JPS6037479A - Automatic temperature regulating valve - Google Patents

Automatic temperature regulating valve

Info

Publication number
JPS6037479A
JPS6037479A JP14312183A JP14312183A JPS6037479A JP S6037479 A JPS6037479 A JP S6037479A JP 14312183 A JP14312183 A JP 14312183A JP 14312183 A JP14312183 A JP 14312183A JP S6037479 A JPS6037479 A JP S6037479A
Authority
JP
Japan
Prior art keywords
temperature
plunger
valve
cylinder
wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14312183A
Other languages
Japanese (ja)
Inventor
Yoshio Yamaguchi
山口 嘉雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPR Co Ltd
Original Assignee
Teikoku Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Piston Ring Co Ltd filed Critical Teikoku Piston Ring Co Ltd
Priority to JP14312183A priority Critical patent/JPS6037479A/en
Publication of JPS6037479A publication Critical patent/JPS6037479A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/12Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid
    • G05D23/125Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid the sensing element being placed outside a regulating fluid flow
    • G05D23/126Control of temperature without auxiliary power with sensing element responsive to pressure or volume changes in a confined fluid the sensing element being placed outside a regulating fluid flow using a capillary tube

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To regulate the rate of flow of a large scale by taking out the thermal expansion of wax as linear displacement and operating a plunger of a valve main body via incompressible fluid. CONSTITUTION:In correspondence to the temperature of fluie 5, the temperature of which is to be measured, surrounding heat sensing wax 43, the wsx 43 transforms from a solid phase into a liquid phase. When a diaphragm 42 is displaced by large thermal expansion of the wax 43 due to this phase transformation, the displacement of the diaphragm 42 is transmitted to incompressible fluid 44 via a hard rubber 49, a rod 48, and a plunger 47. And, owing to this fluid 44, a plunger 56 of a valve main body 21 is displaced, resisting a valve spring 61. This displacement of the plunger 56 displaces a valve rod 58 in order to regulate the flow rate of the fluid, the temperature of which is to be measured.

Description

【発明の詳細な説明】 本発明は、エンジンの冷却水や潤滑油、重油サービスタ
ンク、過給機の空気、ボイラの蒸気、冷凍機のフレオン
冷媒等の流体の温度を制御するために使用される自動温
度調整弁に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is used to control the temperature of fluids such as engine cooling water and lubricating oil, heavy oil service tanks, supercharger air, boiler steam, and refrigerator Freon refrigerant. This invention relates to an automatic temperature control valve.

第1図は従来の自動温度調整弁で、測温部1と弁本体2
とにより構成される。図示しない流通管内の被測渦流体
中に気密固定される保護管6の内部には測温管7が有り
、測温管7には感温材としてケロシンや水銀、フロン等
の液体8が封入されている。保護管6をとりまく周囲の
被測温流体の温度が、測温管7に伝えられると、ケロシ
ン等の液体8は被測温流体の温度に応して、蒸発し、こ
の液体8の蒸気圧がフレキシブル管9、導管10、キャ
ピラリ管11を通じて弁本体2のへローズケース12に
導かれる。この弁本体2のヘローズゲース12に導かれ
た蒸気圧ば、ベローズ13に作用して、ベローズ13を
変位させ、ベローズ13に取付けられた弁棒14を弁バ
ネ15に抗して変位させて、弁】6の開度を調節し、被
測温流体の流購を制御して、これにより被測温流体を一
定温度に保つ。
Figure 1 shows a conventional automatic temperature control valve, with temperature measuring part 1 and valve body 2.
It is composed of There is a temperature measurement tube 7 inside a protection tube 6 that is airtightly fixed in the vortex fluid to be measured in a flow pipe (not shown), and a liquid 8 such as kerosene, mercury, or fluorocarbon is sealed in the temperature measurement tube 7 as a temperature-sensitive material. has been done. When the temperature of the temperature-measuring fluid surrounding the protection tube 6 is transmitted to the temperature-measuring tube 7, a liquid 8 such as kerosene evaporates depending on the temperature of the temperature-measuring fluid, and the vapor pressure of this liquid 8 increases. is guided to the hollow case 12 of the valve body 2 through the flexible tube 9, the conduit 10, and the capillary tube 11. The steam pressure guided to the bellows gauge 12 of the valve body 2 acts on the bellows 13, displacing the bellows 13, displacing the valve stem 14 attached to the bellows 13 against the valve spring 15, and causing the valve to open. ] 6 to control the circulation of the fluid to be measured, thereby maintaining the temperature of the fluid to be measured at a constant temperature.

以上述べた従来の自動温度調整弁は、下記の欠点を有し
ている。
The conventional automatic temperature control valve described above has the following drawbacks.

測温部1の感温材として使用されているケロシンや水I
+、!、フロン等の液体8の蒸気圧が低いために、へ1
1−ズI3を働かせる力が弱い。そのため、大きな流…
を制御する大口径の弁に適用するのは困ゲ11である。
Kerosene and water I used as temperature-sensitive material in temperature measuring part 1
+,! , because the vapor pressure of liquid 8 such as fluorocarbons is low,
1-The force that activates I3 is weak. Therefore, there is a big flow...
Problem 11 is applicable to large-diameter valves that control.

又、ケロシン等の液体8の塩度と蒸気圧の関係の精度が
ill< < 、測定温度に対する蒸気圧のバラツキが
大きなものとなる。このため、温度調整に20℃(Jど
の誤差を牛しるなど、温度調整のオ゛/1度が悪い。
Furthermore, if the accuracy of the relationship between the salinity and vapor pressure of the liquid 8 such as kerosene is ill<<, the vapor pressure will vary greatly with respect to the measurement temperature. For this reason, the temperature adjustment is 1 degree worse, with an error of 20 degrees Celsius required.

又、保護管〔jを水平に取付けた場合には、フレキシブ
ル管9により保護管6内で測温管7が下方にIf 1r
tlするので、測温管7中のケロシン等の液体8が導管
IO中に流入することがないが、水平より上向きにを付
h)た場合にば液体8が導管10内に流入してしまうの
で、水平より上向きには耳R(=J’ LJられず、測
温部1の取付姿勢に制限を受ける。
In addition, when the protection tube [j is installed horizontally, the temperature measuring tube 7 is moved downward within the protection tube 6 by the flexible tube 9.
tl, the liquid 8 such as kerosene in the temperature measuring tube 7 will not flow into the conduit 10, but if it is attached upwards from the horizontal, the liquid 8 will flow into the conduit 10. Therefore, the ear R (=J' LJ) cannot be placed upward from the horizontal, and there are restrictions on the mounting orientation of the temperature measurement unit 1.

又、ケ[1シン等の液体8の蒸気圧によりベローズ13
を駆り1さlるので、所要の蒸気圧を発生させるために
は、かなり多甲の液体8を必要とする。このため、測温
管7の径を小さくすると、測温管7の長さが長くなり、
したがって小径の流通管の場合には、流通管の屈曲部に
おいて垂直あるいは水平に取付LJねばならないなど、
測温部1の取付場所に制限を受ける。
Also, due to the vapor pressure of the liquid 8, such as the bellows 13,
Therefore, a considerably large amount of liquid 8 is required to generate the required vapor pressure. Therefore, if the diameter of the temperature measuring tube 7 is made smaller, the length of the temperature measuring tube 7 will become longer.
Therefore, in the case of a small diameter flow pipe, the LJ must be installed vertically or horizontally at the bend of the flow pipe.
There are restrictions on the mounting location of the temperature measurement unit 1.

又、ケロシン等の液体8の蒸気がベローズ13に導かれ
る間に、周囲の雰囲気により、その状態が変化を受けや
すい。そのため、測温部1から弁本体2へ蒸気を導びく
キャピラリ管11のしさを長くとれず、したがって測温
部1と弁本体2とを団1して設置することができない。
Furthermore, while the vapor of the liquid 8 such as kerosene is being led to the bellows 13, its state is likely to change depending on the surrounding atmosphere. Therefore, the length of the capillary tube 11 that guides the steam from the temperature measurement section 1 to the valve body 2 cannot be made long, and therefore the temperature measurement section 1 and the valve body 2 cannot be installed together.

キャピラリ管11を長くとるためには、蒸気の状態が周
囲の雰囲気により変化しないように、キャピラリ管11
に適宜の保護手段を講じなげればならないなど厄介とな
る。
In order to make the capillary tube 11 long, it is necessary to make the capillary tube 11 long so that the state of the steam does not change depending on the surrounding atmosphere.
This poses a problem, as appropriate protective measures must be taken to ensure that the

又、全体的に大形で、構造も複雑で、コストも高い。Moreover, the overall size is large, the structure is complicated, and the cost is high.

本発明は、以1−の欠点を解消したもので、大きな流惜
を制御できる大口径の自動温度調整弁を1に供でき、又
測温部の流通管への取付場所及び1[V、付姿勢、11
[iびに流通管の口径に制限を受けず、又、弁本体と測
温部との間の接続管を長くとれるので両者を遠隔設置で
き、又小形で構造簡単、=1スI・も低いことを特徴と
し、その構成は、周囲の被測4古流体の塩度に応答して
膨張するワックス乙こよってダイヤフラムを変位させ、
このダイヤフラムに生ずる変位を非圧縮性流体を充填し
た第1のシリンダのプランジャに伝え、このプランジャ
の変位により、前記第1のシリンダと接続管で連通し第
1のシリンダとの間に非圧縮性流体を充填した第2のシ
リンダのプランジャを弁バネに抗して変位させ、このプ
ランジャの変位により弁棒を通じて弁を変位させるもの
である。
The present invention solves the above drawback 1-, and can provide a large-diameter automatic temperature control valve that can control a large amount of leakage. Attached posture, 11
[i] There is no restriction on the diameter of the flow pipe, and since the connecting pipe between the valve body and the temperature measuring part can be long, both can be installed remotely, and it is small and has a simple structure, with a low 1st I. The structure is characterized by a wax that expands in response to the salinity of the surrounding paleofluid, which displaces the diaphragm,
The displacement generated in this diaphragm is transmitted to the plunger of the first cylinder filled with incompressible fluid, and due to the displacement of this plunger, the first cylinder is communicated with the connecting pipe and the incompressible fluid is created between the first cylinder and the first cylinder. A plunger of a second cylinder filled with fluid is displaced against a valve spring, and the displacement of the plunger displaces the valve through the valve stem.

以下本発明の図示実施例について説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Illustrated embodiments of the invention will be described below.

第2図は本発明に係る自動温度調整弁で、測ン品部20
と弁本体21とで構成される。被測温流体5の流通管4
に固定された取付具22により、流通管4内に突出して
気密固定された保持筒23は、その先端部にねし込み固
定された案内筒24を有する。保持筒23は案内筒24
の内径とほぼ同径の中心孔25を有し、その上半部を稍
大径とし、ここに第1のシリンダ26の下端ねじ部27
がねし込み固定されている。保持筒23の上端には拡大
孔28.29が2段状に設けられ、孔28にシリンダ2
6のねじ込み用つば部30が収納され、更に孔29内に
おいて袋ナツト31がシリンダ26の上端ねじ部32に
螺入してシリンダ26の」1端が密閉される。
FIG. 2 shows an automatic temperature control valve according to the present invention, with the measuring part 20
and a valve body 21. Flow pipe 4 for temperature measured fluid 5
A holding cylinder 23 that protrudes into the flow pipe 4 and is airtightly fixed by a fitting 22 fixed to the holding cylinder 23 has a guide cylinder 24 that is screwed into and fixed to the distal end of the holding cylinder 23 . The holding cylinder 23 is the guide cylinder 24
The center hole 25 has a diameter that is almost the same as the inner diameter of the first cylinder 26, and the upper half thereof has a slightly larger diameter, and the lower end threaded portion 27 of the first cylinder 26 is located here.
is screwed into place. Enlarged holes 28 and 29 are provided in two stages at the upper end of the holding cylinder 23, and the cylinder 2 is inserted into the hole 28.
6 is accommodated, and a cap nut 31 is screwed into the upper threaded portion 32 of the cylinder 26 in the hole 29, thereby sealing one end of the cylinder 26.

袋ナツト31に突設したねじ部33に保護管34が螺入
され、また第1のシリンダ26と後述する第2のシリン
ダ51を連通ずる接続管として、袋ナツト31に貫1f
flろう着したキャピラリ管35 (3fiはキャピラ
リ管35を被覆する蛇管)は、後述する弁本体21の第
2のシリンダ51に螺入した袋ナツト52に貫通ろう着
される。
A protective tube 34 is screwed into a threaded portion 33 protruding from the cap nut 31, and a 1f hole is inserted through the cap nut 31 as a connecting tube to communicate the first cylinder 26 and a second cylinder 51, which will be described later.
The fl soldered capillary tube 35 (3fi is a flexible tube that covers the capillary tube 35) is penetrated and brazed to a cap nut 52 screwed into a second cylinder 51 of the valve body 21, which will be described later.

案内筒24の先端フランジ39とカプセル40の開口部
段部端面41との間にダイヤフラム42を挟んで、カプ
セル40がフランジ39に巻き締め固着され、カプセル
40内には熱伝導性良好な銅粉などの金属粉を混入した
ワックス43を充填してなる。
A diaphragm 42 is sandwiched between the tip flange 39 of the guide tube 24 and the end surface 41 of the stepped opening of the capsule 40, and the capsule 40 is tightly wound and fixed to the flange 39. Copper powder with good thermal conductivity is contained in the capsule 40. It is filled with wax 43 mixed with metal powder such as.

ワックス43は、一般に固相と液相間の相変移温度範囲
において、大きな線形変位ををり出せる犬なる熱膨張性
を有し、ワックス43としては、被測温流体5の制御温
度が前記相変移温度の範囲内に入るようなワックスを用
いる。
The wax 43 generally has a thermal expansion property that allows it to produce a large linear displacement in the phase transition temperature range between the solid phase and the liquid phase. Use a wax that falls within the transition temperature range.

第1のシリンダ26及びキャピラリ管35内にはケロシ
ン又は水銀、フロン等の非圧縮性流体44が充填されて
おり、シリンダ26はOリング45及びハックアノプリ
ング46を装着したプランジャ47にて密閉される。こ
のプランジャ47とダイヤフラム42との間には、ロッ
ド48と硬質ゴム49が介装されている。
The first cylinder 26 and capillary tube 35 are filled with an incompressible fluid 44 such as kerosene, mercury, or fluorocarbon, and the cylinder 26 is sealed with a plunger 47 equipped with an O-ring 45 and a Huck anopring 46. Ru. A rod 48 and hard rubber 49 are interposed between the plunger 47 and the diaphragm 42.

したがって、ワックス43の熱膨張によりダイヤフラム
42が変形すると、この変形はダイヤフラム保護用の硬
質ゴム49及びロッド48を介してプランジャ47に伝
達され、非圧縮性流体44を変位させる。
Therefore, when the diaphragm 42 is deformed due to thermal expansion of the wax 43, this deformation is transmitted to the plunger 47 via the hard rubber 49 for protecting the diaphragm and the rod 48, displacing the incompressible fluid 44.

一方、弁本体21は、弁本体21の−に端部の細径部5
0内に、測温部20のシリンダ26と同様の構造を有し
て固定された第2のシリンダ51を有し、このシリンダ
51の上端に測温部20と同様に袋ナツト52と保護管
53が取付けられ、この袋ナツト52に測温部20から
のキャピラリ管35が貫通ろう着される。第2のシリン
ダ51も、0リング54、ハックアップリング55を装
着したプランジャ56にて密閉された内部に、非圧縮性
流体44が充填されている。
On the other hand, the valve body 21 has a narrow diameter portion 5 at the negative end of the valve body 21.
A second cylinder 51 having the same structure as the cylinder 26 of the temperature measuring section 20 is fixed inside the temperature measuring section 20, and a cap nut 52 and a protective tube are attached to the upper end of the cylinder 51 in the same way as the temperature measuring section 20. 53 is attached, and the capillary tube 35 from the temperature measuring section 20 is penetrated and soldered to this cap nut 52. The second cylinder 51 is also sealed with a plunger 56 equipped with an O-ring 54 and a hack-up ring 55, and is filled with an incompressible fluid 44.

したがって、測温部20のプランジャ47の変位は、非
圧縮性流体44を介して弁本体21のプランジャ56に
伝達される。
Therefore, the displacement of the plunger 47 of the temperature measuring section 20 is transmitted to the plunger 56 of the valve body 21 via the incompressible fluid 44.

プランジャ56の下面からは先端に弁57を有する弁棒
58が弁本体21内を貫通して延びている。
A valve rod 58 having a valve 57 at its tip extends from the lower surface of the plunger 56 and passes through the inside of the valve body 21 .

又、弁本体21内には、弁棒58の一ヒ端に固定された
バネ押え板59と対向固定バネ座60間に、プランジャ
56を付勢する弁バネ61が装着されている。
Further, a valve spring 61 for biasing the plunger 56 is installed in the valve body 21 between a spring presser plate 59 fixed to one end of the valve stem 58 and an opposing fixed spring seat 60.

62は零点調整ねしで、弁棒58を伸縮させて弁57位
置を変位させ、温度の零点を調整する。63は温度の零
点の指示目盛、64は弁棒58に取付けられた指示針で
ある。弁本体21ば出口において流体のけを調整する二
方弁を示しているが、勿論−一方弁でもよく、この場合
には全流れ面積が弁の全ての位置で一定である。
Reference numeral 62 denotes a zero point adjustment screw, which expands and contracts the valve stem 58 to displace the position of the valve 57 and adjust the zero point of the temperature. Reference numeral 63 indicates a temperature zero point indicating scale, and reference numeral 64 indicates an indicator needle attached to the valve stem 58. Although the valve body 21 is shown as a two-way valve that adjusts fluid drainage at the outlet, it can of course also be a one-way valve, in which case the total flow area is constant at all positions of the valve.

次に、作用を説明する。Next, the effect will be explained.

感熱ワックス43をとりまく周囲の被測温流体5の〆品
度に応して、ワックス43は固相から液相に変移する。
The wax 43 changes from a solid phase to a liquid phase depending on the quality of the temperature-measuring fluid 5 surrounding the heat-sensitive wax 43.

この相変移によるワックス43の大なる熱膨張により、
ダイヤフラム42が変位すると、ごのダイヤフラム42
の変位は硬質ゴム49、ロッド4B、及びプランジャ4
7を介して非圧縮性流体44に伝えられ、この非圧縮性
流体により弁本体21のプランジャ56が弁バネ61に
抗して変位する。このプランジャ56の変位により弁棒
58が変位し、先端の弁57の開度調節がなされて、被
測温流体の流量制御をなし、これにより被測温流体5を
一定温度に保つ。
Due to the large thermal expansion of the wax 43 due to this phase change,
When the diaphragm 42 is displaced, the other diaphragm 42
The displacement of hard rubber 49, rod 4B, and plunger 4
7 to the incompressible fluid 44, and this incompressible fluid causes the plunger 56 of the valve body 21 to be displaced against the valve spring 61. This displacement of the plunger 56 displaces the valve stem 58, and the opening degree of the valve 57 at the tip is adjusted, thereby controlling the flow rate of the temperature-measuring fluid, thereby maintaining the temperature-measuring fluid 5 at a constant temperature.

したがって、本発明は下記の効果を有する。Therefore, the present invention has the following effects.

測〆晶部の感温材としてワックスを用いてその固相と液
相間の相変移温度範囲における大なる熱膨張を線形変位
として取出し、非圧縮性流体を介して弁本体のプランジ
ャをNノか廿るので、ワックスの固相から液相の大なる
熱膨張力によりプランジャを大きな力(従来の3〜5倍
)で動かすことができ、そのため従来の自動温度調整弁
ではなし得なかった大口1¥の弁を動かすことができ、
大きな流量を制御できる自動温度調整弁を得ることがで
きる。
Wax is used as a temperature-sensitive material in the crystal measuring part, and the large thermal expansion in the phase transition temperature range between the solid phase and liquid phase is extracted as a linear displacement, and the plunger of the valve body is moved through the incompressible fluid to N. Because of this, the plunger can be moved with a large force (3 to 5 times that of conventional valves) due to the large thermal expansion force of the wax from the solid phase to the liquid phase. You can move a valve of 1 yen,
An automatic temperature regulating valve capable of controlling large flow rates can be obtained.

又、ワックスの温度と固相と液相間における熱膨張量と
の関係の精度が良いので、測定温度に対する熱膨張用の
バラツキが少なく、したがって誤差の少ない(従来の1
15〜1/4)温度調整を可能とする。
In addition, since the relationship between the temperature of the wax and the amount of thermal expansion between the solid phase and the liquid phase is highly accurate, there is little variation in the thermal expansion with respect to the measurement temperature, and therefore there is little error (compared to the conventional 1
15 to 1/4) Enables temperature adjustment.

又、ワックスはダイヤフラムにより閉塞されていること
等から、ワックスを上向きにして測温部を流通管に取付
けても、何等問題なく、測温部の吹付姿勢に制限を受け
ない。
Further, since the wax is blocked by a diaphragm, there is no problem even if the temperature measuring section is attached to the flow pipe with the wax facing upward, and there are no restrictions on the spraying position of the temperature measuring section.

又、固相から液相に変移するワックスを用いるので、小
量のワックスでも大なる膨張力を発生する。このため、
ワックスを充填するカプセルはコンパクトで、そのため
流通管内への測温部の挿入部は短かくてすむ。したがっ
′ζ、小径の流通管にも何等問題なく取付けることがで
き、/If、1ffi管の口径並びに取付場所にも制限
を受けない。
Furthermore, since a wax that transitions from a solid phase to a liquid phase is used, even a small amount of wax generates a large expansion force. For this reason,
The capsule filled with wax is compact, so the insertion part of the temperature measurement part into the flow pipe can be short. Therefore, it can be installed in a small-diameter flow pipe without any problems, and there are no restrictions on the diameter of the /If, 1ffi pipe or the installation location.

又、ワックスの膨張による線形変位の弁本体のプランジ
ャへの伝達は、非圧縮性流体を媒体として行うので、測
温部と弁本体の間の非圧縮性流体を充填した接続管を長
くしても、何等問題を生ぜず、周囲の雰囲気に影響を受
けることもない。したがって、接続管を長くして、測温
部と弁本体を遠隔設置できる。
In addition, since the linear displacement due to wax expansion is transmitted to the plunger of the valve body using an incompressible fluid, the connecting pipe filled with incompressible fluid between the temperature measuring part and the valve body is lengthened. However, it does not cause any problems and is not affected by the surrounding atmosphere. Therefore, the temperature measuring section and the valve body can be installed remotely by lengthening the connecting pipe.

又、全体に小形にでき、構造も簡単で、コストも低い。Moreover, the overall size can be made small, the structure is simple, and the cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を示す断面図、第2図は本発明の一実施
例を示す断面図である。 4・・・流通管、 5・・・被測温流体、20・・・測
温部、 21・・・弁本体、23・・・保持筒、 24
・・・案内筒、26・・・第1のシリンダ、 31.5
2・・・袋ナツト、34.53・・・保護管、 35・
・・キャピラリ管、36・・・蛇管、 40・・・カプ
セル、42・・・ダイヤフラム、43・・・ワックス、
44・・・非圧縮性流体、47.56・・・プランジャ
、48・・・ロッド、 49・・・硬質ゴム、51・・
・第2のシリンダ、 57・・・弁、58・・・弁棒、
 61・・・弁バネ、62・・・零点調整ねし。 代理人 弁理士 岡 部 健 −
FIG. 1 is a sectional view showing a conventional example, and FIG. 2 is a sectional view showing an embodiment of the present invention. 4... Flow pipe, 5... Fluid to be measured, 20... Temperature measuring section, 21... Valve body, 23... Holding cylinder, 24
...Guide tube, 26...First cylinder, 31.5
2... Bag nut, 34.53... Protection tube, 35.
...Capillary tube, 36...Serpentine tube, 40...Capsule, 42...Diaphragm, 43...Wax,
44... Incompressible fluid, 47.56... Plunger, 48... Rod, 49... Hard rubber, 51...
・Second cylinder, 57...valve, 58...valve stem,
61... Valve spring, 62... Zero point adjustment screw. Agent Patent Attorney Ken Okabe −

Claims (1)

【特許請求の範囲】[Claims] 周囲の被^す温流体の温度に応答して膨張するワックス
によってダイヤフラムを変位させ、このダイヤフラムに
生ずる変位を非圧縮性流体を充填した第1のシリンダの
プランジャに伝え、このプランジャの変位により、前記
第1のシリンダと接続管で連通し第1のシリンダとの間
に非圧縮性流体を充填した第2のシリンダのプランジャ
を弁バネに抗して変位させ、このプランジャの変位によ
り弁棒を通じて弁を変位させることを特徴とする自動温
度調整弁。
A diaphragm is displaced by a wax that expands in response to the temperature of the surrounding hot fluid, and the displacement caused in the diaphragm is transmitted to a plunger of a first cylinder filled with an incompressible fluid, and the displacement of this plunger causes A plunger of a second cylinder communicated with the first cylinder through a connecting pipe and filled with an incompressible fluid between the first cylinder and the first cylinder is displaced against a valve spring, and the displacement of the plunger causes a flow of air to flow through the valve stem. An automatic temperature control valve characterized by displacing the valve.
JP14312183A 1983-08-06 1983-08-06 Automatic temperature regulating valve Pending JPS6037479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14312183A JPS6037479A (en) 1983-08-06 1983-08-06 Automatic temperature regulating valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14312183A JPS6037479A (en) 1983-08-06 1983-08-06 Automatic temperature regulating valve

Publications (1)

Publication Number Publication Date
JPS6037479A true JPS6037479A (en) 1985-02-26

Family

ID=15331402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14312183A Pending JPS6037479A (en) 1983-08-06 1983-08-06 Automatic temperature regulating valve

Country Status (1)

Country Link
JP (1) JPS6037479A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757988B1 (en) 2007-03-14 2007-09-11 조진식 Displacement sensing system of valve opening and shutting rate for control valve
JP2015162154A (en) * 2014-02-28 2015-09-07 フシマン株式会社 Temperature control valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106026A (en) * 1973-02-12 1974-10-08
JPS5321389A (en) * 1976-08-11 1978-02-27 Matsushita Electric Ind Co Ltd Thermal sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106026A (en) * 1973-02-12 1974-10-08
JPS5321389A (en) * 1976-08-11 1978-02-27 Matsushita Electric Ind Co Ltd Thermal sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100757988B1 (en) 2007-03-14 2007-09-11 조진식 Displacement sensing system of valve opening and shutting rate for control valve
JP2015162154A (en) * 2014-02-28 2015-09-07 フシマン株式会社 Temperature control valve

Similar Documents

Publication Publication Date Title
US1847911A (en) Thermostatically controlled valve
JPS6037479A (en) Automatic temperature regulating valve
US3650505A (en) Thermal valve
JPH02134549A (en) Heat exchange measurement method and apparatus
US632808A (en) Pressure-regulator and connection.
US4712384A (en) Integrated evaporator and thermal expansion valve assembly
CN205956400U (en) Self -operated temperature regulating valve
US1408744A (en) Thermostatically-operated ammonia expansion valve
US1945745A (en) Thermostat controlling temperature for centrai heating system
US1294688A (en) Pyrometer, &amp;c.
US3365932A (en) Densitometer
US3276214A (en) Cryogenic liquid level control devices
US2368592A (en) Expansion valve
US4114808A (en) Pressure biased pneumatic thermostat
US2984260A (en) Pneumatically operated control mechanism
JPS59216025A (en) Wax element type remote temperature detector and transmitter
JP2959951B2 (en) Liquid circulation thermostat
US3642015A (en) Temperature controlling liquid valve
DYSART et al. 7.8 Regulators—Temperature
US332150A (en) holmes
GB437231A (en) Improvements in or relating to expansion valves for refrigerators
CN109695723A (en) A kind of thermostat valve design method with bellows
RU2382395C1 (en) Temperature regulator building heating system
US1890531A (en) Automatic weak liquor control
US1981313A (en) Thermostatically operated valve