JPS6037518A - Beam combiner for atomic absorption analysis - Google Patents

Beam combiner for atomic absorption analysis

Info

Publication number
JPS6037518A
JPS6037518A JP14615883A JP14615883A JPS6037518A JP S6037518 A JPS6037518 A JP S6037518A JP 14615883 A JP14615883 A JP 14615883A JP 14615883 A JP14615883 A JP 14615883A JP S6037518 A JPS6037518 A JP S6037518A
Authority
JP
Japan
Prior art keywords
mirror
semi
beam combiner
mirrors
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14615883A
Other languages
Japanese (ja)
Inventor
Kenji Kawasaki
健治 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP14615883A priority Critical patent/JPS6037518A/en
Publication of JPS6037518A publication Critical patent/JPS6037518A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/20Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle
    • G01J1/34Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using separate light paths used alternately or sequentially, e.g. flicker
    • G01J1/36Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void intensity of the measured or reference value being varied to equalise their effects at the detectors, e.g. by varying incidence angle using separate light paths used alternately or sequentially, e.g. flicker using electric radiation detectors

Abstract

PURPOSE:To make increase and decrease in transmission surfaces and reflection surfaces adjustable continuously over a wide range by superposing two sheets of half mirrors and providing these mirrors in such a way that at least one of the half mirrors is made freely movable with respect to the other half mirror. CONSTITUTION:When a half mirror 1 and a half mirror 2 are superposed on each other, the reflection surfaces of the mirror 1 formed by vapor deposition overlap on the surfaces 6' of the mirror 2 formed without vapor deposition and the transmission surfaces 6 without vapor deposition of the mirror 1 overlap on the reflection surfaces 5' of the mirror 2 formed by vapor deposition. The quantity of transmitted light in this stage is min and the quantity of reflected light is max. If the mirror 1 is successively moved with respect to the mirror 2 from this state, the quantity of the transmitted light increases and the quantity of the reflected light decreases successively. The quantity of the transmitted light is maximized and the quantity of the reflected light minimized when the mirror moves to the extent equiv. to one row of grating. The reflection surfaces and the transmission surfaces are thus increased and decreased continuously over a wide range by moving the mirror 1 relatively with the mirror 2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、原子吸光分析用ビームコンバイナーに関し、
特に、反射率に対する透過率の比率を、連続的に調節で
きる、原子吸光分析装置用のビームコンバイナーに関す
る。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a beam combiner for atomic absorption spectrometry;
In particular, the present invention relates to a beam combiner for an atomic absorption spectrometer that can continuously adjust the ratio of transmittance to reflectance.

(ロ)従来技術 原子吸光分析装置において、中空陰極ランプと重水素ラ
ンプを併設して、バックグランド補正を行う場合、中空
陰極ランプからの光Mと重水素ランプからの光量が大き
く相違していると、光量の多い方に光電検知器の感匪が
合わされるのC1光(1) 量の少い1ノの信号のSN比は悪化することになる。
(b) When performing background correction by installing a hollow cathode lamp and a deuterium lamp together in a conventional atomic absorption spectrometer, the amount of light M from the hollow cathode lamp and the light amount from the deuterium lamp are greatly different. Then, the sensitivity of the photoelectric detector is adjusted to the one with a large amount of light, and the signal to noise ratio of the signal of C1 light (1) with a small amount of light deteriorates.

また、対数変換回路は動作範囲が限られており、信号が
小さすぎても変換精度が低下する。そこで、光量損失を
少くして、容易に中空陰極ランプと重水素ランプの光量
をバランスさけることができるように、ビームコンバイ
ナーどしで、反射充足と透過光穴の比率が異る部分をi
Q )プた透過比変換ミラーが使用されるが、反射率に
対する透過率の比率1なわち(透過率/反射率)比が連
続的に切り換らないために、例えば、測定波長が異って
、両児源ランプの光品比が広範囲に変化する場合などで
は、光電バランスの精度を上げるために、(透過率/殴
D4率)比の相違する半透過ミラーを多数*+Uする必
要があり、費用が高くついた。
Furthermore, the logarithmic conversion circuit has a limited operating range, and if the signal is too small, the conversion accuracy will decrease. Therefore, in order to reduce the light amount loss and easily balance the light amount of the hollow cathode lamp and the deuterium lamp, the beam combiner is designed to have different ratios of reflective and transmitted light holes.
Q) A transmission ratio conversion mirror is used, but since the ratio of transmittance to reflectance (transmittance/reflectance) ratio does not change continuously, for example, the measurement wavelength is different. In cases where the light component ratio of both source lamps changes over a wide range, it is necessary to use a large number of semi-transparent mirrors with different (transmittance/D4 ratio) ratios in order to improve the accuracy of the photoelectric balance. Yes, it was expensive.

(ハ)目 的 本発明は、このような従来法の原子吸光分析装置にお1
ノるご−ムコンバイナーの欠点を解消するものであっC
1反射面となる蒸着面ど透過面の非蒸着面を適宜の割合
で有する二枚の半透過ミラーを適宜重ね合わせることに
より、(透過率/反射(2) 率)化が連続的に調節できるビームコンバイブ−を提供
するにある。
(c) Purpose The present invention provides an improvement to such a conventional atomic absorption spectrometer.
It solves the drawbacks of the Norgomu combiner.
By appropriately overlapping two semi-transmissive mirrors each having an appropriate ratio of a vapor-deposited surface, a transmissive surface, and a non-vapor-deposited surface to serve as a reflective surface, the ratio (transmittance/reflection (2) ratio) can be continuously adjusted. To provide beam combiner vibes.

(ニ)構 成 本発明は、二枚の半透過ミラーを重ね合せて有し、少く
とも一方の半透過ミラーが他方の半透過ミラーに対し移
nノ自在に設けられていることを特徴する原子吸光分析
用ど一ムコンバイノーにある。
(d) Structure The present invention provides an atom atomic mirror having two semi-transparent mirrors stacked one on top of the other, and at least one of the semi-transparent mirrors being provided so as to be freely movable with respect to the other semi-transparent mirror. For absorbance analysis, there is one in the binoculars.

本発明のビームコンバイナーにおいて、車ね合せて設け
られる二枚の半透過ミラーの夫々は、適宜の面積比率で
、光透過板或は透明な板の片側に、蒸着その他の金属メ
ッキ手段により、適宜、金属反射面を形成して!llJ
 造される。反射面の経年変化を防止するために、形成
された反射面周囲に適宜コーティングを施しI″製造て
もよい。
In the beam combiner of the present invention, each of the two semi-transmissive mirrors provided in combination is coated on one side of a light transmitting plate or a transparent plate with an appropriate area ratio by vapor deposition or other metal plating means. , forming a metallic reflective surface! llJ
will be built. In order to prevent the reflective surface from deteriorating over time, an appropriate coating may be applied to the periphery of the formed reflective surface.

本発明のビームコンバイナーは、光透過板どして、例え
ば、光透過性の寸ぐれた月利のものを使用したり、或い
は適宜の厚さのものを使用することによって、光間損失
を少くすることがrぎる。
The beam combiner of the present invention can reduce inter-optical loss by using, for example, a light transmitting plate with uneven light transmittance or having an appropriate thickness. There's too much to do.

蒸着反射面は、適宜の透過性を有する半透明状に形成し
たものも包含η−る。半透過ミラーの(透過率7・′反
11−1 $ 1 If; lよ、蒸析面の蒸j’r 
Pl彎のfl)カッ+、L蒸者面積を喰えることにより
、適宜調節できる。
The vapor-deposited reflective surface also includes one formed in a semi-transparent shape with appropriate transparency. Transmittance of semi-transmissive mirror (transmittance 7・'11−1 $ 1 If; l, evaporation of evaporation surface
It can be adjusted as appropriate by adjusting the fl) and L vapor areas of the Pl curve.

組合I′)さイする二枚の半透過ミラーの夫々の(透過
率/′反側胴率比は、同じであってもよく、」、た。
Combination I') The (transmittance/'opposite side ratio) of each of the two semi-transmissive mirrors may be the same.

侑1ffi Lでいでbよい。この組合わδJ’lる一
枚の31を透過ミラーは、(透過率、/反射率)比の適
当なものを選択7れば、広汎な範)DIの(透過率/反
則ヰ・)比、例λば、40 /60ないしO、/ 10
0の(透過率、・′灰QJ率)比の範囲内C辿続的IJ
変λることがでさる。
Yu1ffi L is good. This combination δJ'l of one sheet 31 can be used as a transmitting mirror if a suitable one with (transmittance, /reflectance) ratio is selected 7, the (transmittance / reflection ratio) of DI , for example λ, 40 /60 to O, /10
Continuous IJ within the range of (transmittance, ・′ash QJ rate) ratio of 0
It is possible to change λ.

2に透過ミラーの蒸着1h)枯↓と十1jI 、及0;
I 1fiiの光透過性の如何によっても異なるが、透
過f1を右しない反ojミラーに形成した場合は、50
ないし60%が適当であり、その面積比率で、格子状、
スリン1〜状、市松模様、イの他適当4丁模様に形成り
ることができる。二枚の半透過ミラーは、その@着面を
77に内側又は外側1.二向けて設()でもよく、或は
互に左側父は7jに6側と同じ側に設けてもよい。
2. Vapor deposition of transmitting mirror 1h) ↓ and 11jI, and 0;
It depends on the light transmittance of I1fii, but if it is formed into an anti-oj mirror that does not reflect the transmission f1, it will be 50
A ratio of 60% to 60% is appropriate, and with that area ratio, grid-like,
It can be formed into any suitable 4-cho pattern, such as a checkerboard pattern or a pattern. The two semi-transparent mirrors have their @ mounting surfaces set to 77 on the inside or outside 1. It may be provided facing two (), or the left side of each may be provided on the same side as 7j and the 6th side.

(小)実施例 第1図は、本5と明のビームコンバイノーの実MF例の
−を示す。
(Small) Embodiment FIG. 1 shows an actual MF example of the beam combiner no. 5 and Akira.

第2図及び第3図に示される半透過ミラーは、第1図の
実施例における一組に重ね合わされる半透過ミラーの夫
々の一例を示す。
The semi-transmissive mirrors shown in FIGS. 2 and 3 are examples of the semi-transmissive mirrors that are superimposed in a set in the embodiment of FIG. 1.

第1図の実施例における半透過ミラー1 の−例を第2
図に示し、同じく半透過ミラー2の一例を第3図に示す
A second example of the semi-transparent mirror 1 in the embodiment of FIG.
Similarly, an example of the semi-transparent mirror 2 is shown in FIG.

第1図の実施例において、3は中空陰極ランプであり、
4は重水素ランプである。
In the embodiment of FIG. 1, 3 is a hollow cathode lamp;
4 is a deuterium lamp.

半透過ミラー1及び2のいずれにも、市松模様状に蒸着
反射面5.5′が形成されている。
Both of the semi-transmissive mirrors 1 and 2 have vapor-deposited reflective surfaces 5.5' formed in a checkered pattern.

半透過ミラー1と半透過ミラー2を重ね合せたとき、半
透過ミラー1の蒸着反射面5は、半透過ミラー2の非蒸
着の透過面6と重なり、同様に半透過ミラー1の非蒸着
の透過面6は半透過ミラー2の蒸着反射面5′と重なっ
て、ビームコンバイナーの使用面全体が蒸着反射面でお
おわれることになる。この場合、ビームコンバイナーの
透過光量は最小となり、反射光量は最高となる。これに
対して、一方の半透過ミラー1を他方の半透過ミラ(5
) =2に対し、格子の一列分だIノ移動させると、それぞ
れの蒸椙面5.5′は重なりあい、それぞれの非蒸着透
過面6.6′も小なりあってビーム−]コンバイナの透
過光量は最高となり、一方、反射先組は最小となる。
When the semi-transmissive mirror 1 and the semi-transmissive mirror 2 are superimposed, the vapor-deposited reflective surface 5 of the semi-transmissive mirror 1 overlaps the non-evaporated transparent surface 6 of the semi-transmissive mirror 2, and similarly the non-evaporated transparent surface 6 of the semi-transmissive mirror 1 overlaps The transmitting surface 6 overlaps with the vapor-deposited reflective surface 5' of the semi-transmissive mirror 2, so that the entire use surface of the beam combiner is covered with the vapor-deposited reflective surface. In this case, the amount of light transmitted through the beam combiner is the minimum and the amount of reflected light is the maximum. On the other hand, one semi-transparent mirror 1 is replaced with the other semi-transparent mirror (5
) = 2, if the grating is moved by one row, the evaporation surfaces 5.5' overlap each other, and the non-evaporation transmission surfaces 6.6' are also slightly smaller, so that the beam-] combiner's The amount of transmitted light is the highest, while the amount of reflected light is the lowest.

重水素ランプ4の光量が中空陰極ランプ3の光量より一
桁程大きいときは、ビームコンバイナーの反射面が増加
するh向に、半透過ミラー1を移動させて、蒸着反射面
5を一方の半透過ミラー2の蒸着反射面5に対してずら
りことにより、ビームコンバイナーの半透過ミラーとし
ての使用部分の反射面枯化率が増加し、透過面積比率は
減少Jることになるので、重水素ランプ4の光量は減少
し、中空陰極ランプ3の光用は増加することになり、両
者の光量バランスを適当に保つことができる。また、中
空陰極ランプ3の光量が重水素ランプより大きいときは
、半透過ミラー1の蒸着反射面5を、半透過ミラー2の
、M着反射面5′に重ね合わせるh向、つまり、反射面
積比率を減少させ、透過面積比率を増加する方面に、移
動さUて、重(6) 水素ラン/4の先賢をIl’l 7!Ilさせ、中空l
i2体シンブ3の光−を減少させて、両者の光ωバラン
スを適当に保つことができる。
When the light intensity of the deuterium lamp 4 is about an order of magnitude larger than the light intensity of the hollow cathode lamp 3, move the semi-transmissive mirror 1 in the direction h, in which the reflective surface of the beam combiner increases, and shift the vapor deposition reflective surface 5 to one half. Due to the misalignment of the transmitting mirror 2 with respect to the vapor-deposited reflective surface 5, the rate of deterioration of the reflective surface of the portion used as a semi-transmissive mirror of the beam combiner increases, and the transmission area ratio decreases. The amount of light from the hollow cathode lamp 3 decreases, and the amount of light from the hollow cathode lamp 3 increases, so that the balance between the amounts of light can be maintained appropriately. When the light intensity of the hollow cathode lamp 3 is larger than that of the deuterium lamp, the vapor-deposited reflective surface 5 of the semi-transmissive mirror 1 is overlapped with the M-deposited reflective surface 5' of the semi-transmissive mirror 2 in the h direction, that is, the reflective area Move in the direction of decreasing the ratio and increasing the permeation area ratio, and use the heavy (6) hydrogen run / 4 prescient Il'l 7! Il, hollow l
By reducing the light of the i2 body Simbu 3, it is possible to maintain an appropriate light ω balance between the two.

(へ)効 宋 本発明のビームコンバイノー−は、二枚の半透過ミラー
を自由に移動できるように重ね合せて設置ノるという簡
単な椛造で、その一方の半透過ミラーを、他方の半透過
ミラーに対して移動させるという簡単な操作により、ビ
ームコンバイノー−の反射面及び透過面の増減を任意に
かつ連続的に行うことができるものであり、従来のビー
ムコンバイJ−−と比較して、構造ha単であって、安
価で、使い易いものである。
The beam combiner of the present invention is a simple construction in which two semi-transparent mirrors are placed one on top of the other so that they can move freely. By simply moving it relative to the semi-transmissive mirror, the reflecting and transmitting surfaces of the beam combiner can be increased or decreased arbitrarily and continuously, compared to the conventional beam combiner J. It has a simple structure, is inexpensive, and is easy to use.

しかも、このように本発明のビームコンバイナーは、反
射面積及び透過面積の増減を、任意かつ連続的に行うこ
とができるので、(透過率/反射率)比が任意かつ広範
囲にそして連続的に変化させることができるものである
Moreover, since the beam combiner of the present invention can arbitrarily and continuously increase or decrease the reflection area and transmission area, the (transmittance/reflectance) ratio can be changed arbitrarily, over a wide range, and continuously. It is something that can be done.

したがって、本発明のビームコンバイナーを使用するこ
とにより、原子吸光分析装置における光電検知器、対数
変換回路を、開jll <r操作で、りf適な動作状態
にもたらすことができるので、高精度の分析が容易どな
る。
Therefore, by using the beam combiner of the present invention, the photoelectric detector and the logarithmic conversion circuit in the atomic absorption spectrometer can be brought into a suitable operating state by opening jll <r operation, so that high precision can be achieved. Easy to analyze.

以」二のように、本発明のビームコンバイナーは従来の
ビームコンバイノーと比較して優れたものであり、その
もたらす彫りは大きい。
As described above, the beam combiner of the present invention is superior to the conventional beam combiner, and the carving it provides is large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のビームコンバイナーの実施例の一例
を示ケ。第2図及び第ご3図に示lI生透過ミラーは、
第1図の実施例におい′C車ね合わされる半透過ミラー
1.2の夫々の一例である。 1は半透過ミラー、2は前記半透過ミラー1と重ね白け
る一方の半透過ミラーを承り。3は中空陰極ランプ、4
は重水素ランプである。5及び5′は反射面、6及び6
は透過面である。 第1図 第2図 第3図 手続補正書 59、月、−7 昭和 年 月 口 特 許 庁 艮 官 殿 1、事件の表示 昭和58年特許顧第146158 号 2、発明の名称 原子吸光分析用ビームコンバイナー 3、補正をする者 事件との関係 特許出願人 住 所 京都府京都市中京区河原町通二条[″ルー・)
船大町378″4h地 名 称 (199) 株式会社 島津製作所4、代 理
 人 氏 名 (750B) 弁理士 武 1)正 彦5、補
正命令の口付 自 発 6、補正の対象 明細書の発明の詳細な説明の欄 7、補正の内容 (1) 明細書第4頁第18行目に[互に左側又は互に
イi 1u11.Jとあるを「−互に左側すなわち前方
に又は互に右側すなわち後方」と補正する。 以上
FIG. 1 shows an example of an embodiment of the beam combiner of the present invention. The II raw transmission mirror shown in Figures 2 and 3 is
This is an example of each of the semi-transparent mirrors 1.2 which are combined in the embodiment of FIG. 1. 1 is a semi-transparent mirror, and 2 is a semi-transparent mirror that overlaps the semi-transparent mirror 1 and is white. 3 is a hollow cathode lamp, 4
is a deuterium lamp. 5 and 5' are reflective surfaces, 6 and 6
is a transparent surface. Figure 1 Figure 2 Figure 3 Procedural amendment 59, Month, -7 Showa year, month, month, month, month, month, month, Showa year, Patent Office, Public Prosecutor's Office, Department 1, Indication of the case, 1982 Patent Registration No. 146158, 2, Name of the invention, For atomic absorption spectrometry Beam combiner 3, relationship with the case of the person making the amendment Patent applicant address 2-jo Kawaramachi-dori, Nakagyo-ku, Kyoto-shi, Kyoto Prefecture
Funaomachi 378″4h Place name (199) Shimadzu Corporation 4, Agent name (750B) Patent attorney Take 1) Masahiko 5, Order for amendment Motto 6, Invention of the specification subject to amendment Detailed Explanation Column 7, Contents of Amendment (1) In page 4, line 18 of the specification, [mutually left side or mutually i 1u11. In other words, it is corrected as "backward."that's all

Claims (1)

【特許請求の範囲】[Claims] 二枚の半透過ミラーを重ね合せて有し、少くとも一万の
半透過ミラーが、他方の半透過ミラーに対し、移動自在
に設けられていることを特徴とする原子吸光分析用ビー
ムコンバイナー。
1. A beam combiner for atomic absorption spectrometry, characterized in that it has two semi-transparent mirrors stacked one on top of the other, and at least ten thousand semi-transparent mirrors are provided movably relative to the other semi-transparent mirror.
JP14615883A 1983-08-10 1983-08-10 Beam combiner for atomic absorption analysis Pending JPS6037518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14615883A JPS6037518A (en) 1983-08-10 1983-08-10 Beam combiner for atomic absorption analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14615883A JPS6037518A (en) 1983-08-10 1983-08-10 Beam combiner for atomic absorption analysis

Publications (1)

Publication Number Publication Date
JPS6037518A true JPS6037518A (en) 1985-02-26

Family

ID=15401439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14615883A Pending JPS6037518A (en) 1983-08-10 1983-08-10 Beam combiner for atomic absorption analysis

Country Status (1)

Country Link
JP (1) JPS6037518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184286B2 (en) 2006-12-18 2012-05-22 Shimadzu Corporation Atomic absorption spectrophotometer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49974U (en) * 1972-04-07 1974-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49974U (en) * 1972-04-07 1974-01-07

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184286B2 (en) 2006-12-18 2012-05-22 Shimadzu Corporation Atomic absorption spectrophotometer

Similar Documents

Publication Publication Date Title
US4915463A (en) Multilayer diffraction grating
US5410431A (en) Multi-line narrowband-pass filters
US3279317A (en) Optical filter device with two series of interference layers for transmitting visible light and reflecting heat radiation
US7187499B2 (en) Optical grating and method for the manufacture of such an optical grating
CN106680923A (en) Multispectral infrared filter array based on micro nano grating
CN102169238A (en) Polarizing spectral device and application of polarizing spectral device in projection optical engine
US6522471B2 (en) System of beam narrowing for resolution enhancement and method therefor
US5619382A (en) Reflection type imaging optical system
JPS6037518A (en) Beam combiner for atomic absorption analysis
TWI674588B (en) Euv mirror and optical system comprising euv mirror
TW201833596A (en) Light source device and optical filtering assembly thereof
JPH01213599A (en) Reflection type diffraction grating
Lee et al. Soft x-ray optics using multilayer mirrors
EP0583047B1 (en) Spatially tunable rugate narrow reflection band filter
US6654178B1 (en) Immersed non-polarizing beamsplitters
JP2005266211A (en) Multilayer film reflecting mirror
CN104570180A (en) Method for designing and manufacturing elliptical reflection-type wave zone plate with dispersive focusing
JPH08122496A (en) Multilayer film reflector
JP3117450B2 (en) Semi-transparent mirror
JP2650048B2 (en) CO lower 2 Beam splitter film for laser
JPH08122498A (en) Multilayer film reflector
JPH08122497A (en) Multilayer film reflector
JPS59107304A (en) Semi-transmitting mirror
JP2650047B2 (en) Beam splitter film for CO laser
JPH1123796A (en) Multilayer-film x-ray reflector