発明は、飲料水化の際に製造水に添加するM−
アルカリ度に必要な炭酸ガスを、全て蒸発式海水淡水化
装置の蒸発室から発生する炭酸ガスで補なうことが出来
る飲料水化装置を提案するものである。つまり酸、(流
酸丑たは塩酸)を淡水化装置の補給海水か捷たけ循環プ
ライン(好ましくは循環ポンプ入口の循環プライン)に
添加し、(9)及びθり式の反応のように1M−アルカ
リ度を分解させ炭酸H2CO3を生成させる。
Therefore, the present invention aims at adding M-
The present invention proposes a drinking water desalination device that can completely supplement the carbon dioxide gas required for alkalinity with the carbon dioxide gas generated from the evaporation chamber of the evaporative seawater desalination device. In other words, acid (hydrochloric acid or hydrochloric acid) is added to the make-up seawater of the desalination equipment or to the circulation line (preferably the circulation line at the inlet of the circulation pump), and 1M - Decomposes alkalinity to produce carbonic acid H2CO3.

M’003+ H2so4→MSO4+■2CO3(9
)M(HCi03 )2 + I(2804→M多o4
+ 2 H2CO3θQH2003十〇OS−→2 )
Ioo、−0υこの炭酸は前回収部伝熱管内の循環プラ
インに多量に含まれる炭酸イオンC′司−と0υ式のよ
うに反応して重炭酸イオンH,co、、”に変化するが
、この循環プラインが蒸発室に入ると重炭酸イオンは(
1)式の反応によって炭酸ガスを発生する。このように
酸添加によって発生する炭酸ガス量は。
M'003+ H2so4→MSO4+■2CO3(9
)M(HCi03)2+I(2804→Mtao4
+ 2 H2CO3θQH200310OS-→2)
Ioo, -0υ This carbonic acid reacts with the carbonate ions C' - contained in large quantities in the circulation line in the heat exchanger tube of the pre-recovery section, as shown in the 0υ equation, and changes into bicarbonate ions H,co,,''. When this circulation line enters the evaporation chamber, bicarbonate ions (
1) Carbon dioxide gas is generated by the reaction of formula. In this way, the amount of carbon dioxide gas generated by adding acid is

酸の添加量に対して一定の関係にあるので、第2図に示
す炭酸ガス発生率以上の領域においては、酸の添加量に
よって炭酸ガス発生量をコントロールすることが可能で
ちる。
Since there is a fixed relationship with the amount of acid added, it is possible to control the amount of carbon dioxide gas generated by changing the amount of acid added in the range of the carbon dioxide gas generation rate shown in FIG. 2 or higher.

以下、第3図(図中第1図と同符号で示すものは同様の
ものであることを示す)に示す系統図をもとに本発明の
1実施例を説明する。多段フラッシュ式蒸発装置の濃縮
比を18に設定し。
Hereinafter, one embodiment of the present invention will be described based on the system diagram shown in FIG. 3 (in the figure, the same reference numerals as in FIG. 1 indicate the same items). The concentration ratio of the multi-stage flash evaporator was set to 18.

硫酸28の添加量をバルブ29で調整したのち。After adjusting the amount of sulfuric acid 28 added with valve 29.

脱気塔6出口の補給海水かまたは循環ポンプ9人口の循
環プラインに添加する。なお、硫酸28の添加率は02
式のように、補給海水のM−アルカリ度をベースに調整
すればよい。
It is added to the make-up seawater at the outlet of the degassing tower 6 or to the circulation line of the circulation pump 9. In addition, the addition rate of sulfuric acid 28 is 02
As shown in the formula, it can be adjusted based on the M-alkalinity of the make-up seawater.

Xl、00QJ その結果、硫酸28の添加率に対する炭酸ガスの発生率
は、第4図に示すような現象が現われた。
Xl, 00QJ As a result, the phenomenon shown in FIG. 4 appeared regarding the rate of carbon dioxide gas generation relative to the addition rate of sulfuric acid 28.

製造水にM−アルカリ度を150 ppm(as 0a
O03)添加するに必要な炭酸ガス量1.86 kg−
mol/hを得るだめには2次のように補給海水中の全
炭酸を53%分解する必要がある。
M-alkalinity was added to the produced water at 150 ppm (as 0a
O03) Amount of carbon dioxide required to add 1.86 kg-
In order to obtain mol/h, it is necessary to decompose 53% of the total carbonic acid in the supplementary seawater as shown in the second order.

補給海水の全炭酸量= 1500ff?/hX2.16
mol/nfX 10コ= 8J 5kg−mol/h 第4図から補給海水の全炭酸を53%分解するために必
要な硫酸添加率をめると、プライン最高温度(TMAX
)が90℃の場合45%、112℃の場合25%である
Total carbon dioxide content of make-up seawater = 1500ff? /hX2.16
mol/nf
) is 45% at 90°C and 25% at 112°C.

以上、述べたように本発明は、蒸発式海水淡水化装置に
おける補給海水又は循環ブラインに酸を添加し、蒸発室
で発生する炭酸ガスを製造水に添加することを要旨とす
るものである。酸の添加によって炭酸ガ伐を十分に得る
ことができ、この炭酸ガスを製造水に添加すれば製造水
へのアルカリ原料の溶解が十分に行い得、良好な飲料水
が得られる。よって、従来のように炭酸ガスの不足量を
他の炭酸ガス発生装置から補給しなくてもよい。
As described above, the gist of the present invention is to add an acid to make-up seawater or circulating brine in an evaporative seawater desalination apparatus, and to add carbon dioxide gas generated in an evaporation chamber to produced water. By adding an acid, sufficient carbon dioxide gas can be obtained, and by adding this carbon dioxide gas to the produced water, the alkaline raw material can be sufficiently dissolved in the produced water, and good drinking water can be obtained. Therefore, there is no need to replenish the insufficient amount of carbon dioxide gas from another carbon dioxide gas generating device as in the conventional case.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の飲料水化装置の系統図、第2図は濃縮比
に対する炭酸ガスの発生率を示すグラフ、第3図は本発
明による飲料水化装置の系統図、第4図は硫酸添加率に
対する炭酸ガスの発生率を示すグラフである。 28・・・硫酸、29・・・バルブ、14・・・エジェ
クターt17・・・抽気カス、18・・・コンプレッサ
ー。
Fig. 1 is a system diagram of a conventional drinking water conversion device, Fig. 2 is a graph showing the carbon dioxide generation rate with respect to concentration ratio, Fig. 3 is a system diagram of a drinking water conversion device according to the present invention, and Fig. 4 is a sulfuric acid It is a graph showing the generation rate of carbon dioxide gas with respect to the addition rate. 28...Sulfuric acid, 29...Valve, 14...Ejector t17...Bleed gas residue, 18...Compressor.

Claims (1)

【特許請求の範囲】[Claims] 蒸発式海水淡水化装置における補給海水又は循環ブライ
ンに酸を添加し、蒸発室で発生する炭酸ガスを製造水に
添加することを特徴とする飲料水化装置。
A drinking water desalination device characterized in that an acid is added to make-up seawater or circulating brine in an evaporative seawater desalination device, and carbon dioxide gas generated in an evaporation chamber is added to produced water.
JP58145167A 1983-08-09 1983-08-09 Drinking water making apparatus Pending JPS6038087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58145167A JPS6038087A (en) 1983-08-09 1983-08-09 Drinking water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58145167A JPS6038087A (en) 1983-08-09 1983-08-09 Drinking water making apparatus

Publications (1)

Publication Number Publication Date
JPS6038087A true JPS6038087A (en) 1985-02-27

Family

ID=15378975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58145167A Pending JPS6038087A (en) 1983-08-09 1983-08-09 Drinking water making apparatus

Country Status (1)

Country Link
JP (1) JPS6038087A (en)

Similar Documents

Publication Publication Date Title
US8052763B2 (en) Method for removing dissolved solids from aqueous waste streams
US4444675A (en) Alkaline scale abatement
US3627479A (en) Chemical-electro-chemical cycle for desalination of water
JP2008272668A (en) Water producing apparatus and water producing method
US8623316B2 (en) Combined solid waste, carbon dioxide quicklime sparging, brine water, and reverse osmosis/ion exchange processes for the production of soda chemicals
JP2023525640A (en) Systems and Processes for Direct Lithium Extraction and Production of Low Carbon Intensity Lithium Chemicals from Geothermal Brine
CN100556811C (en) A kind of production method of low-salt dense soda ash and the system that produces low-salt dense soda ash thereof
JPS6038087A (en) Drinking water making apparatus
Al-Rqobah A recarbonation process for treatment of distilled water produced by MSF plants in Kuwait
JP7313002B2 (en) Carbon dioxide fixation method
WO2019192173A1 (en) Acid generation energy recovery device and method for so3-containing gas
JPS59102492A (en) Method for preventing deposition of scale in evaporation type seawater desalination apparatus
WO2006048933A1 (en) Method of preventing alkali scale deposition in brine circulation type seawater desalination plant
JPS59222289A (en) Method for suppressing scale in heat transmitting pipe of multi-stage flash type water making device
JP2022021862A (en) Method for producing carbonate of group ii element and carbon dioxide immobilization system
JPS60143894A (en) Post-treatment of distilled water
CN218811116U (en) Industrial wastewater treatment system
JPS62262791A (en) Method for forming potable water from fresh water formed by evaporation type sea water desalting device
US20230382754A1 (en) Simultaneous CO2 Capture, Mineralization, and Lithium and Other Metal Extraction from Brine
JP7493339B2 (en) Magnesium chloride production system and magnesium production system
US3984518A (en) Process feed and effluent treatment systems
JPS60161796A (en) Post-treatment of distilled water
JPS6025586A (en) Post-treatment of distilled water
JPS60206489A (en) Method and apparatus for post-treatment of prepared fresh water
JPS60219543A (en) Apparatus for evaluating and testing capacity of scale inhibitor