JPS603724B2 - Method for forming transparent conductive pattern - Google Patents

Method for forming transparent conductive pattern

Info

Publication number
JPS603724B2
JPS603724B2 JP11228375A JP11228375A JPS603724B2 JP S603724 B2 JPS603724 B2 JP S603724B2 JP 11228375 A JP11228375 A JP 11228375A JP 11228375 A JP11228375 A JP 11228375A JP S603724 B2 JPS603724 B2 JP S603724B2
Authority
JP
Japan
Prior art keywords
transparent conductive
printing
conductive film
conductive pattern
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11228375A
Other languages
Japanese (ja)
Other versions
JPS5236495A (en
Inventor
洵 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP11228375A priority Critical patent/JPS603724B2/en
Publication of JPS5236495A publication Critical patent/JPS5236495A/en
Publication of JPS603724B2 publication Critical patent/JPS603724B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electric Cables (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

【発明の詳細な説明】 この発明は液晶パネル、プラズマディスプレー・ェレク
トロルミネセンス等、種々の表示素子に使用される透明
電極パターンのついたガラスの製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing glass with a transparent electrode pattern used in various display elements such as liquid crystal panels, plasma displays, electroluminescence, and the like.

従来、ガラスに透明電極パターンを形成する方法として
、{1} 全面透明電導膜を被膜後、フオトェツチング
によりパターンの形成。
Conventionally, as a method for forming a transparent electrode pattern on glass, {1} After coating the entire surface with a transparent conductive film, a pattern is formed by photoetching.

【2)全面透明電導膜を被膜後、レジストィンクを印刷
しエッチングしてパターンを形成。
[2] After coating the entire surface with a transparent conductive film, a resist ink is printed and etched to form a pattern.

‘31 金属酸化物を含む印刷インク印刷後、透明導亀
膜をコーティングし、前記印刷インクを除去して透明導
電膜を形成。
'31 After printing with printing ink containing metal oxide, a transparent conductive film is coated, and the printing ink is removed to form a transparent conductive film.

という様な方法があった。There was a method like this.

しかしながら{11の方法は、フオトェツチング法が工
程が非常に複雑で、多く技術を必要とし、製造コストが
非常に高くなるという欠点がある。
However, the method of {11] has the disadvantage that the photo-etching process is very complicated, requires many techniques, and the manufacturing cost is very high.

■の方法は‘1}に比較し工程はかなり簡単になり製造
コストが安くなるが、エッチング工程があるため、公害
問題もあり、自動化もかなり困難である。‘31の方法
は、昭和4乎手公開特許公報第113573号で述べら
れている方法であるが{1}、{2’の方法と比較する
と工程が非常に簡単であり、エッチング工程がないため
公害もなく良い方法であるが、遮蔽用組成物として粉状
金属酸化物を使用しているため、その吸湿性、他の混合
物の適合性から、印刷インクとして合成した際、粘性特
性の急変、金属酸化物の沈澱などを生じ、一時的には印
刷可能であっても連続的に多数の印刷は無理であり、透
明電極パターン製造の際に大中な工程削減とはなり得な
い。
Method (2) has a considerably simpler process and lower manufacturing costs than method '1', but since it involves an etching process, it poses a pollution problem and is also quite difficult to automate. The '31 method is the method described in Showa No. 113573, but compared to {1} and {2' method, the process is very simple and there is no etching process. Although this method is good and does not cause any pollution, since powdered metal oxides are used as the shielding composition, due to its hygroscopicity and compatibility with other mixtures, when it is synthesized as a printing ink, it may cause sudden changes in viscosity properties. Precipitation of metal oxides occurs, and even if it is possible to print temporarily, it is impossible to print many times continuously, and it cannot be used to significantly reduce the number of steps when manufacturing transparent electrode patterns.

本発明は前記した従来の欠点を除去するために行なわれ
、工程を削減し、かつ品質が均一な製品を安定に製造す
る方法を提供することを目的としたものである。
The present invention was carried out in order to eliminate the above-mentioned conventional drawbacks, and aims to provide a method for stably manufacturing products with uniform quality while reducing the number of steps.

以下、本発明の実施例を詳述する。Examples of the present invention will be described in detail below.

本発明に於て、品質が均一で安定した製品を製造するた
めには、印刷インクの特性が最も重要な点である。
In the present invention, the characteristics of the printing ink are the most important point in order to manufacture products with uniform and stable quality.

安定な印刷インクとして必要な特性は次に述べる通りで
ある。‘1’インク合成後、長期間インクの特性に変化
がないこと。
The properties necessary for a stable printing ink are as follows. '1' There should be no change in ink properties for a long period of time after ink synthesis.

特に粘性の変化があってはならない。【2} スクリー
ン印刷特に自ずまりが起きないこと。
In particular, there should be no change in viscosity. [2] Screen printing should not cause any self-curing.

剛 印刷パターンのエッジがシャープにできること。‘
4ー 透明導電膜被膜コーティング時の500℃前後の
温度で、十分な耐熱性と、化学的安定性と、遮蔽効果を
有すること。
Rigidity The ability to make the edges of a printed pattern sharp. '
4- Must have sufficient heat resistance, chemical stability, and shielding effect at a temperature of around 500°C when coating the transparent conductive film.

前記した特性を満足する印刷インクとして種々のインク
を合成したが、最適な耐熱粒子として、窒化棚素を用い
、バインダーとして硝化線、溶剤としてプチルカルビト
ールを用いた印刷インクが、全て前記の特性を満足した
Various inks have been synthesized as printing inks that satisfy the above-mentioned characteristics, but all of the printing inks that use shelchloride nitride as the optimum heat-resistant particles, nitrified wire as the binder, and butyl carbitol as the solvent have all the above-mentioned characteristics. Satisfied.

配合比は重量比でほぼ10:10:1(硝化線が1)で
あった。
The blending ratio was approximately 10:10:1 (nitrification line: 1) by weight.

ここで遮蔽用物質として用いた窒化欄素は900℃以下
で化学的安定に富み、他の混合物と何ら反応せず、イン
クの長期安定性が得られ、透明導電膜コーティング時に
も何ら反応を示さず、かつ平均粒度が2〜3山肌という
粒子を用いたため印刷時のエッジのシャープさも得られ
る。
The nitride column used here as a shielding substance is chemically stable at temperatures below 900°C, does not react with other mixtures, provides long-term stability of the ink, and shows no reaction when coated with a transparent conductive film. Moreover, since particles with an average particle size of 2 to 3 peaks are used, sharp edges can be obtained during printing.

溶剤として用いたブチルカルピトールは各種の硝化綿の
溶剤の中でも最も蒸気圧の低い物であり、印刷時の乾燥
がなく、目ずまりは全く起こらない。
Butylcarpitol used as a solvent has the lowest vapor pressure among the various solvents for nitrified cotton, so there is no drying during printing and no clogging occurs.

又、混合比も印刷しやすい様に適当に可変することによ
り安定な印刷が行なうことができる。この窒化棚素を主
体とした印刷インクを透明基板に印刷する工程において
は、最終的に得ようとする所望パターンのネガとなるよ
うにスクリーン印刷することは言うまでもないことであ
る。ガラスに印刷後のインクは常温では長期間固化しな
いが、透明導電膜コーティング前で保存したい場合は1
50qoで数分加熱することによりプチルカルビト−ル
は蒸発し印刷インクは固化する。つまり、印刷工程の直
後に後述するコーティング工程が行なわれる場合には、
印刷後そのままコーティングを行なっても良いが、印刷
後の基板を長時間ストックする場合は、インクの拡散等
を防ぐため上記乾燥工程が必要となる。印刷後のガラス
基板は約500℃に加熱され酸化スズの透明導電膜がコ
ーティングされる。
Furthermore, stable printing can be achieved by appropriately varying the mixing ratio to facilitate printing. It goes without saying that in the process of printing this printing ink mainly composed of shelchloride nitrides onto a transparent substrate, screen printing is performed to obtain a negative of the desired pattern to be finally obtained. The ink after printing on glass does not solidify for a long time at room temperature, but if you want to preserve it before coating with a transparent conductive film, please use 1.
By heating at 50 qo for several minutes, the butyl carbitol evaporates and the printing ink solidifies. In other words, if the coating process described below is performed immediately after the printing process,
Coating may be performed directly after printing, but if the printed substrates are to be stored for a long time, the drying step described above is necessary to prevent ink from spreading. The glass substrate after printing is heated to about 500° C. and coated with a transparent conductive film of tin oxide.

この加熱時にブチルカルビトールは蒸発し、かつ硝化線
は完全に燃焼する。
During this heating, butyl carbitol evaporates and the nitrification line is completely burned.

この際発生する排ガスは、酸化スズのコーティング膜に
悪影響をおよぼすので、この排ガスは除去する。こうし
て印刷インクは燃焼して粉状の室化棚素のみが残留物と
してガラス基板上に付着する。従って500℃加熱状態
では室化棚素のみがパターン状に残留し、透明導電膜は
遮蔽される。透明導電膜コーティング後のガラスは冷却
された後、その上の遮蔽物質が除去される。
The exhaust gas generated at this time has an adverse effect on the tin oxide coating film, so this exhaust gas is removed. In this way, the printing ink is burned and only the powdered chloride is deposited on the glass substrate as a residue. Therefore, when heated at 500° C., only the indoor shelving elements remain in a pattern, and the transparent conductive film is shielded. After the glass coated with the transparent conductive film is cooled, the shielding material thereon is removed.

このときに遮蔽物質(窒化棚素)上のコーティング膜も
当然除去される。この剥離は、遮蔽物が完全に窒化棚素
粒子のみなので非常に容易で、超音波洗浄、ブラシによ
る剥離、軽く手でこすりとる等いずれの方法でも可能で
ある。こうして印刷パターン(ネガパターン)がすべて
除去され、所望のパターン形状が透明導電膜で形成され
る。以上に述べたように、この発明の透明電極パターン
の製造方法によれば、連続式の透明電極コーティング装
置を用いることによって、全くバッチ工程が入ることが
なくなり、全工程の連続化が可能となり、液晶パネル等
表示装置製造の大中なコストダウンが可能となる。
At this time, the coating film on the shielding material (shelf nitride) is also naturally removed. This peeling is very easy because the shielding material is completely composed of nitrided shelphic particles, and can be done by any method such as ultrasonic cleaning, peeling with a brush, or gently rubbing by hand. In this way, the printed pattern (negative pattern) is completely removed, and a desired pattern shape is formed using the transparent conductive film. As described above, according to the method for manufacturing a transparent electrode pattern of the present invention, by using a continuous type transparent electrode coating device, there is no need for a batch process at all, and the entire process can be made continuous. It is possible to significantly reduce the cost of manufacturing display devices such as liquid crystal panels.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化硼素を主体とした印刷インクを透明基板にスク
リーン印刷する工程と、この印刷された透明基板上に約
500℃に加熱しながら透明導電性被膜をコーテイング
する工程と、前記印刷インクの燃焼により生じた残留物
を除去する工程とからなる透明導電性パターンの形成方
法。
1 A process of screen printing a printing ink mainly composed of boron nitride on a transparent substrate, a process of coating a transparent conductive film on the printed transparent substrate while heating it to about 500 ° C., and a process of burning the printing ink. A method for forming a transparent conductive pattern, comprising a step of removing generated residue.
JP11228375A 1975-09-17 1975-09-17 Method for forming transparent conductive pattern Expired JPS603724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11228375A JPS603724B2 (en) 1975-09-17 1975-09-17 Method for forming transparent conductive pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11228375A JPS603724B2 (en) 1975-09-17 1975-09-17 Method for forming transparent conductive pattern

Publications (2)

Publication Number Publication Date
JPS5236495A JPS5236495A (en) 1977-03-19
JPS603724B2 true JPS603724B2 (en) 1985-01-30

Family

ID=14582808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11228375A Expired JPS603724B2 (en) 1975-09-17 1975-09-17 Method for forming transparent conductive pattern

Country Status (1)

Country Link
JP (1) JPS603724B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792704A (en) * 1980-12-01 1982-06-09 Tokyo Denshi Kagaku Kk Method of forming pattern of metallic oxide film
JPS6093761U (en) * 1983-12-01 1985-06-26 日本軽金属株式会社 sacrificial anode
JPS60150508A (en) * 1984-01-18 1985-08-08 日本写真印刷株式会社 Method of producing transparent electrode board

Also Published As

Publication number Publication date
JPS5236495A (en) 1977-03-19

Similar Documents

Publication Publication Date Title
JPH03247772A (en) Composition for forming platinum thin film
JPS603724B2 (en) Method for forming transparent conductive pattern
JPS6325448B2 (en)
US6120586A (en) Metal composition containing metal acetylide, blank having metallic coating formed therewith, and method for forming the metallic coating
JPS6319046B2 (en)
JP2981944B2 (en) Method for forming patterned transparent conductive film
JPH0220707B2 (en)
EP0976848B1 (en) Metal composition containing metal acetilide, blank having metallic coating formed therewith, and method for forming the metallic coating
JPS6063174A (en) Manufacture of thermal head
JP2702713B2 (en) Method for producing base metal thin film
JPS60243279A (en) Formation of transparent electrode
JPH01173041A (en) Pattern forming method
JPH01276512A (en) Offset printing ink composition for transparent conductive film
JPH01318044A (en) Preparation of ruthenium resinate
JPH0593915A (en) Pattern formation
JP2843982B2 (en) Thermal head
JPS58208380A (en) Paste to form thin fluophor film
JP2887318B2 (en) Method of manufacturing metal thin film resistor
JPS5826602B2 (en) Ink for shielding film during pattern formation
JPH02157121A (en) Screen printing ink for forming superconducting oxide thin film and formation of superconducting oxide thin film using this ink
JPS5927961A (en) Paste for forming transparent film and transparent film
JPS5933702A (en) Paste for forming transparent conductive film
JPH0581942A (en) Formation of patterned transparent conductive film
JPS6235411A (en) Formation of transparent electrode
JPH0430580A (en) Manufacture of photosensor