JPS6037066B2 - Manufacturing method of densified granulated slag - Google Patents

Manufacturing method of densified granulated slag

Info

Publication number
JPS6037066B2
JPS6037066B2 JP51134649A JP13464976A JPS6037066B2 JP S6037066 B2 JPS6037066 B2 JP S6037066B2 JP 51134649 A JP51134649 A JP 51134649A JP 13464976 A JP13464976 A JP 13464976A JP S6037066 B2 JPS6037066 B2 JP S6037066B2
Authority
JP
Japan
Prior art keywords
slag
iron oxide
granulated slag
blast furnace
densified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51134649A
Other languages
Japanese (ja)
Other versions
JPS5359723A (en
Inventor
泉 門奈
正道 斉木
征幸 高田
辰雄 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP51134649A priority Critical patent/JPS6037066B2/en
Publication of JPS5359723A publication Critical patent/JPS5359723A/en
Publication of JPS6037066B2 publication Critical patent/JPS6037066B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は、コンクリートモルタル用細骨村などに適する
鰍密化水砕スラグの製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing densified granulated slag suitable for use in concrete mortar, etc.

製鉄事業の発達とともに、高炉から副生する熔融高炉ス
ラグの量も増大しているが、その一部分は有効に利用さ
れているものの、大部分は処置に窮しているのが実状で
ある。かかる熔融高炉スラグの処理には、従来2通りの
方法が行なわれている。
With the development of the steel industry, the amount of molten blast furnace slag produced as a by-product from blast furnaces has also increased, but while some of it is being used effectively, the reality is that most of it cannot be disposed of. Conventionally, two methods have been used to treat such molten blast furnace slag.

その中の一つは、溶融高炉スラグを広大な敷地に放流し
て、自然冷却後、ブルドーザーなどで掘り起し、適宜の
大きさに破砕してバラスとして利用する方法である。ま
た他の一つは、溶融高炉スラグに水を噴射して急冷破砕
して直径5肌以下の所謂水砕スラグとなし、高炉セメン
トの原料とする方法である。ところで、建築、土木の分
野で使用するコンクリート、モルタルについて天然砂の
不足が指摘されてから久しい。そこで天然砂に代る人工
砂の研究が盛んで、高炉スラグのこの方面への適用も考
えられているところである。ところが、前述のバラスの
製造による方法では主として大きなものが得られるので
、これを紬骨村とするためには、破砕しなければならな
いが、バラスは強度が非常に大きいために紬骨村として
適する粒度(5側以下)に破砕することは極めて困難で
不経済である。又、水砕スラグは、直径5側以下の粒径
のものが大部分であるから、粒径としては細骨材に適し
ているが、軟質で粗しようなガラス質であるため、紬骨
村として使用するためには強度、比重、吸水率等に問題
があり、不適当である。本発明者は、高炉スラグを主と
して紬骨材として利用する立場から研究を進めた結果、
水砕スラグを繊密化することが最も適当な方法であるこ
とを見究め、本発明に到達した。
One method is to discharge molten blast furnace slag onto a vast site, allow it to cool naturally, then dig it up with a bulldozer or the like, crush it into appropriate sizes, and use it as ballast. Another method is to inject water into molten blast furnace slag and rapidly crush it to produce so-called granulated slag with a diameter of 5 or less, which is used as a raw material for blast furnace cement. By the way, it has been a long time since it has been pointed out that there is a shortage of natural sand for concrete and mortar used in the fields of architecture and civil engineering. Therefore, research into artificial sand as an alternative to natural sand is active, and the application of blast furnace slag in this field is also being considered. However, the above-mentioned method of manufacturing balas mainly yields large pieces, so in order to make them into tsumugi-kotsu villages, they must be crushed, but balas are very strong and therefore suitable for tsumugi-kotsu-mura. It is extremely difficult and uneconomical to crush to a particle size (less than 5 sides). In addition, since most of the granulated slag has a particle size of 5 or less in diameter, it is suitable for use as fine aggregate, but since it is soft and coarsely glassy, it is There are problems with strength, specific gravity, water absorption rate, etc., and it is unsuitable for use as a material. As a result of conducting research from the perspective of using blast furnace slag primarily as pongee aggregate, the present inventor found that
The inventors have determined that the most appropriate method is to densify granulated slag, and have arrived at the present invention.

すなわち、本発明は酸化鉄含有物質を溶融高炉スラグに
添加して後常温によりこれを水砕スラグ化することを特
徴とする繊密化水砕スラグの製造法である。
That is, the present invention is a method for producing granulated granulated slag, which is characterized by adding an iron oxide-containing substance to molten blast furnace slag and then converting it into granulated slag at room temperature.

酸化鉄含有物質としては転炉スラグ、鉄鉱石が適当であ
る。
Suitable materials containing iron oxide include converter slag and iron ore.

これらの物質を単独でまたは混合して溶融高炉スラグに
添加し、充分に溶解させてから、通常の方法で水砕スラ
グ化すると、表乾見掛比重が高く、吸水率の低い極めて
重質繊密化された水砕スラグが得られる。この際酸化鉄
含有物質の添加量は種々実験の結果酸化鉄量(Fe○換
算。以下同じ)にして2.5%以下程度で良い。酸化鉄
含有物質の粒径は2肋以下が適当で、それより大きいと
溶け残りが生じて好ましくない。第1図は2.5肋以上
を約50%含む転炉スラグを添加した場合の製品の表乾
見掛比重を示すグラフである。グラフ中60分付近から
80分付近にかけて両端矢印の実線が示してあるが、こ
れは転炉スラグの投入時期を示している。この実線の意
味は他図でも同様である。転炉スラグの添加速度は15
1k9/分(酸化鉄量にして0.9%)である。このグ
ラフから明らかなことは、出さし、時間の経過と共に出
さし、量が増し、水砕スラグの表乾見掛比重が一点鎖線
で示してあるように低下の傾向をたどる時期に、転炉ス
ラグを添加しても、この実験の場合には、水砕スラグの
表乾見掛比重は最高約224程度にしかならない。また
吸水率は曲線に沿って括弧書で示してあるが、最も良い
ときで2.8%である。一方、第2図は同じ転炉スラグ
で粒径が1.2伽以下のものを添加した場合の製品の表
乾見掛比重を示すグラフである。
When these substances are added alone or in a mixture to molten blast furnace slag, sufficiently dissolved, and then converted into granulated slag using the usual method, extremely heavy fibers with high surface dry apparent specific gravity and low water absorption are produced. A densified granulated slag is obtained. At this time, the amount of the iron oxide-containing substance added may be about 2.5% or less in terms of iron oxide amount (in terms of Fe○, hereinafter the same) as a result of various experiments. The particle size of the iron oxide-containing substance is suitably less than 2 ribs, and if it is larger than that, undissolved residue will occur, which is not preferable. FIG. 1 is a graph showing the surface dry apparent specific gravity of a product when converter slag containing approximately 50% of 2.5 ribs or more is added. In the graph, a solid line with arrows at both ends is shown from around 60 minutes to around 80 minutes, which indicates the timing of charging the converter slag. The meaning of this solid line is the same in other figures. The addition rate of converter slag is 15
1k9/min (0.9% iron oxide amount). What is clear from this graph is that the amount of slag increases over time, and the surface dry apparent specific gravity of granulated slag tends to decrease as shown by the dot-dash line. Even if slag is added, in this experiment, the surface dry apparent specific gravity of the granulated slag is only about 224 at most. The water absorption rate is shown in parentheses along the curve, and is 2.8% at its best. On the other hand, FIG. 2 is a graph showing the surface dry apparent specific gravity of the product when the same converter slag with a particle size of 1.2 or less is added.

このグラフで明らかなとおり転炉スラグの添加による曲
線の立上りが急で表乾見燈比重の最高は2.6の寸近ま
で達し、また吸水率も最高0.7まで低下した。以上二
つの実験は、転炉スラグの粒径が2.5肌以上を50%
含むような比較的大きいものは、顕著な効果がないこと
を示している。
As is clear from this graph, the rise of the curve due to the addition of converter slag was steep, the maximum surface dry light specific gravity reached nearly 2.6, and the water absorption rate also decreased to a maximum of 0.7. In the above two experiments, the particle size of converter slag was 50%
Relatively large ones, such as those included, indicate that there is no significant effect.

この傾向は他の酸化鉄含有物質の場合も同じであった。
第3図は鉄鉱石粉末を91k9/分(酸化鉄量にして2
.5%)の割合で溶融高炉スラグに添加した場合の実験
例で、この場合も水砕スラグの表乾見掛比重が鉄鉱石粉
末の添加によって鋭く立上り、吸水率も改善されている
。また、酸化鉄含有物質における付着水分は、1%程度
のものでないと良い結果が得られないことも判った。
This tendency was the same for other iron oxide-containing substances.
Figure 3 shows iron ore powder at 91k9/min (iron oxide content: 2
.. This is an experimental example in which iron ore powder was added to molten blast furnace slag at a ratio of 5%), and in this case as well, the surface dry apparent specific gravity of granulated slag rose sharply due to the addition of iron ore powder, and the water absorption rate was also improved. It has also been found that good results cannot be obtained unless the moisture content of the iron oxide-containing material is about 1%.

例えば、付着水分4%の転炉スラグを熔融高炉スラグ当
り2%添加して実験をしたところ、溶融高炉スラグが樋
の中で泡立ち、レベルの上昇が激しくなって作業の継続
が困難となった。酸化鉄含有物質の添加位置は、湯道か
ら分岐したノロ道で、できるだけ分岐点に近い位置が適
当である。実施例 1 高炉に付属する湯道から分岐したノロ道の分岐点附近に
おいて、Fe20333.4%、Ca037.4%、S
i0210.7%、Mg08.8%、Mn2036.1
%、山2031.8%、1g、loss+1.9の組成
で1.2肋以下の粒径の乾燥転炉スラグを115k9/
分の割合で添加した。
For example, when we conducted an experiment in which converter slag with an attached moisture content of 4% was added to the molten blast furnace slag at 2%, the molten blast furnace slag bubbled in the gutter and the level rose rapidly, making it difficult to continue work. . The appropriate location for adding the iron oxide-containing substance is a sloping path branching off from the runner, as close to the branching point as possible. Example 1 In the vicinity of the junction of the sloping path branching from the runner attached to the blast furnace, Fe2033.4%, Ca037.4%, S
i0210.7%, Mg08.8%, Mn2036.1
%, peak 2031.8%, 1g, loss+1.9 dry converter slag with a particle size of 1.2 ribs or less at 115k9/
It was added at a rate of 100 min.

添加時の高炉スラグの流量は約$/分であり、これより
添加物の酸化鉄量は0.9%に相当するものであった。
かかる溶融高炉スラグを通常の方法で水砕スラグ化した
ところ表乾見選比重が平均で2.59吸水率0.7%で
ガラス量が99.5%の繊密な水砕スラグが得られた。
実施例 2 Fe20393.5%、Si025.19%、Ca00
.45%、Mg00.29%、AI2030.25%よ
りなる組成で粒径0.6柳以下の乾燥鏡鉄鉱粉末を、実
施例1と同じ位置で、91k9/分の添加速度で溶融高
炉スラグに添加した。
The flow rate of blast furnace slag at the time of addition was about $/min, and from this the amount of iron oxide in the additive was equivalent to 0.9%.
When such molten blast furnace slag was converted into granulated slag using a conventional method, a fine granulated slag with an average surface dry screening specific gravity of 2.59, a water absorption rate of 0.7%, and a glass content of 99.5% was obtained. Ta.
Example 2 Fe20393.5%, Si025.19%, Ca00
.. Dry specularite powder having a composition of 45% Mg, 00.29% Mg, 2030.25% AI and a particle size of 0.6 or less was added to the molten blast furnace slag at the same position as in Example 1 at an addition rate of 91k9/min. did.

添加時の高炉スラグの量は2.5なし、し5t/分であ
り、これより添加物の酸化鉄量は平均で2.5%に相当
するものであった。かかる溶融高炉スラグを通常の方法
で水砕スラグ化したところ、表乾見掛比重が平均で2.
70、吸水率1.0%でガラス量が99.5%の繊密な
水砕スラグが得られた。上記実施例1並びに2による水
砕スラグは、コンクリートモルタル用の細骨材として利
用できるものであり、試験結果によれば、水セメント比
、流動性、強度等に悪影響を及ぼすことなく、充分実用
に供することができ、高炉スラグの有効利用の一環とし
て、省資源の立場から、その有用性は極めて高い。
The amount of blast furnace slag at the time of addition was 2.5 tons/minute, and from this the amount of iron oxide in the additive was equivalent to 2.5% on average. When such molten blast furnace slag was made into granulated slag using a conventional method, the surface dry apparent specific gravity was 2.
70, a fine granulated slag with a water absorption rate of 1.0% and a glass content of 99.5% was obtained. The granulated slag according to Examples 1 and 2 above can be used as fine aggregate for concrete mortar, and according to the test results, it can be used for practical purposes without adversely affecting the water-cement ratio, fluidity, strength, etc. As part of the effective use of blast furnace slag, its usefulness is extremely high from the standpoint of resource conservation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粒径2.5肌以上の転炉スラグを溶融高炉スラ
グに添加した場合の関係グラフ。 第2図は同じく粒型1.2柳以下の転炉スラグを添加し
た場合のグラフ。第3図は鉄鉱石粉末を添加した場合の
グラフをそれぞれ示す。第1図 第2図 第3図
Figure 1 is a graph showing the relationship when converter slag with a grain size of 2.5 grains or more is added to molten blast furnace slag. Figure 2 is a graph when converter slag with a grain size of 1.2 Yanagi or less is added. FIG. 3 shows graphs when iron ore powder is added. Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 1 酸化鉄含有物質を酸化鉄量にして2.5%以下、溶
融高炉スラグに添加して後、常法によりこれを水砕スラ
グ化することを特徴とする緻密化水砕スラグの製造法。 2 酸化鉄含有物質が転炉スラグである特許請求の範囲
第1項記載の緻密化水砕スラグの製造法。3 酸化鉄含
有物質が鉄鉱石である特許請求の範囲第1項記載の緻密
化水砕スラグの製造法。 4 酸化鉄含有物質の粒径が2mm以下である特許請求
の範囲第1ないし第3項のいずれかに記載の緻密化水砕
スラグの製造法。
[Claims] 1. Densified water characterized by adding an iron oxide-containing substance to molten blast furnace slag in an amount of 2.5% or less in terms of iron oxide content, and then converting this into granulated slag by a conventional method. Manufacturing method of crushed slag. 2. The method for producing densified granulated slag according to claim 1, wherein the iron oxide-containing substance is converter slag. 3. The method for producing densified granulated slag according to claim 1, wherein the iron oxide-containing substance is iron ore. 4. The method for producing densified granulated slag according to any one of claims 1 to 3, wherein the particle size of the iron oxide-containing substance is 2 mm or less.
JP51134649A 1976-11-11 1976-11-11 Manufacturing method of densified granulated slag Expired JPS6037066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51134649A JPS6037066B2 (en) 1976-11-11 1976-11-11 Manufacturing method of densified granulated slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51134649A JPS6037066B2 (en) 1976-11-11 1976-11-11 Manufacturing method of densified granulated slag

Publications (2)

Publication Number Publication Date
JPS5359723A JPS5359723A (en) 1978-05-29
JPS6037066B2 true JPS6037066B2 (en) 1985-08-23

Family

ID=15133298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51134649A Expired JPS6037066B2 (en) 1976-11-11 1976-11-11 Manufacturing method of densified granulated slag

Country Status (1)

Country Link
JP (1) JPS6037066B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317688A (en) * 1987-06-19 1988-12-26 Matsushita Electric Ind Co Ltd Gas supplying device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54149397A (en) * 1978-05-17 1979-11-22 Nippon Kokan Kk <Nkk> Manufacture of hard granulated slag

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230967B2 (en) * 1972-03-24 1977-08-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317688A (en) * 1987-06-19 1988-12-26 Matsushita Electric Ind Co Ltd Gas supplying device

Also Published As

Publication number Publication date
JPS5359723A (en) 1978-05-29

Similar Documents

Publication Publication Date Title
JPS55102677A (en) Improvement in strength of hydrous soft ground
JPS5698280A (en) Method for deodorizing and enhancing strength of hydrous soft soil having bad smell
JPH082949A (en) Method for modifying steelmaking slag
JPS6037066B2 (en) Manufacturing method of densified granulated slag
KR101049088B1 (en) Cement admixture using molten iron preliminary slag and its manufacturing method
JP2816860B2 (en) Cement composition with adjusted particle size
EP0055004A1 (en) Process for processing moist compositions containing pollution-causing substances and composition
JPS54126605A (en) Executing method for brick jointing in construction of furnace
KR100451821B1 (en) Improvement Method of Incipient Strength of Concrete Using BF Slag Cement
JPH0321682B2 (en)
JPS61238398A (en) Preparation of submerged sludge curing material
TW202102457A (en) Method for manufacturing cement modifier and functional cement material containing the cement modifier capable of manufacturing a cement modifier by recycling reduced ballast of electric arc furnace
JPH1121154A (en) Hydraulic composition using steel slag
JPH01301551A (en) Mixture for production of heavy weight concrete and production of heavy weight concrete
JPH0510159B2 (en)
JPS5534266A (en) Soil stabilizer
JPS5846461B2 (en) Manufacturing method of cement clinker using converter slag as raw material
RU2000103998A (en) METHOD FOR PROCESSING FINE-GRAY IRON-CONTAINING WASTES OF METALLURGICAL PRODUCTION
JP2824131B2 (en) Granulated blast furnace fine aggregate
JPH0369535A (en) Utilizing method for dust in steel manufacture
JPS60231444A (en) Use of highly basic steel slag
JP2670914B2 (en) Utilization of steelmaking slag for roadbed materials
JPH08253349A (en) Aging of slag
JPH09263758A (en) Neutral solidifying agent
JPH07223857A (en) Forced aging method for slag