JPS6037652A - Electrolyte circulation type concentric battery - Google Patents

Electrolyte circulation type concentric battery

Info

Publication number
JPS6037652A
JPS6037652A JP58147229A JP14722983A JPS6037652A JP S6037652 A JPS6037652 A JP S6037652A JP 58147229 A JP58147229 A JP 58147229A JP 14722983 A JP14722983 A JP 14722983A JP S6037652 A JPS6037652 A JP S6037652A
Authority
JP
Japan
Prior art keywords
electrolyte
piping
enlarged diameter
pipe
diameter part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58147229A
Other languages
Japanese (ja)
Inventor
Takeshi Nozaki
健 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58147229A priority Critical patent/JPS6037652A/en
Publication of JPS6037652A publication Critical patent/JPS6037652A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

PURPOSE:To evenly distribute electrolyte to each electrolytic cell by forming the enlarged diameter part at the center of electrolyte supply piping or of exhaust piping while forming an electrolyte flowing-in port or a flowing-out port. CONSTITUTION:Positive pole liquid of the main pipe 29 for supplying positive pole liquid flows into the inside of the enlarged diameter part 31a from a flowing-in port 31b provided at the center of the enlarged diameter part 31a for being supplied to the piping parts 31c and 31c having the small pipe diameter near both ends from the enlarged diameter part 31a so as not to generate large fluid pressure even on the small piping parts 31c and 31c of the pipe while accordingly generating no large shunt loss inside the piping 31 thus being able to evenly supply the positive pole liquid supplied to the supply piping 31 to the respective positive pole liquid chambers 22,... of the respective electrolytic cells 21a-21n through each branch pipe. The same is with the piping for supplying the negative pole liquid. Further, the enlarged diameter part may be formed at the center of the piping for exhausting the positive pole liquid as well as of the piping for exhausting the negative pole liquid while providing the flowing-out port of electrolyte at the center of the enlarged diameter part.

Description

【発明の詳細な説明】 できるようにした例えば、レドックス・フルー型集合電
池等の電解液流通型集合電池の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an electrolyte flow type assembled battery, such as a redox flue type assembled battery, which is made possible to do so.

電力は各種のエネルギーへの変換が容易で制御し易く、
消費時の環境汚染がないので、エネルギー消費に占める
割合は年毎に増加している。
Electric power is easy to convert into various types of energy and easy to control.
Since there is no environmental pollution during consumption, the proportion of energy consumption is increasing every year.

電力供給の特異な点は、生産と消費が同時に行われるこ
とである。この制約の中で、電力消費の変動に即応しな
がら、一定周波数、一定電圧の質の高い電力を高い信頼
性で送ることが、電力技術の環境である。そして実際に
は、出力は変えにくいが効率の高い原子力発電や新鋭火
力発電を、方るべく最高効率の定格で運転し、−力覚力
消費の変動に応じて発電を行うのに適した水力発電等で
、昼間の大きな電力需要の増加をまかなっている現状で
ある。
A unique feature of electricity supply is that production and consumption occur simultaneously. Within this constraint, the environment for power technology is to reliably transmit high-quality power at a constant frequency and constant voltage while responding quickly to fluctuations in power consumption. In reality, nuclear power generation and new thermal power generation, whose output is difficult to change but are highly efficient, are operated at the highest efficiency rating, and hydropower is suitable for generating power in response to fluctuations in kinesthetic power consumption. Currently, the large increase in demand for electricity during the daytime is met through power generation and other means.

このため、経済性の良好な原子力発電や新鋭火力発電に
よる夜間余剰電力を揚水発電によって貯蔵しているが、
揚水発電の立地条件は次第に厳しくなっている。
For this reason, pumped storage power generation is used to store surplus electricity at night from economically viable nuclear power generation and cutting-edge thermal power generation.
Location conditions for pumped storage power generation are becoming increasingly difficult.

以上のような実情から環境汚染がなく、シかモ汎用性の
高いエネルギーである電力を貯蔵する方法として各種の
2次電池が研究され、この中でも特にレドックス電池が
注目されている。
In view of the above-mentioned circumstances, various types of secondary batteries are being researched as a method of storing electricity, which is a highly versatile energy without environmental pollution, and among these, redox batteries are attracting particular attention.

この原理の概要について、第1図、第2図を用いて説明
する。
An outline of this principle will be explained using FIG. 1 and FIG. 2.

第1図はレドックス電池を用いた電力貯蔵システムの充
電時の状態を示し、第2図は同じく放電時の状態を示す
FIG. 1 shows a charging state of a power storage system using a redox battery, and FIG. 2 similarly shows a discharging state.

これらの図において、lは発電所、コは変電設備、3は
負荷、グはインバータ、Sはレドックス電池で、タンク
6αr’by7(L+7bとポンプK。
In these figures, l is the power plant, C is the substation equipment, 3 is the load, G is the inverter, S is the redox battery, and the tank 6αr'by7 (L+7b and pump K).

?および流通型電解槽10から構成される。? and a flow-through type electrolytic cell 10.

流通型電解槽IOは正極//と負極/コ、および両電極
間を分離する隔膜13とを備え、隔膜/3で仕切られた
左右の室内には正極液/l/−1負極液15が収容され
、正極液/11.とじては例えばpcイオンを含む塩酸
溶液が用いられ、負極液/Sとしては例えばqイオンを
含む塩酸溶液が用いられる。
The flow-through electrolytic cell IO is equipped with a positive electrode//, a negative electrode/co, and a diaphragm 13 that separates both electrodes, and the left and right chambers separated by the diaphragm/3 contain a cathode solution/l/-1 anode solution 15. The catholyte/11. For example, a hydrochloric acid solution containing PC ions is used for closing, and for example, a hydrochloric acid solution containing q ions is used for the negative electrode solution/S.

以上の構成において発電所/で発電された変電設備コに
送電された電力は適当な電圧に変圧され、負荷3に供給
される。
In the above configuration, the power generated at the power station/transformer equipment is transformed to an appropriate voltage and supplied to the load 3.

一方、夜間になシ余剰電力が出ると、インバータlによ
り夕直変換を行い、レドックス電池5に充電が行われる
。この場合は、第1図に示すようにタンクAbから6α
へ、タンク7aからりbヘボングg、デで正、負極液/
lI、l!を徐々に送りながら充電が行われる。正極液
/qにFeイオン、負極液/!rにCτイオンを使用す
る場合、流通型電解槽IO内で起る反応は下記箱(1)
〜(3)式中の充電側の反応となる。
On the other hand, when surplus power is generated at night, the inverter 1 performs evening direct conversion and charges the redox battery 5. In this case, 6α from tank Ab as shown in Figure 1.
To, tank 7a, b, hebong, g, positive, negative electrode liquid/
lI, l! Charging is performed while gradually sending Fe ions in positive electrode solution/q, negative electrode solution/! When using Cτ ions for r, the reactions that occur in the flow-through electrolytic cell IO are shown in box (1) below.
This is the reaction on the charging side in equation (3).

このようにして、電力が正極液/l11負極液/Sの中
に蓄積される。
In this way, power is stored in the catholyte/l11 anode/S.

次に、供給電力が需要電力よりも少ない場合は、第2図
に示すようにタンクtαから6bへ、タンク7bからり
αヘボンプg、?で正、負極fttlI。
Next, if the supplied power is less than the demanded power, as shown in FIG. positive and negative poles fttlI.

/Sを徐々に送りながら(1)〜(3)式中の放電側の
反応によシ放電が行われ、インバータqにより直交変換
が行われ、変電設備λを介して負荷3に電力が供給され
る。
/S is gradually fed, a discharge is performed by the reaction on the discharge side in equations (1) to (3), orthogonal conversion is performed by inverter q, and power is supplied to load 3 via substation equipment λ. be done.

レドックス電池を用いた電力貯蔵システムは以上の説明
の通シであるが、実際には上記のレドックス・フロー型
電池は複数個のセルを直列接続して集合電池とし、この
集合電池をまた複数個直列および/または並列接続する
ことによシ、所要の電圧で、かつ所要の容ぢ−のものを
得ている。
The above explanation is a common explanation for power storage systems using redox batteries, but in reality, the redox flow type batteries described above are made by connecting multiple cells in series to form an aggregate battery, and this aggregate battery is then combined into multiple batteries. By connecting in series and/or in parallel, the required voltage and the required capacity can be obtained.

ところで、このような集合電池の流通型電解槽の問題点
社、 (1)各セルの特性が等しいこと。そのためには各セル
の電解液供給量が等しい必要がある。
By the way, the problems with flow-through type electrolyzers for such assembled batteries are: (1) The characteristics of each cell are the same. For this purpose, the amount of electrolyte supplied to each cell must be equal.

(2)直流制電圧設計にすること。そのためには主配管
を集合電池の接地側に接続する必要がおる。主配管が接
地されていないと、タンク、ポンプなどの腐食防止、直
流絶縁などが困難になる。
(2) Use a DC voltage control design. To do this, it is necessary to connect the main pipe to the ground side of the battery pack. If the main piping is not grounded, it will be difficult to prevent corrosion and direct current insulation of tanks, pumps, etc.

(3)電解液を流動させるポンプ動力を小さくすること
(3) Reduce the power of the pump that flows the electrolyte.

(4) シャントロスを抑制すること。等におる。(4) Suppress chantrosity. etc.

ところが、従来のレドックス・フロー型集合電池の構造
では(1)〜(4)の要件を全て満足するようなものは
見出されていない。
However, no conventional redox flow type assembled battery structure has been found that satisfies all of the requirements (1) to (4).

そこで、本願発明者等は先に、下記のようなレドックス
・フロー型電池の配管方法を提案した(%願昭56−6
5654号)。
Therefore, the inventors of the present application first proposed the piping method for redox flow batteries as described below.
No. 5654).

これを第3図に従って説明すると、20に、20Bは流
通mN解槽ユlα〜コ/nのn個から構成される一対の
集合電池で、各流通型電解槽コ/a〜−/nは各々正極
液室ココと負極液室コ3、および画室を仕切る隔膜2ダ
と、更に正極液室−2内には正極2左、負極液室コ3内
には負極、2乙とを有する。
To explain this according to FIG. 3, 20 and 20B are a pair of assembled batteries composed of n pieces of circulating electrolytic cells lα~ko/n, and each flow type electrolytic cell ko/a~-/n is Each of them has a positive electrode liquid chamber (here), a negative electrode liquid chamber (3), a diaphragm (2) which partitions the compartments, and a positive electrode (2) left in the positive electrode liquid chamber (2), and a negative electrode (2) in the negative electrode liquid chamber (3).

彦お集合電池:lOAと20Bはこの実施例ではそれぞ
れ対応する流通型電解槽、21a、〜”n121(L〜
2/、を対向させて配置され、且つ集合電池JoAと2
0Bで構成される集合電池の一端は負極端子コクとして
接地され、また他端は正極端子バとする。
Hiko's collective battery: In this example, lOA and 20B are the corresponding flow-through electrolytic cells, 21a, ~"n121 (L~
2/, are arranged facing each other, and the assembled batteries JoA and 2
One end of the battery assembly composed of 0B is grounded as a negative terminal, and the other end is a positive terminal.

一方コ9,30は負極端子、27側に設けられた正極液
供給主配管と正極液排出主配管、3/、32は上記各流
通型電解槽ユlα〜、2/?L、 2/a−2Inの正
極液供給配管、l?J、Jダは上記各流通型電解槽、2
/a〜ユ/n、、21α〜コ/nの正極液排出配管であ
る。
On the other hand, 9 and 30 are negative electrode terminals, the main cathode liquid supply pipe and the main cathode liquid discharge pipe provided on the 27 side, and 3/ and 32 are the respective flow-through type electrolytic cells lα~, 2/? L, 2/a-2In positive electrode liquid supply piping, l? J, Jda are each of the above flow-type electrolytic cells, 2
/a~Y/n, , 21α~Co/n positive electrode liquid discharge piping.

正極液供給配管J/と3コは高電圧側p、 、 pfで
接続されるとともに、正極供給配管3/の接地側は正極
液供給主配管29に接続される。更に、正極液排出配管
、j3 、31Iはそれぞれ高電圧側Pt、P’sで接
続され、正極液排出配管31Iの接地側は正極排出主配
管30に接続する。
The positive electrode supply pipes J/ and 3 are connected at high voltage sides p, , pf, and the ground side of the positive electrode supply pipe 3/ is connected to the main positive electrode supply pipe 29. Further, the cathode liquid discharge pipes j3 and 31I are connected at the high voltage sides Pt and P's, respectively, and the ground side of the cathode liquid discharge pipe 31I is connected to the main cathode discharge pipe 30.

また3!;、、3Aは正極液供給配管啄、正極液排出主
配管30と同様に、負極端子27側に設けられた負極液
供給主配管と負極液排出主配管、37゜3gは上記各流
通型電解槽2/α〜コ/n、 ユ/(Z−コ/71の負
極液供給配管、39.QOは上記各流通型電解槽21α
〜21n、 21α〜21fLの負極液排出配管である
3 again! ;,, 3A is the positive electrode liquid supply pipe, the negative electrode liquid main pipe and the negative electrode liquid discharge main pipe provided on the negative electrode terminal 27 side, similar to the positive electrode liquid discharge main pipe 30; 37°3g is the above-mentioned flow type electrolytic Tank 2/α ~ Co/n, U/(Z-co/71 negative electrode liquid supply piping, 39.QO is each flow type electrolytic cell 21α above
~21n, 21α~21fL negative electrode liquid discharge piping.

負極液側も同様にして、負極液供給配管39゜41oが
高圧側で接続され、負極液供給配管3デは負極液供給主
配管33に接続される。また負極液排出配管J9 、 
lIOは高電圧側で接続され、負極液排出配管qoの接
地側は負極液排出主配管36に接続される。
Similarly, on the negative electrode liquid side, the negative electrode liquid supply pipe 39°41o is connected on the high pressure side, and the negative electrode liquid supply pipe 3de is connected to the negative electrode liquid supply main pipe 33. Also, negative electrode liquid discharge pipe J9,
lIO is connected on the high voltage side, and the ground side of the negative electrode liquid discharge pipe qo is connected to the negative electrode liquid discharge main pipe 36.

このように、2個の集合電池、ZOA、IOBを組合せ
て配管すると、それぞれの集合電池20A、−〇Bにお
ける各流通型電解槽21α〜コlrL、、コ/a〜コi
nの正、負極液の供給、排出側配管の長さを等しくでき
、しかも各主配管−タ、3θ、36.8への各配管3/
、3λ、 3.3 、 Jケ、8.3&、39,110
の接続を接地側で実施できるため、各セルの特性を等し
く、且つ直流耐電圧設計にすることができる。
In this way, when two battery packs, ZOA, and IOB are combined and piped, each flow-type electrolytic cell 21α to col lrL, ko/a to coi in each battery pack 20A, -0B is connected.
The lengths of the supply and discharge side piping for the positive and negative electrode liquids of n can be made equal, and the lengths of each main piping to ta, 3θ, and 36.8 can be made equal.
,3λ,3.3,Jke,8.3&,39,110
Since the connection can be made on the ground side, the characteristics of each cell can be made equal and a DC withstand voltage design can be achieved.

しかし、上記の配管方法では前記(3)電解液を流動さ
せるポンプ動力を小さくすること。及び(4)シャント
ロスを抑制すること。は依然として解決されていない。
However, in the above piping method, (3) the pump power for flowing the electrolytic solution must be reduced. and (4) suppressing chantrosity. remains unresolved.

一方(3) + (4)の問題解決のために、伊藤等の
研究がある(化学的エネルギーの研究、昭和57年度研
究成果報告書)。
On the other hand, in order to solve problems (3) + (4), there is research by Ito et al. (Research on chemical energy, 1988 Research Results Report).

このなかで、第4図に示すようなスタックのフローシス
テムにおいてH=24、W=18.6=0.1 、L 
= 0.7 の七ルN榴を積層してスタックを構成した
とき、1槽当り平均流量Qを流すに必要なマニホルドの
最小径りの関係が示されている。
Among these, in a stack flow system as shown in Fig. 4, H=24, W=18.6=0.1, L
The relationship between the minimum diameter of the manifold required to flow an average flow rate Q per tank is shown when a stack is constructed by laminating 7 LN pipes with a diameter of 0.7.

そして、a=0.7(一定)の下で次の相関式を示して
いる。
The following correlation equation is shown under a=0.7 (constant).

N = 20,3 Q−0,fi [)L12 αa?
! (HAI) &H6、、、(5)この式は有次元で
、Q (ml/x=tx、 cell )f) Ccm
〕a〔1/crn〕、またはセルの形状ルWには依存す
るが、電極面積HXWには依存し々いことを示している
N = 20,3 Q-0,fi [)L12 αa?
! (HAI) &H6, , (5) This equation is dimensional and Q (ml/x=tx, cell )f) Ccm
]a[1/crn], or the cell shape W, but it shows that it depends very much on the electrode area HXW.

一方スタックの各槽内の流量Q(→はスタックの両端部
で大きく中央部で小さい。この不均一性は槽数Nが多い
ほど、マニホルド径りが小さいほど、炭素クロスの流体
抵抗(α)が小さいほど、大きくなる。Dを大きくすれ
ば、6槽の流量は、均一化され、ポンプ動力も小さく々
る。しかし、マニホルドを通してシャントロスはD2に
比例シて大きくなる。シャントロスが大きくなる時には
、マニホルドの両端(N/1o)の口径のみ小さく設計
すれば、ポンプ動力の増大もなくシャントロスを抑制す
ることができるとの提案がなされている。
On the other hand, the flow rate Q (→) in each tank of the stack is large at both ends of the stack and small at the center. The smaller D2 becomes, the larger it becomes.If D is increased, the flow rate of the six tanks will be made uniform, and the pump power will also become smaller.However, the shunt loss through the manifold will increase in proportion to D2.The shunt loss will become larger. Sometimes, it has been proposed that if only the diameters of both ends (N/1o) of the manifold are designed to be small, shunt loss can be suppressed without increasing the pump power.

しかし、以上のように配管の両端の口径のみを/」・さ
くした場合には、電解液の給液側配管の流入口及び排出
側配管の流出口である配管において流量が増大し1、太
@外流体圧を受けるため、配管内における電解液の流速
が不均一になる。
However, if only the diameters at both ends of the pipe are reduced as described above, the flow rate will increase in the pipes that are the inlet of the electrolyte supply pipe and the outlet of the discharge pipe. @ Due to the external fluid pressure, the flow velocity of the electrolyte in the piping becomes uneven.

このため、各電解槽に電解液が均一に分配されなかった
り、或はシャントロスを生ずる等の不都合がある。
Therefore, there are disadvantages such as the electrolytic solution is not uniformly distributed to each electrolytic cell or a shunt loss occurs.

そこで、本願発明者等は、上記実情に鑑み各電解槽に電
解液が均一に分配されなかったり、或はシャントロスを
生ずる等の不都合を!iI′決するために鋭意研究の結
果、レドックス・フロー型集合電池において上記電解液
供給管の中央に拡径部を形成し、該拡径部に電解液の流
入口を形成することにより、上記のような不都合を解決
できることを見出したものである。
Therefore, in view of the above-mentioned circumstances, the inventors of the present application have solved the problem of inconveniences such as the electrolytic solution not being uniformly distributed to each electrolytic cell or the occurrence of shunt loss. As a result of intensive research to determine the solution, we found that in a redox flow type assembled battery, an enlarged diameter section was formed in the center of the electrolyte supply pipe, and an inflow port for the electrolyte was formed in the enlarged diameter section. We have discovered that such inconveniences can be solved.

即ち、上述の伊藤等の提案のように電解液の供給配管の
中央に拡径部を形成し、該供給配管の端部より電解液を
流入した場合には、配管の端部において可成り大きな流
体圧を生ずるが、この発明のように拡径部中央に電解液
の流入口を設け、これより配管内に電解液を流入するよ
うにすれば、電解液は大きな流体圧を受りること〃く配
管内に流入させることができる。しかも配管終端付近で
は、配管内の流量は減少するので、配管を細くしても何
等支障はない。したがってシャントロスを生ずることな
く各電解槽に電解液を均一に分配させることができる。
That is, if an enlarged diameter section is formed in the center of the electrolyte supply piping as proposed by Ito et al. and the electrolyte is introduced from the end of the supply piping, a considerably large diameter portion will be generated at the end of the piping. Fluid pressure is generated, but if the inlet for the electrolyte is provided at the center of the enlarged diameter part and the electrolyte flows into the pipe from this as in this invention, the electrolyte will be subjected to a large fluid pressure. 〃It can be made to flow into the piping. Moreover, since the flow rate in the pipe decreases near the end of the pipe, there is no problem even if the pipe is made thinner. Therefore, the electrolytic solution can be uniformly distributed to each electrolytic cell without causing a shunt loss.

この発明を、第6図に示したレドックス・フロー型集合
電池における正極液供給配管3/の中央に拡径部3/a
を設けた実施例について説明すると、該拡径部3/の中
央には電解液の流入口3/l)を設け、該流入0.3/
i)を正極液供給主配管、29に接続する。
This invention is applied to an enlarged diameter portion 3/a in the center of the positive electrode liquid supply pipe 3/ in the redox flow type assembled battery shown in FIG.
To explain an embodiment in which an electrolyte inlet 3/l) is provided in the center of the enlarged diameter part 3/, the inflow 0.3/l) is provided.
i) is connected to the positive electrode liquid supply main pipe 29.

そして正極液供給主配管コワの正極液は、拡径部3/α
の中央に設けられた流入口31bより拡径部3/α内に
流入し、該拡径部3/αより両端付近の管径の小さな配
管部分、3/c、3/cに供給されるため、管の小さな
配管部分3/c、 3/cにおいても太きガ流体圧を生
ずることなく、シたがって正極液の供給配管3/内にお
いて大きなシャントロスを生ずることなく、マた供給配
管3/に供給された正極液を各枝管を通して各電解槽2
1α〜2Inの各々の正極液室2.2.・・・ に均一
に供給することができる。
The positive electrode liquid in the main positive electrode supply pipe is supplied to the enlarged diameter section 3/α.
It flows into the enlarged diameter part 3/α from the inlet 31b provided in the center of the diameter part 3/α, and is supplied from the enlarged diameter part 3/α to the piping parts with small pipe diameters near both ends, 3/c, 3/c. Therefore, even in the small piping portions 3/c and 3/c of the pipe, large fluid pressure is not generated, and therefore a large shunt loss is not generated in the positive electrode liquid supply piping 3/, and the main supply piping is The positive electrode solution supplied to 3/ is passed through each branch pipe to each electrolytic cell 2.
1α to 2In catholyte chambers 2.2. ... can be uniformly supplied.

以上の実施例では、正極液供給配管3/について説明し
たが、他の正極液供給配管32及び負極液供給配管、3
’l、3gについても同様に構成することによシ、大き
なシャントロスを生ずることなく、且つ電解液を各々の
電極液室に均一に供給することができる。
In the above embodiment, the positive electrode liquid supply pipe 3/ was explained, but other positive electrode liquid supply pipes 32, negative electrode liquid supply pipes, 3
By similarly configuring the electrodes 1 and 3g, the electrolytic solution can be uniformly supplied to each electrode solution chamber without causing a large shunt loss.

また正極液排出配管33.3’l、負極液排出配管39
.410の中央に拡径部を形成し、該拡径部の中央に電
解液の流出口を設けるようにしてもよい。
Also, positive electrode liquid discharge pipe 33.3'l, negative electrode liquid discharge pipe 39
.. An enlarged diameter portion may be formed at the center of the tube 410, and an outlet for the electrolytic solution may be provided at the center of the enlarged diameter portion.

また集合電池が大型化1〜で正極液供給配管3/。In addition, when the battery pack becomes larger 1~, the positive electrode liquid supply piping 3/.

3.2及び負極液供給配管37.3gの長さが長くなる
場合には、拡径部をその長さ方向に沿って一定間隔を置
いて複数個設け、該拡径部それぞれに電解液の流入口を
設ければよい。
3.2 and when the length of the negative electrode liquid supply pipe 37.3g becomes long, provide a plurality of enlarged diameter parts at regular intervals along the length direction, and fill each of the enlarged diameter parts with electrolyte. An inlet may be provided.

更に正極液排出配管33..3’l及び負極液排出配管
39,11.0についても、上述の電極液供給配管と同
様に拡径部を形成することにより、上記供給配管に拡径
部を設けた場合と同様な効果を期待するととができる。
Further, a positive electrode liquid discharge pipe 33. .. 3'l and negative electrode liquid discharge piping 39, 11.0 as well, by forming an enlarged diameter part in the same manner as the above-mentioned electrode liquid supply pipe, the same effect as when providing an enlarged diameter part in the above supply pipe can be obtained. Hope can lead to hope.

なお本願発明者等の研究によれば、上述のような電解液
流通型集合電池において電解液の供給配管と排出配管に
、それぞれ電解液の流入口と流出口を有する拡径部を形
成する場合、′rPLM液の供線配管の供給口の端部が
電解液の排出配管の中央部に位置させるようにすれば、
シャントロスを抑制し、更に電解槽には均一に電解液を
供給することができるのである。
According to research by the inventors of the present application, in the electrolyte flow type assembled battery as described above, when an enlarged diameter portion having an inlet and an outlet for the electrolyte is formed in the supply pipe and the discharge pipe for the electrolyte, respectively. ,'rIf the end of the supply port of the PLM liquid service line piping is located in the center of the electrolyte discharge piping,
Shunt loss can be suppressed and electrolyte can be uniformly supplied to the electrolytic cell.

即ち、以上のように構成することにより例えば供給配管
内で電解液の流速が不均一となるような場合にも、この
不均一な流れはこれと非対称に設けられた排出配管によ
シ是正される。
That is, with the above configuration, even if the flow rate of the electrolyte becomes uneven in the supply pipe, for example, this uneven flow can be corrected by the discharge pipe installed asymmetrically. Ru.

したがってシャントロスが抑制さ力、ると同時に、各電
′M槽に均一ガミ留液を供給することができる。
Therefore, the shunt loss is suppressed, and at the same time, a uniform liquid solution can be supplied to each cell.

これを図示の実施例で更に具体的に説明すると、第7図
はレドックス・フロー型集合電池において流通型電解槽
2/a = 、2/nの長さ方向に沿って正極液供給配
管J/、・・・を設け、且つ該正極液供給配管3/、・
・・の中央には拡径部3/α、・・・を形成し、また該
拡径部3/σ2.・・の中央に電解液の流入口31b、
・・・を形成し、一方上記流通型電解槽2/a −,2
/7Lの他側には長さ方向に沿って正極液排出配管33
.・・・を設け、且つ該正極液排出配管33、・・・の
中央に拡径部33α置を形成し、また該拡径部、33c
L、・・・の中央に′gi解液解散出口33b、・・・
を形成する。
To explain this more specifically with the illustrated embodiment, FIG. 7 shows that in a redox flow type assembled battery, positive electrode liquid supply pipes J/ , . . , and the cathode liquid supply piping 3/, .
An enlarged diameter portion 3/α, . . . is formed at the center of the enlarged diameter portion 3/σ2. An electrolyte inlet 31b is located in the center of the
... is formed, while the above-mentioned flow-through type electrolytic cell 2/a -,
On the other side of /7L, there is a positive electrode liquid discharge pipe 33 along the length direction.
.. ... is provided, and an enlarged diameter portion 33α is formed in the center of the positive electrode liquid discharge pipe 33, and the enlarged diameter portion, 33c
In the center of L,..., 'gi dissolution outlet 33b,...
form.

そして以上の正極液供給配管3/からはその長さ方向に
沿って複数の正極液供給枝管31,1.・・・を設け、
該枝管3/d、・・・を流通型電解槽、2/α〜λ/1
Lの正極室ココ、・・・の−側に接続し、また正極液排
出配管33からはその長さ方向に沿って複数の正極液排
出枝管33d、・を設け、該枝管33d、・・・を上記
正極室ユ2.・・・の他側に接続するとともに、上記正
極液供給枝管aid、・・・のうち少なくとも一方の端
部供給口3/eが正極液排出枝管33d、・・・の中央
の供給1’:J33eに対応するように配置するもので
ある。
From the above cathode liquid supply pipe 3/, a plurality of cathode liquid supply branch pipes 31, 1. Establish...
The branch pipes 3/d, . . . are flow-through type electrolytic cells, 2/α to λ/1
A plurality of positive electrode liquid discharge branch pipes 33d, . . . are connected to the negative side of the positive electrode chamber 33, and are provided along the length direction from the positive electrode liquid discharge pipe 33, and the branch pipes 33d, . ... in the positive electrode chamber 2. ... is connected to the other side, and at least one end supply port 3/e of the cathode liquid supply branch pipes aid, ... is connected to the central supply 1 of the cathode liquid discharge branch pipe 33d, ... ': It is arranged so as to correspond to J33e.

以上の構成において、この実施例では正極液供給主配管
29からは正極液供給配管3/と略平行に配管29a5
を設け、該配管、2.9aからは、それぞれ正極液の流
入口31b置に接続される枝管、29b。
In the above configuration, in this embodiment, a pipe 29a5 is connected from the main cathode liquid supply pipe 29 to the cathode liquid supply pipe 3/.
Branch pipes 29b are connected from the pipes 2.9a to the positive electrode liquid inlets 31b, respectively.

・・・を設け、枝管29b、・・・より正極液を正極液
供給配管3/に形成された拡径a 3/a r・・・に
供給する。
... are provided, and the positive electrode liquid is supplied from the branch pipes 29b, ... to the enlarged diameter a3/a r... formed in the positive electrode liquid supply pipe 3/.

一方正極液排出主配g3θからは正極液排出配管33と
略平行に配管30αを設け、該配管33σからはそ九ぞ
れ正極液の流出口33b、・・・に接続さノ]。
On the other hand, from the main cathode liquid discharge pipe g3θ, a pipe 30α is provided substantially parallel to the cathode liquid discharge pipe 33, and from the pipe 33σ, each of the pipes 33σ is connected to a positive electrode liquid outlet 33b, .

る枝管3θb、・・・を設け、正極液を正極液排出配管
の拡径部33α、・・・に形成された流出IT1.?J
J・・より排出される正極液を枝管33b、・・・、配
管、3.30を通l、て正極液排出主配管30に戻すよ
うにしである。
Branch pipes 3θb, . ? J
The cathode liquid discharged from J... is returned to the cathode liquid discharge main pipe 30 through the branch pipes 33b,..., piping, 3.30.

以上のような構造において、流入口31b、・よシ供給
された正極液は正極液室2コv、yiより電解槽の正極
液室2コ、・・・内に供給され、また正極液室ココ、・
・・より排出された正極液は正極液排出配管33を通っ
て拡径部33α、・・・に形成された流出口33b、・
・・より排出されるが、この場合正極液供給配管3/と
排出量ga3とは拡径部3/α、・・・と拡径部33α
、・・・とは以上のような関係で設けられているため、
例えば正極液供給配管3/内で電解液の流速が不均一と
なっても、正極液排出配管33により上述の電解液の流
速の不均一は打消されて是正される。
In the above structure, the positive electrode liquid supplied through the inlet 31b, . . . is supplied into the 2 positive electrode chambers, . Here,·
The positive electrode liquid discharged from the positive electrode liquid discharge pipe 33 passes through the outlet ports 33b formed in the enlarged diameter portion 33α, .
..., but in this case, the positive electrode liquid supply pipe 3/ and the discharge amount ga3 are the enlarged diameter section 3/α, ... and the enlarged diameter section 33α.
,... are established in the above relationship, so
For example, even if the flow rate of the electrolyte becomes non-uniform within the positive electrode solution supply pipe 3/, the above-described non-uniformity in the flow rate of the electrolyte is canceled out and corrected by the positive electrode solution discharge pipe 33.

更に以上のような構造にすると、正極液供給配管3/と
正極室ユ、・・・と正極液排出配管33とを結ぶ正極液
の主な流れは、矢印に示すように、供給配管3/の拡径
部3/aに供給された正極液が最短距離を通って上記拡
径部3/αと上記位置にある排出配管、33の拡径部3
3αに流れ込む経路をとる。そして、この経路は1L解
槽2/a〜2Inいずれにおいても同一であり、経路差
が生ずることなく、シたがって電解液の供給に過不足が
生ずることはない。
Furthermore, with the above structure, the main flow of the cathode liquid connecting the cathode liquid supply pipe 3/, the cathode chamber unit, ... and the cathode liquid discharge pipe 33 is as shown by the arrow, The positive electrode liquid supplied to the enlarged diameter section 3/a passes through the shortest distance between the enlarged diameter section 3/α and the discharge pipe located at the above position, the enlarged diameter section 3 of 33.
Take the path that flows into 3α. This route is the same for all of the 1L disassembly tanks 2/a to 2In, and there is no difference in route, so there is no excess or deficiency in the supply of electrolyte.

これに対して正極液の供給配管3/と排出配管33に設
けられる拡径部31α、・・・と33α、・・・を対称
的に配置すると、正極液は最短距離を通って正極液室を
通過するため、電解槽、2/cL−コ/nの端部におい
て他よりも長い正極液の流路が形成され、したがって正
極液の供給に過不足が生ずる。
On the other hand, if the enlarged diameter portions 31α, . . . and 33α, . , a flow path for the catholyte is formed at the end of the electrolytic cell, 2/cL-co/n, which is longer than the others, resulting in excess or deficiency in the supply of the catholyte.

なお、以上は正極液の、供給配管31と排出配管33に
ついて説明したが、他の正極液の供給配管32とその排
出配管3ダ及び負極液の供給配管37゜3gとその排出
配管39 、3gについても全く同様に構成することが
できる。
The above description has been about the positive electrode liquid supply pipe 31 and discharge pipe 33, but the other positive electrode liquid supply pipe 32 and its discharge pipe 3da, and the negative electrode liquid supply pipe 37°3g and its discharge pipe 39, 3g can also be configured in exactly the same way.

一方第8図に示すように、上記集合電池の単電池を内部
に黒鉛板11./cLを設け、外部にPVC等の枠材’
l/bを設けたバイポーラ板Il/、内部に炭素布4(
,2αを設け、外部にPVC等の砕料1.2bを設けた
正極板l/、2、内部にイオン交換膜l/、2cLを設
けた隔膜板り3、内部に炭素布tlIαを設け、外部に
PVC等の枠材11.グbを設けた負極板邦を積層して
構成し、これ等の単電池を20〜50セル集積して集合
電池を形成することが行われている。
On the other hand, as shown in FIG. 8, the cells of the above-mentioned assembled battery are placed inside a graphite plate 11. /cL and frame material such as PVC on the outside.
Bipolar plate Il/ with l/b, carbon cloth 4 (
, 2α, a positive electrode plate l/, 2 provided with a particle 1.2b such as PVC on the outside, a diaphragm plate 3 provided with an ion exchange membrane l/, 2cL inside, a carbon cloth tlIα provided inside, Frame material such as PVC on the outside 11. It is common practice to construct a battery by stacking negative electrode plates provided with a negative electrode plate, and by integrating 20 to 50 cells of these single cells to form an assembled battery.

そして、以上の構成では正極液供給配管3/、負極液供
給配管3り及び正極液排出配管33、負極液排出配管3
9はバイポーラ板ケへ正極板ダコ、隔膜板り3、負極板
41にそれぞれその対応する位置に設けられた孔31z
・・・、孔37二・・・、孔33S・・・、孔39′。
In the above configuration, the positive electrode liquid supply pipe 3/, the negative electrode liquid supply pipe 3, the positive electrode liquid discharge pipe 33, and the negative electrode liquid discharge pipe 3
Reference numeral 9 indicates holes 31z provided in the bipolar plate, the positive electrode plate dowel, the diaphragm plate 3, and the negative electrode plate 41 at corresponding positions, respectively.
..., hole 372..., hole 33S..., hole 39'.

・・・を互いに重ね合わせることにより形成されZが、
以上のように集積さ九た集合電池においては、孔3/’
、 37’、 、?、?’、 、79’の径が規格化さ
れているため、前述のように配管3/、3り、33.3
9の中央に拡径部を形成するのが極めて困難である。
... is formed by overlapping each other, and Z is
In the nine assembled batteries as described above, the hole 3/'
, 37', ,? ,? Since the diameters of ', , 79' are standardized, as mentioned above, the pipes 3/, 3, 33.3
It is extremely difficult to form an enlarged diameter portion at the center of the diameter.

この場合には同一径の規格化された配管内に両端より縮
径部材lIg 、 qsを挿入し、その先端間隙に拡径
部を形成するようにすれば、極めて簡単に、且つ経済的
に拡径部を形成することができる。
In this case, if the diameter reducing members lIg, qs are inserted from both ends into the standardized piping having the same diameter, and an enlarged diameter portion is formed in the gap between the ends, the expansion can be achieved very easily and economically. A diameter portion can be formed.

゛以上、レドックス・フロー涜の集合電池について具体
例を述べてきたが、この発明は電解液を流通させる形式
の集合電池について基本的、且つ共通のものである。
゛Although specific examples have been described above regarding redox flow type batteries, this invention is basic and common to battery packs in which an electrolyte is allowed to flow.

このため、レドックス・フロー型電池と同様に電解液を
循環させる必要のある亜鉛−塩素電池、亜鉛−臭素電池
、水素−塩素電池、水素−臭素電池などの二次電池およ
びメタノールあるいはヒドラジンなどの燃料を電解液に
溶解して供給する燃料溶解型燃料電池及び電解液循環形
−水素燃料電池についても同様な配管構造を有する電解
液流通屋集合電池を構成することが可能である。
For this reason, secondary batteries such as zinc-chlorine batteries, zinc-bromine batteries, hydrogen-chlorine batteries, and hydrogen-bromine batteries that require circulation of electrolyte like redox flow batteries, and fuels such as methanol or hydrazine are used. It is also possible to configure an electrolyte distributor assembly battery having a similar piping structure for a fuel dissolving type fuel cell and an electrolyte circulation type hydrogen fuel cell that supply the electrolyte by dissolving it in an electrolyte.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はレドックス電池の動作原理説明図、第
3図はレドックス電池の従来の配管方法を示す図、第4
図はスタックのフローシステム図、第5図はH=24、
W−18、b = 0.1、L=0.7のセルN槽を積
層してスタックを構成したとき、1槽当り平均流量Qを
流すに必要なマニホルドの最小径りの関係図、第6図は
本願第1発明の一実施例を示すレドックス電池の配管方
法を示す図、第7図は、本願第2発明の一実施例を示す
レドックス電池の配管方法を示す図、第8図は、レドッ
クス集合電池における単電池の構成例を示す斜視図、第
9図は、同上の実施例において配管内に拡径部を形成す
る一例を示す斜視図である。 図中、コ/α〜:2/nは電解液流通型電解槽、3/。 32は正極液供給配管1.?、?、、?ダは正極液排出
配管、37.3gは負極液供給配管1.39.lIOは
負極液排出配管、3/α、 33aは拡径部、31bは
正極液の流入口、33bは正極液の流出口。 第1図 第2序1
Figures 1 and 2 are diagrams explaining the operating principle of a redox battery, Figure 3 is a diagram showing the conventional piping method for a redox battery, and Figure 4 is a diagram illustrating the operating principle of a redox battery.
The figure is a flow system diagram of the stack, and Figure 5 shows H=24.
W-18, when a stack is constructed by stacking N cells with b = 0.1 and L = 0.7, the relationship diagram of the minimum diameter of the manifold required to flow an average flow rate Q per tank, Figure 6 is a diagram showing a piping method for a redox battery according to an embodiment of the first invention of the present application, Figure 7 is a diagram showing a piping method of a redox battery according to an embodiment of the second invention of the present application, and Figure 8 is a diagram showing a piping method for a redox battery according to an embodiment of the second invention of the present application. FIG. 9 is a perspective view showing an example of the configuration of a unit cell in a redox battery, and FIG. 9 is a perspective view showing an example of forming an enlarged diameter portion in the pipe in the above embodiment. In the figure, ko/α~:2/n is an electrolyte flow type electrolytic cell, and 3/. 32 is the positive electrode liquid supply pipe 1. ? ,? ,,? Da is the positive electrode liquid discharge pipe, 37.3g is the negative electrode liquid supply pipe 1.39. lIO is a negative electrode liquid discharge pipe, 3/α, 33a is an enlarged diameter part, 31b is a positive electrode liquid inlet, and 33b is a positive electrode liquid outlet. Figure 1 Figure 2 Introduction 1

Claims (4)

【特許請求の範囲】[Claims] (1)電解液を複数個直列接続した流通型電解槽に電解
液供給配管を通して送液し、電解液排出配管を通して排
出し、電力を得る電解液流通型集合電池において、 上記電解液の供給配管または排出配管の中央に拡径部を
形成し、該拡径部に電解液の流入口または流出口を形成
するようにしたことを特徴とする電解液流通型集合電池
(1) In an electrolyte flow-through type battery that obtains electricity by supplying electrolyte through electrolyte supply piping to a flow-through electrolytic cell in which multiple electrolytes are connected in series and discharging the electrolyte through electrolyte discharge piping, the electrolyte supply piping is Alternatively, an electrolyte flow type assembled battery characterized in that an enlarged diameter part is formed in the center of the discharge pipe, and an inlet or an outlet for the electrolyte is formed in the enlarged diameter part.
(2) 上記電解液の供給配管または排出配管として同
一径のものを使用し、該配管内に縮径部材を挿入してそ
の中央に拡径部を形成する特許請求の範囲第1項記載の
集合電池。
(2) A method according to claim 1, wherein pipes having the same diameter are used as the electrolytic solution supply pipe or discharge pipe, and a diameter reducing member is inserted into the pipe to form an enlarged diameter part in the center thereof. collective battery.
(3)電解液を複数個直列接続した流通型電解槽に電解
液供給配管を通して送液し、電解液排出配管を通して排
出し、電力を得る電解液流通型集合電池において、 上記電解液の供給配管と排出配管にそれぞれ拡径部を形
成し、該拡径部にはそれぞれ電解液の流入口、流出口を
形成するとともに、上記供給配管の供給口の端部が上記
排出配管の中央部に位置させるようにしたことを特徴と
する電解液流通型集合電池。
(3) In an electrolyte flow-through type battery that obtains electricity by feeding electrolyte through electrolyte supply piping to a flow-through electrolytic cell in which multiple electrolytes are connected in series and discharging it through electrolyte discharge piping, the electrolyte supply piping is An enlarged diameter portion is formed in each of the and discharge piping, and an inlet and an outlet for the electrolyte are formed in the enlarged diameter portion, respectively, and the end of the supply port of the supply piping is located in the center of the discharge piping. An electrolyte flow type assembled battery characterized by being configured to
(4) 上記電解液供給配管、電解液排出配管として同
一径のものを使用し、該配管内に縮径部材を挿入して配
管内縮径部材を挿入して配管内に拡径部を形成する特許
請求の範囲第5項記載の集合電池。
(4) Use the same diameter as the electrolyte supply piping and electrolyte discharge piping, insert a diameter reducing member into the piping, and insert the inner diameter reducing member to form an enlarged diameter part inside the piping. The assembled battery according to claim 5.
JP58147229A 1983-08-11 1983-08-11 Electrolyte circulation type concentric battery Pending JPS6037652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58147229A JPS6037652A (en) 1983-08-11 1983-08-11 Electrolyte circulation type concentric battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58147229A JPS6037652A (en) 1983-08-11 1983-08-11 Electrolyte circulation type concentric battery

Publications (1)

Publication Number Publication Date
JPS6037652A true JPS6037652A (en) 1985-02-27

Family

ID=15425486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58147229A Pending JPS6037652A (en) 1983-08-11 1983-08-11 Electrolyte circulation type concentric battery

Country Status (1)

Country Link
JP (1) JPS6037652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
WO2011114094A1 (en) * 2010-03-19 2011-09-22 Renewable Energy Dynamics Technology Ltd Electrochemical cell stack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180081A (en) * 1981-04-27 1982-11-05 Agency Of Ind Science & Technol Piping method for redox-flow type battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180081A (en) * 1981-04-27 1982-11-05 Agency Of Ind Science & Technol Piping method for redox-flow type battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797566A (en) * 1986-02-27 1989-01-10 Agency Of Industrial Science And Technology Energy storing apparatus
WO2011114094A1 (en) * 2010-03-19 2011-09-22 Renewable Energy Dynamics Technology Ltd Electrochemical cell stack
CN102947998A (en) * 2010-03-19 2013-02-27 可再生能源动力科技有限公司 Electrochemical cell stack

Similar Documents

Publication Publication Date Title
CN101803084B (en) Electrochemical battery incorporating internal manifolds
US4407904A (en) Fuel cell
PT1051766E (en) REDOX FLOW BATTERY SYSTEM AND CELL STACK
CN111370744B (en) Distribution manifold for fuel cell stack assembly
US11682782B2 (en) Fuel cell having a modular base active area
US9139921B2 (en) Alkaline electrolyzer
US10644330B2 (en) Bipolar plate structure having optimized gas flow channels
CN103283073A (en) Systems and methods for redox flow battery scalable modular reactant storage
US20140272484A1 (en) Electrochemical cell stack having a protective flow channel
WO2016117264A1 (en) Redox-flow battery
US20140242476A1 (en) Operating battery stack system performance by alternating the flow of heat carrying fluid used therein
JPS6369151A (en) Redox cell
JPS6037652A (en) Electrolyte circulation type concentric battery
US20220238904A1 (en) Redox flow battery
KR102091449B1 (en) Redox flow cell system with cross electrolyte tanks.
JPS6229865B2 (en)
CN110431699B (en) Novel modular electrochemical cell and stack design
KR102586856B1 (en) Bipolar Plate for Redox Flow Battery, stack and Redox Flow Battery using The Same
CN112151844B (en) Heat insulation plate for flow battery stack and flow battery stack with heat insulation plate
US20210057773A1 (en) Fuel cell stack
JPH044569A (en) Tank for storing electrolytic solution
CN116265853A (en) Multi-path plate-and-shell heat exchanger
WO2023220578A1 (en) Bipolar plate bulk molding compound material choice
JPS61294765A (en) Fuel cell power generating system
WO2019150570A1 (en) Cell frame, battery cell, cell stack, and redox flow battery