JPS6037632B2 - Solid state laser oscillator - Google Patents

Solid state laser oscillator

Info

Publication number
JPS6037632B2
JPS6037632B2 JP2213883A JP2213883A JPS6037632B2 JP S6037632 B2 JPS6037632 B2 JP S6037632B2 JP 2213883 A JP2213883 A JP 2213883A JP 2213883 A JP2213883 A JP 2213883A JP S6037632 B2 JPS6037632 B2 JP S6037632B2
Authority
JP
Japan
Prior art keywords
state laser
solid
excitation
temperature rise
laser rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2213883A
Other languages
Japanese (ja)
Other versions
JPS59150488A (en
Inventor
憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2213883A priority Critical patent/JPS6037632B2/en
Publication of JPS59150488A publication Critical patent/JPS59150488A/en
Publication of JPS6037632B2 publication Critical patent/JPS6037632B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium
    • H01S3/0931Imaging pump cavity, e.g. elliptical

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は固体レーザ装置の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to improvements in solid-state laser devices.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

固体レーザ装置ではしーザロツドは冷却水などで冷却さ
れながら光励起されているが、光励起が定常状態のとき
、レーザロッドの中心部は冷却されている外周部に比べ
て高温になり、レーザロッドがレンズ作用を生ずる。
In a solid-state laser device, the laser rod is optically excited while being cooled with cooling water, but when the optical excitation is in a steady state, the center of the laser rod is hotter than the outer circumference, which is cooled, and the laser rod is heated by the lens. produce an effect.

しかしこのレンズ作用がレーザロッド軸に対して軸対称
でない現象がしばいま起る。この原因はしーザロツドが
周囲から一様な光励起を受けた条件で使用されないこと
や、レーザロッド自体の不均一性どによって引起こされ
るものである。上記の点を第1図にて説明すると、楕円
反射鏡1内に励起ランプ2とともに収納されているレー
ザロッド3の軸方向をZ軸にとると、xとyの方向でレ
ーザロッド3の作用は異なる。すなわち、縦軸に後方焦
点距離、横軸に励起入力piをとった第2図に示すよう
に、上記×方向およびy方向では励起入力pjの増大と
ともに短くなる戊,fyの収束作用をもち、軸対称な光
学特性を示さない。軸対称とならないために、集光加工
した場合、偏よった集光スポットのため走査方向により
加工特性が変化してしまう不都合を生じる。集光スポッ
トを均一な軸対称とするためには、複数の励起ランプを
1つのレーザロッドの周囲に等酌に設置して周囲から均
一な強さで光励起するとか、レーザロッドをへIJカル
状の励起ランプに挿入して光励起する技術があるが、両
者とも発振効率が低く、また、励起ランプの交換が容易
でなく実用上の支障となっていた。また、レーザロッド
と励起ランプを1対1で配置する構成では励起ランプに
対嶋しているレーザロッドの面が他より高温となり、レ
ーザロッドが物理的に曲がり光学的光路も必然的に曲が
る。このため励起強度が変わるたび毎にレーザ共振器ミ
ラーの光軸を合わせ直す必要がある。〔発明の目的) 本発明はしーザロツドがレンズ作用を生じにくくし、出
力されるレーザ光の非対称特性を改善した安定なしーザ
装置を提供することを目的とする。
However, a phenomenon often occurs in which this lens action is not axially symmetrical with respect to the laser rod axis. This is caused by the fact that the laser rod is not used under conditions where it receives uniform optical excitation from the surroundings, or by the non-uniformity of the laser rod itself. To explain the above point with reference to FIG. 1, if the axial direction of the laser rod 3 housed together with the excitation lamp 2 in the elliptical reflector 1 is taken as the Z axis, the action of the laser rod 3 in the x and y directions is is different. That is, as shown in FIG. 2, where the vertical axis is the rear focal length and the horizontal axis is the excitation input pi, in the x direction and the y direction, there is a convergence effect of 戊, fy, which becomes shorter as the excitation input pj increases, Does not exhibit axially symmetric optical properties. Since it is not axially symmetrical, when condensing the beam, the machining characteristics change depending on the scanning direction due to the biased condensed spot. In order to make the focused spot uniform and axially symmetrical, it is possible to install multiple excitation lamps equally around one laser rod and excite the light from the surrounding area with uniform intensity, or to place the laser rod in an IJ cal shape. There is a technology for optically excitation by inserting it into an excitation lamp, but both have low oscillation efficiency and it is difficult to replace the excitation lamp, which poses a practical problem. Furthermore, in a configuration in which a laser rod and an excitation lamp are arranged one-to-one, the surface of the laser rod facing the excitation lamp becomes hotter than the other surface, and the laser rod physically bends and the optical path inevitably bends. Therefore, it is necessary to readjust the optical axis of the laser resonator mirror every time the excitation intensity changes. [Object of the Invention] An object of the present invention is to provide a stable laser device in which the laser rod is less likely to cause lens action and the asymmetric characteristics of the output laser beam are improved.

〔発明の概要) レーザロッドの励起ランプに対面する側の反対側の面を
粗面にして放熱作用を促がすようにし、レーザロッドの
外周部における温度差を僅少にしレーザロッドの曲がり
を防止するようにしたものである。
[Summary of the invention] The surface of the laser rod opposite to the side facing the excitation lamp is made rough to promote heat dissipation, thereby minimizing the temperature difference at the outer periphery of the laser rod and preventing bending of the laser rod. It was designed to do so.

さらにはしーザロッドの表面における光励起光の光散能
を異ならせロッド内部の発熱をロッド軸に対して対称化
、均一化をはかるものである。〔発明の実施例〕 本発明を実施例を示す図面に基ずし、て説明する。
Furthermore, the light scattering ability of the optical excitation light on the surface of the scissor rod is varied to make the heat generation inside the rod symmetrical and uniform with respect to the rod axis. [Embodiments of the Invention] The present invention will be described based on drawings showing embodiments.

第3図は本発明の第1の実施例である片側励起による固
体レーザ発振装置の例を示す。すなわち、分割体からな
り内面が高反射面に形成された楕円反射鏡1には励起ラ
ンプ11およびレーザロッド12が楕円反射鏡1の焦点
と同軸となって平行に設けられている。し−ザロッド1
2の励起ランプ11に対面する側、すなわち、レーザロ
ッド12の横断面の中心を0,と励起ランプ11の横断
面の中心を02とを結ぶ方向をx、x方向に直交する方
向をYとすると、一×側を平滑面13のままとし、反対
側の十×側を0.1側程度の粗面14に形成する。上記
の構成により、励起ランプ11からの励起光が最も強く
当る面は平滑面14のために励起光は内部に向けて直進
的に進行し、反対側の粗面13部分で散乱し、この部分
の近傍での熱かたまり、温度上昇をたすける。このため
励起ランプ11よりはなれた部分と近くで強く励起され
る部分の温度分布が均衡し、熱分布の不均衡による従来
のレーザロッドの曲げ現象は解消される。第4図は本発
明の第2の実施例で、15は二重楕円反射鏡で、この反
射鏡の共有焦点上にレーザロッド16が設けられ、2個
の励起ランプ11,11で励起される構成になっている
FIG. 3 shows an example of a solid-state laser oscillation device with single-sided excitation, which is the first embodiment of the present invention. That is, an excitation lamp 11 and a laser rod 12 are provided coaxially and parallel to the focal point of the elliptical reflector 1 on the elliptical reflector 1 which is made of a segmented body and has a highly reflective inner surface. Shi-Therod 1
The side facing the excitation lamp 11 of No. 2, that is, the direction connecting the center of the cross section of the laser rod 12 with 0 and the center of the cross section of the excitation lamp 11 with 02 is x, and the direction perpendicular to the x direction is Y. Then, the 1× side is left as a smooth surface 13, and the opposite 10× side is formed into a rough surface 14 of about 0.1 side. With the above configuration, the surface that is most strongly hit by the excitation light from the excitation lamp 11 is the smooth surface 14, so the excitation light travels straight inward and is scattered by the rough surface 13 on the opposite side. Helps prevent heat buildup and temperature rise near the area. Therefore, the temperature distribution of the part far from the excitation lamp 11 and the part that is strongly excited near the excitation lamp 11 is balanced, and the conventional bending phenomenon of the laser rod due to imbalance in heat distribution is eliminated. FIG. 4 shows a second embodiment of the present invention, in which 15 is a double elliptical reflector, a laser rod 16 is provided on the common focus of this reflector, and is excited by two excitation lamps 11, 11. It is configured.

この実施例ではしーザロツド16の励起ランプ11,1
1にそれぞれ向いている面の一部が平滑面18になって
いる。またy方向の面はより粗い粗面19に仕上げられ
ている。上記第2の実施例においても第1の実施例と同
様に粗面19,19の部分が他の面より温度上昇作用が
大きいため、励起ランプ11の光の到達距離が長くても
結果的に励起光が強く当る平滑面18の温度上昇と同程
度になり、温度分布が均衡する。
In this embodiment, the excitation lamps 11,1 of the laser rod 16 are
A part of the surfaces facing each side 1 is a smooth surface 18. Further, the surface in the y direction is finished to have a rougher surface 19. In the second embodiment, as in the first embodiment, the rough surfaces 19, 19 have a larger temperature increasing effect than other surfaces, so even if the light from the excitation lamp 11 has a long reach, the result is The temperature rise is about the same as that of the smooth surface 18 that is strongly hit by the excitation light, and the temperature distribution is balanced.

なお、粗面形成の代りに、レーザロッドの光励起には効
果的なスペクトル成分は透過し、その他の波長は吸収す
るような蒸着膜を形成してもよい。
Note that instead of forming a rough surface, a deposited film may be formed that transmits spectral components effective for optical excitation of the laser rod and absorbs other wavelengths.

また、その他、熱伝導率がレーザロツドより小さいガラ
ス質のものをレーザロッド表面にコーティングして励起
光を透過させるようにしてもよい。ところで、粗面形成
等による表面近傍の発熱部分を励起ランプに遠ざけずに
、例えば上記第2の実施例において、x方向に組面がく
るようにして戊とfyの差を強調するようにしてもよい
。この場合、長円形のスポットが得られるので、長円方
向にレーザ光を走査して溶援する加工に適する。〔発明
の効果〕励起強度の弱い条件から高い条件までレーザロ
ッドの熱作用にもとず〈光学的均一性が改善され、高出
力においても円形断面の発振パターンが得られるように
なった。
In addition, the surface of the laser rod may be coated with a vitreous material whose thermal conductivity is lower than that of the laser rod to allow the excitation light to pass therethrough. By the way, instead of keeping the heat generating part near the surface due to rough surface formation etc. away from the excitation lamp, for example, in the second embodiment above, the assembly surface is placed in the x direction to emphasize the difference between 戊 and fy. Good too. In this case, since an elliptical spot is obtained, it is suitable for processing in which the laser beam is scanned in the elliptical direction for welding. [Effects of the Invention] Optical uniformity was improved under the thermal action of the laser rod under conditions of low to high excitation intensity, and an oscillation pattern with a circular cross section could be obtained even at high output.

また、軸対称性の悪いレーザロッドの場合にはその欠点
を改善するために積極的に該当部分に面仕上げの差異を
もった部分を形成し、光学的な不均一性を補償してやる
こともできる。さらに、粗面等による熱放散部の位置を
変えて加工に適する発振パターンを得ることもできる。
図面の簡単な説明第1図は従来例を示す横断面図、第2
図は従釆例における方向別の入力パワーと焦点距離との
関係を示す図、第3図は本発明の第1の実施例を示す横
断面図、第4図は本発明の第2の実施例を示す横断面図
である。
In addition, in the case of a laser rod with poor axial symmetry, in order to improve the defect, it is possible to actively form a part with a difference in surface finish in the corresponding part to compensate for optical non-uniformity. . Furthermore, it is also possible to obtain an oscillation pattern suitable for processing by changing the position of the heat dissipation portion using a rough surface or the like.
Brief explanation of the drawings Figure 1 is a cross-sectional view showing a conventional example, Figure 2 is a cross-sectional view showing a conventional example;
The figure is a diagram showing the relationship between input power and focal length for each direction in a follow-up example, FIG. 3 is a cross-sectional view showing the first embodiment of the invention, and FIG. 4 is a diagram showing the second embodiment of the invention. FIG. 3 is a cross-sectional view showing an example.

1・・…・楕円反射鏡、11・・・・・・励起ランプ、
12,16……レーザロッド、14,18……粗面。
1...Elliptical reflector, 11...Excitation lamp,
12, 16... Laser rod, 14, 18... Rough surface.

弟1図 発2図 多]図 多4図Younger brother 1 Figure 2 [many] figure Multi 4 figures

Claims (1)

【特許請求の範囲】 1 楕円反射鏡内に励起ランプとこの励起ランプで励起
されるレーザロツドとを設けてなるレーザヘツド部を有
する固体レーザ発振装置において、上記レーザロツドは
その外周面の一部に他面より粗面になる温度上昇制御部
分を設けることを特徴とする固体レーザ発振装置。 2 温度上昇制御部分は長さ方向に沿つて形成されてい
ることを特徴とする特許請求の範囲第1項記載の固体レ
ーザ発振装置。 3 温度上昇制御用部分は励起ランプに非対面している
こをとを特徴とする特許請求の範囲第1項記載の固体レ
ーザ発振装置。 4 温度上昇制御部分はレーザロツドの軸方向に沿いほ
ぼ全長にわたつて形成されていることを特徴とする特許
請求の範囲第1項記載の固体レーザ発振装置。 5 温度上昇制御部分はレーザロツドの物質以外の光励
起光の透過材で形成されていることを特徴とする特許請
求の範囲第1項記載の固体レーザ発振装置。 6 温度上昇制御部分はロツドの不均一性を光励起中に
補償する方向に設置したことを特徴とする特許請求の範
囲第1項記載の固体レーザ発振装置。
[Scope of Claims] 1. A solid-state laser oscillator having a laser head section including an excitation lamp and a laser rod excited by the excitation lamp inside an elliptical reflector, wherein the laser rod has a surface on a part of its outer peripheral surface. A solid-state laser oscillation device characterized by providing a temperature rise control portion that has a rougher surface. 2. The solid-state laser oscillation device according to claim 1, wherein the temperature rise control portion is formed along the length direction. 3. The solid-state laser oscillation device according to claim 1, wherein the temperature rise control portion does not face the excitation lamp. 4. The solid-state laser oscillation device according to claim 1, wherein the temperature rise control portion is formed over substantially the entire length of the laser rod along the axial direction. 5. The solid-state laser oscillation device according to claim 1, wherein the temperature rise control portion is formed of a material other than the material of the laser rod that transmits optical excitation light. 6. The solid-state laser oscillation device according to claim 1, wherein the temperature rise control portion is installed in a direction that compensates for non-uniformity of the rod during optical excitation.
JP2213883A 1983-02-15 1983-02-15 Solid state laser oscillator Expired JPS6037632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2213883A JPS6037632B2 (en) 1983-02-15 1983-02-15 Solid state laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2213883A JPS6037632B2 (en) 1983-02-15 1983-02-15 Solid state laser oscillator

Publications (2)

Publication Number Publication Date
JPS59150488A JPS59150488A (en) 1984-08-28
JPS6037632B2 true JPS6037632B2 (en) 1985-08-27

Family

ID=12074520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2213883A Expired JPS6037632B2 (en) 1983-02-15 1983-02-15 Solid state laser oscillator

Country Status (1)

Country Link
JP (1) JPS6037632B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02130882A (en) * 1988-11-11 1990-05-18 Hitachi Ltd Solid state laser device
DE19807094A1 (en) * 1998-02-20 1999-08-26 Zeiss Carl Fa Optical arrangement and projection exposure system of microlithography with passive thermal compensation
US7274430B2 (en) 1998-02-20 2007-09-25 Carl Zeiss Smt Ag Optical arrangement and projection exposure system for microlithography with passive thermal compensation

Also Published As

Publication number Publication date
JPS59150488A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
JP4792486B2 (en) Optical system for Fresnel lens light, especially spotlight or floodlight
JPH0764003A (en) Scanning optical system
JP3487386B2 (en) Light source device with double reflector to eliminate shadow of lamp
JP2000005892A (en) Laser processing
JPS6037632B2 (en) Solid state laser oscillator
US5349603A (en) Solid-state laser resonator
JP3417248B2 (en) Laser processing equipment
JP2000338447A (en) Beam shaping optical system
JP2800006B2 (en) Laser device
JPH056356B2 (en)
JPS61212078A (en) Slab-type laser device
TWI744794B (en) Scanning light source module
JP2580702B2 (en) Laser device
JP2005014018A (en) Laser beam machining apparatus
JPH1078530A (en) Optical coupling device
JP7051204B2 (en) How to assemble a light source device, an exposure device and a light source device
CN216870915U (en) Water-cooling collimating lens convenient for angle adjustment
JP2550693B2 (en) Solid-state laser device
JPH1158057A (en) Laser machining head
JPH05160478A (en) Solid-state laser device
JPH0446676B2 (en)
JPH0856027A (en) Optical resonator of laser equipment
JPH10294511A (en) Solid-state laser resonator
JPS62246239A (en) Electron beam device
JPH09230178A (en) Semiconductor laser module