JPS6036895A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS6036895A
JPS6036895A JP58144626A JP14462683A JPS6036895A JP S6036895 A JPS6036895 A JP S6036895A JP 58144626 A JP58144626 A JP 58144626A JP 14462683 A JP14462683 A JP 14462683A JP S6036895 A JPS6036895 A JP S6036895A
Authority
JP
Japan
Prior art keywords
tube
titanium
heat exchange
polishing
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58144626A
Other languages
Japanese (ja)
Inventor
Koji Nagata
公二 永田
Kiyoshi Nosetani
野世溪 精
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP58144626A priority Critical patent/JPS6036895A/en
Publication of JPS6036895A publication Critical patent/JPS6036895A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Abstract

PURPOSE:To reduce the sticking of marine organism and facilitate their removal, by polishing to a mirror-like finish the surface of heat exchanging tube or plate with which a cooling fluid contacts. CONSTITUTION:A seamless tube can be finished by an electrolytic polishing, a chemical polishing procedure and the like. As for a welded tube, a buffing, or an electrolytic polishing, a chemical polishing procedure is applied on a longitudinally extending titanium plate or a titanium strip produced in a manufacturing step and then the plate or the strip is bent in its widthwise direction for joint by a butt welding. The welded tube cannot avoid the sticking of marine organism on the bead area of its welded portion, but can reduce the quantity of such sticking by polishing other areas to a mirror-like surface. The surface roughness of polished area should be approximately 0.15mum or less in terms of Ra system.

Description

【発明の詳細な説明】 本発明は熱交換管または熱交換板を備えた熱交換器に係
り、特に、その熱交換管またCま熱交換板としてチタン
材料が用いられた場合の伝熱性能の低下を抑制する技術
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger equipped with a heat exchange tube or a heat exchange plate, and particularly relates to heat transfer performance when titanium material is used as the heat exchange tube or heat exchange plate. This relates to technology for suppressing the decline in

従来より、火力発電所や化学工場、或いは船舶等の復水
器や、その他の各種熱交換器には、熱ダ換管または熱交
換板材料として、黄銅にアルミニウム、砒素、その他珪
素等を添加した所謂特殊黄銅や、銅、ニッケル、鉄より
なる所謂キュプロニッケル れ等熱交換器においては、冷却流体として主に海水或い
は河海水を使用する関係上、それ等海水、河海水の水質
によっては腐食を生じ易く、且つその表面に腐食生成物
を含む付着物が付着して伝熱 ′性能の低下を招くとい
った障害を生じること力;経験されてきた。
Traditionally, aluminum, arsenic, and other silicones have been added to brass as heat exchange tubes or heat exchange plate materials for condensers and other heat exchangers in thermal power plants, chemical factories, ships, etc. Heat exchangers made of so-called special brass or cupronickel made of copper, nickel, and iron mainly use seawater or river-seawater as the cooling fluid, so depending on the quality of the seawater or river-seawater, corrosion may occur. It has been experienced that corrosion tends to occur, and deposits containing corrosion products adhere to the surface, causing problems such as deterioration of heat transfer performance.

これに対し、近年、海水耐食性の優れたチタン材料が評
価され、冷却流体として海水をJ@’,するエサ(交換
器、特に高度の信頼性が要求される原子力発電プラント
用復水器等の熱交換管またGま“交換板としての使用が
検討されている。
In recent years, titanium materials with excellent seawater corrosion resistance have been evaluated. Its use as a heat exchange tube or G-type exchange plate is being considered.

しかしながら、かかるチタン材料製熱交換管または熱交
換板においては、前記特殊黄銅や銅合金に比較して、そ
の表面に海水中の生物が付着し易く、また、付着した付
着物の密着性が強くてその除去が困難であるという問題
を内在しているのである。しかも、一旦、付着物が付い
たチタン管またはチタン板の表面は、付着物除去後の付
着物の再付着が容易となって付着速度が速くなり、付着
物が経時的に増大して゛・しまうのである。そして、。
However, in comparison with the above-mentioned special brass or copper alloy, such heat exchange tubes or heat exchange plates made of titanium materials tend to have creatures in seawater attached to their surfaces, and the adhesion of attached substances is strong. This has the inherent problem that it is difficult to remove. Moreover, once the surface of the titanium tube or titanium plate has deposits attached to it, it becomes easy for the deposits to re-attach after the deposits have been removed, increasing the rate of attachment and increasing the amount of deposits over time. It is. and,.

このような熱交換管内面または熱交換板表面の付着物は
、その伝熱性能を低下させ、且っ水頭損失を増大させて
しまうのである。
Such deposits on the inner surface of the heat exchange tube or the surface of the heat exchange plate deteriorate the heat transfer performance and increase the water head loss.

このため、熱交換管としてチタン管を用いる場合には、
管内径より2〜3Il′1m大きいスポンジボールを熱
交換器の運転中に冷却水とともに管内を通過せしめて付
着物を除去する作業が一般に行われているが、充分な付
着物除去後果を得るためにはほとんど連続的に洗浄する
必要がある。
Therefore, when using titanium tubes as heat exchange tubes,
It is common practice to remove deposits by passing a sponge ball 2 to 3 l'1 m larger than the inner diameter of the pipe through the pipe together with cooling water during operation of the heat exchanger. requires almost continuous cleaning.

これに対し、スポンジボール洗浄より強力す洗浄力を有
する洗浄法としてウォータージェット洗浄法、ワイヤブ
ラシ洗浄法等があるが、いずれも熱交換器を停止させる
必要があった。また、熱交換板の場合、上記の如き機械
的洗浄法は、その構造上適用し得なかったのである。な
お、冷却流体として使用する海水に塩素処理を施したり
、海水温度を高くしたりして海水を滅菌する方法がある
が、環境保全」二、近年実施が困難となりつつある。
On the other hand, there are water jet cleaning methods, wire brush cleaning methods, and the like as cleaning methods that have stronger cleaning power than sponge ball cleaning, but both require the heat exchanger to be stopped. Furthermore, in the case of heat exchange plates, the mechanical cleaning method described above cannot be applied due to their structure. There are methods to sterilize seawater used as a cooling fluid by chlorinating it or raising the temperature of the seawater, but these methods have become difficult to implement in recent years due to environmental protection.

そこで、本発明者等はチタンに対する海洋生物等の付着
性について種々研究、調査するうち、チタンの表面性状
が生物付着性と大きく関係していることを見い出したの
である。第1表に、本発明者等が研究に用いた試料を示
す1.なお、試*′1はいずれも50m+nX100a
mX0.7mmの板状試料である。
Therefore, the present inventors conducted various studies and investigations into the adhesion of marine organisms to titanium, and discovered that the surface properties of titanium are significantly related to the adhesion of marine organisms. Table 1 shows the samples used by the inventors in their research.1. In addition, both trials *'1 are 50m+nX100a
It is a plate-shaped sample of m×0.7 mm.

第1表 試料Aは、圧延後焼鈍したもので溶接管あるいは板とし
て一般に用いられているものである。試料Bは、ベーパ
研磨で幾分表面を荒したものである。試、qcおよび試
料りは、別布研磨あるいは電解研磨にて表面の鏡面化を
図ったものである。なお、表面粗さは東京精密(株)製
サーフライザー(針先半径:2μm1押付力ニ70mg
)にて測定したものであり1、Ra(中心線平衝粗さ)
 、Ilmax(最大高さ)はそれぞれJIS−B−0
601の規定によるものである。
Sample A in Table 1 is annealed after rolling and is generally used as a welded pipe or plate. Sample B has a surface that has been somewhat roughened by vapor polishing. The surfaces of the sample, qc, and sample were polished to a mirror finish by separate cloth polishing or electrolytic polishing. The surface roughness was measured using Surfizer manufactured by Tokyo Seimitsu Co., Ltd. (needle tip radius: 2 μm, pressing force: 70 mg).
) 1, Ra (center line roughness)
, Ilmax (maximum height) are each JIS-B-0
This is based on the provisions of 601.

そして、上記試料を海水の入れ替りのある700mmX
600斬X1000mmの水槽内に6箇月間浸漬し、生
物付着の状況を調査した。結果を第2表に示す。いずれ
の試λ−(においても付着物の種類は同じであるが、そ
の付];q物量は試料A、Bに比較して試料0.Dが著
しく少ないことが判る。なお、付着物介の測定は、フジ
ッボを除去した状態で行ったものである。
Then, the above sample was placed in a 700mm
The specimens were immersed in a 600mm x 1000mm water tank for 6 months, and the state of biofouling was investigated. The results are shown in Table 2. It can be seen that the amount of deposits is significantly smaller in sample 0.D compared to samples A and B. The measurements were conducted with Fujibbo removed.

第 2 表 以上の第1表および第2表の結果から、チタン板の表面
粗さが海洋生物や泥等の付着に大きな影響を及ぼしてい
ることは明らかであり、チタン板の表面を鏡面化すると
ともに付着物量は減少することが判る。
Table 2 From the results in Tables 1 and 2 above, it is clear that the surface roughness of the titanium plate has a large effect on the adhesion of marine organisms and mud, and it is clear that the surface roughness of the titanium plate has a large effect on the adhesion of marine organisms and mud. It can be seen that the amount of deposits decreases as the temperature increases.

これは、従来の管あるいは板として用いられるチタンの
表面には、5〜10μmのピッチで深さ0.2〜2.5
μI11の凹みが存在し、この凹みが海洋生物等の何着
に際してアンカーの役割を果すものと雄側される。すな
わち、チタンの表面は安定な酸化皮膜に覆われているた
め、海水中に艮時間浸漬した後にf5いても浸漬前と何
等変わらない表面形状を持続し、チタンが生物に対する
毒性を示さないことと相俟って、四部のアンカー効果が
持続されるからである。
This is because the surface of titanium used as a conventional tube or plate has a depth of 0.2 to 2.5 μm at a pitch of 5 to 10 μm.
There is a μI11 indentation on the male side, and this indentation is said to play the role of an anchor when attached to marine organisms. In other words, the surface of titanium is covered with a stable oxide film, so even after being immersed in seawater for an extended period of time, the surface shape remains the same as before immersion, and titanium does not exhibit toxicity to living organisms. This is because the anchor effect of the four parts is maintained together.

なお、この凹みは板製j前工程時のロール等の工几疵、
酸化皮膜の局所的ム破壊や不均一な生成、あるいは酸洗
浄時の不均一な溶解等の各拙の要因によって生じるもの
と考えられるが、通常の製品においてはこの程度の凹凸
は避け1m < 、また品質上有害なものではないので
ある。
Note that this dent is due to manufacturing defects such as rolls during the previous process of making the board.
It is thought that this is caused by various factors such as localized destruction of the oxide film, non-uniform formation, or non-uniform dissolution during acid cleaning, but in normal products, unevenness of this degree is avoided and the thickness is 1 m < . Moreover, it is not harmful in terms of quality.

一方、以上の如き凹凸を有するチタンに割布研磨あるい
は電解研磨、化学研磨等をM、; t、て、表面粗さが
Ra表示において0.01〜0.1571m程度になる
まで鏡面化すれば、海洋生物喧:がイ45γiする際の
起点となるアンカーの役割を果す凹部が著しく減少し、
海洋生物等の付着が軽減されるものと考えられる。
On the other hand, if the titanium having the above-mentioned irregularities is subjected to cloth polishing, electrolytic polishing, chemical polishing, etc., until the surface roughness becomes about 0.01 to 0.1571 m in Ra, it becomes a mirror surface. , the recesses that serve as anchors, which serve as starting points for marine life, are significantly reduced.
It is thought that the adhesion of marine organisms, etc. will be reduced.

ここにおいて、本発明は、以」二の如き知見にノj(づ
いて完成されたものであり、そのI]的どするところは
、海洋生物の(”1着が軽減されるとともに、付着物の
除去が容易な、グークン本イ料を用いた熱交換管または
熱交換板を備えた熱交4′!2!器を提供することにあ
る。
Here, the present invention has been completed based on the following knowledge, and its purpose is to reduce the amount of deposits on marine organisms and to reduce the amount of deposits on marine organisms. It is an object of the present invention to provide a heat exchanger equipped with a heat exchange tube or a heat exchange plate using a hard material that is easy to remove.

そして、かかる目的を達成するため、本発明は熱交換管
または熱交換板としてチタン材料製浄法られ、その一方
の側の表面に冷却流体として海水、河海水または河、湖
水等の冷却水が接触せしめられる熱交換器において、そ
の冷却流体が接触せしめられる前記熱交換管または熱交
換(反の表面が、Ra表示にて約0.15 tt m以
下の表面粗さとなるように研磨したのである。
In order to achieve this object, the present invention uses a titanium material manufacturing method as a heat exchange tube or heat exchange plate, and cooling water such as seawater, river seawater, river, lake water, etc. is brought into contact with the surface of one side as a cooling fluid. In the heat exchanger to be used, the surface of the heat exchange tube or heat exchanger (opposite surface) with which the cooling fluid comes into contact was polished to a surface roughness of about 0.15 tt m or less in Ra.

このような本発明に従うチタン材料製の熱交換管まブこ
は熱交換板を、冷却流体として海水、河海水等を使用す
る熱交換器に用いれば、その表面への海洋生物、泥等の
付着が軽減されて伝熱性能の低下や水頭損失の増加が抑
制されるので、本来の保れた7f+j水耐食性と相俟っ
て、熱交換管または熱交換板としての信頼性が大幅に向
上するのである。
If the heat exchange tube or heat exchange plate made of titanium material according to the present invention is used in a heat exchanger that uses seawater, river seawater, etc. as a cooling fluid, it will prevent marine organisms, mud, etc. from forming on the surface of the heat exchanger. This reduces adhesion, suppresses deterioration in heat transfer performance and increase in water head loss, and together with the original 7F+J water corrosion resistance, reliability as a heat exchange tube or heat exchange plate is greatly improved. That's what I do.

しかも、表面が円滑に研磨されているため、海洋生物等
の密着性も弱く、従来のスポンジボール洗浄法によって
も付着物が良好に除去され得るとともに、付着物除去後
の再イτ]着をも抑制されて、熱交換器の保守管理作業
が極めて容易となるのである。
Moreover, because the surface is smoothly polished, the adhesion of marine organisms, etc. is weak, and the adhesion can be removed well even with the conventional sponge ball cleaning method, and it is difficult to re-clean after removing the adhesion. As a result, maintenance work for the heat exchanger becomes extremely easy.

ここにおいて、本発明が適用され得るチタン管としては
、従来より熱交換器用チタン管として提供されているも
の、たとえばJIS−1(−4631淳があり、また、
チタン板としては、JIS−〇 −A (: n (+
 ’、昨−/+Z %入−−P+、で、かかスチクン管
またはチタン板を研磨する手段としては、割布研磨、電
解01磨、化学研磨、あるいはこれ等の腹合研磨等を用
いる・ことができる。すなわち、引抜加工によって形成
された継目無管に列しては、電解研磨、化学研磨等の手
段が用いられ得るのであり、溶接管に対しては、その製
造過程に41:;ける長手形状のチタン板あるいはチタ
ン条に割布研磨、あるいは電解研磨、化学研μ;、ある
いはこれ等の複合研磨等を施した後、その幅方向に湾曲
せしめて突き合わせ、その突き合わせ部を溶接すれば良
いのである。また、溶接後のチタン管に71して、′I
rL解研磨、化学研磨等を施すことにより管内面を研I
Vffすることもできる。なお、チタン板に対しては、
」1記のいずれの研磨手段であっても採用し得る。
Here, examples of titanium tubes to which the present invention can be applied include those conventionally provided as titanium tubes for heat exchangers, such as JIS-1 (-4631 Jun), and
As a titanium plate, JIS-〇-A (: n (+
', Last-/+Z %--P+, as a means of polishing the helical tube or titanium plate, split cloth polishing, electrolytic 01 polishing, chemical polishing, or any of these polishing methods are used. be able to. In other words, for seamless pipes formed by drawing, methods such as electrolytic polishing and chemical polishing can be used, and for welded pipes, the manufacturing process involves After subjecting the titanium plate or titanium strip to cloth polishing, electrolytic polishing, chemical polishing, or a combination of these polishing processes, curve the pieces in the width direction, butt them together, and then weld the butted parts. . In addition, 71 is added to the titanium tube after welding, and 'I
Polish the inner surface of the tube by performing rL depolishing, chemical polishing, etc.
Vff can also be applied. In addition, for titanium plates,
Any of the polishing means described in 1 above may be employed.

ここで、溶接管の場合には、その溶接部にビードが形成
される。このため、溶接管の内面を完全に鏡面化するた
めには、予め切削加工等を施して管内面の大きな凹凸を
除去した後、さらに電解研磨、化学研磨等を施さなけれ
ばならないのであるが、熱交換管は一般にその長さが1
〜501TI−、管内径が10〜40mmの長尺細管で
あるため、そのような面倒な加工を施すことは経済的に
も現実的でないのである。そこで、溶接管にあっては、
その溶接部のビード領域における海洋生物等の付着は止
むを得ないものとし、それ以外の部分を鏡面化すること
により付着物量を軽減せしめ、本発明の一応の目的を達
成するのである。なお、管内面の鏡面化面積が余りにも
少ない場合には、充分な付着物量軽減効果が得られない
ため、溶接部の幅は管周方向において20 mm以下と
することが望ましい。
Here, in the case of a welded pipe, a bead is formed at the welded portion. Therefore, in order to make the inner surface of a welded pipe completely mirror-finished, it is necessary to first perform cutting to remove large irregularities on the inner surface of the tube, and then perform electrolytic polishing, chemical polishing, etc. Heat exchange tubes generally have a length of 1
~501TI- is a long thin tube with an inner diameter of 10 to 40 mm, so it is economically unrealistic to perform such troublesome processing. Therefore, for welded pipes,
It is assumed that the adhesion of marine organisms and the like in the bead area of the weld is unavoidable, and by mirror-finishing the other parts, the amount of adhesion can be reduced, thereby achieving the primary purpose of the present invention. Note that if the mirror surface area of the inner surface of the tube is too small, a sufficient effect of reducing the amount of deposits cannot be obtained, so it is desirable that the width of the welded portion is 20 mm or less in the circumferential direction of the tube.

そして、このようにして研磨されたチタン管内面または
チタン板の表面粗さは、Ra表示にて約015μm以下
であることを必要とする。これは、先の研究データ表1
および表2からも明らかなように、表面の鏡面化の程度
が高い程、すなわちRa表示においてその数値が小さい
程付着物量は減少して促れた効果が得られるのであるが
、几a値約0,15μm以下で一応の効果が得られるの
である。なお、この鏡面化は必ずしも管内面または板表
面全体にわたって施す必要はないが、上述したように鏡
面化面積が余りにも少ない場合には、充分な効果が得ら
れなくなる。
The surface roughness of the thus polished inner surface of the titanium tube or titanium plate is required to be approximately 0.15 μm or less in terms of Ra. This is based on the previous research data Table 1
And as is clear from Table 2, the higher the degree of mirror polishing of the surface, that is, the lower the value in the Ra display, the more the amount of deposits decreases and the more effective the effect is obtained. A certain effect can be obtained with a thickness of 0.15 μm or less. Note that this mirror polishing does not necessarily need to be performed over the entire tube inner surface or plate surface, but as described above, if the mirror polished area is too small, a sufficient effect cannot be obtained.

以上のようなチタン材料製の熱交換管または熱交換板を
熱交換器に用いる場合、その管内または表面を流通させ
られる冷却流体としては、海水あるいは河海水等を使用
する場合に大きな効果を奏するのであるが、河水、湖水
等のその他の冷却水を使用しても良いことは勿論である
。また、かかるチタン材料製の熱交換管またGj熱交換
板を用いる熱交換器としては、高い信頼性を必要とする
原子カプラント用復水器のみならず、その他の各神熱交
換器にも使用し得るのであり、ぞの保守作業における洗
浄法も、スポンジボール洗浄法のみならず、カーボラン
ダムボー/L/洗浄、ブラシ洗浄宿:の各種の洗浄法を
適用し?4)る。
When heat exchange tubes or heat exchange plates made of titanium materials such as those described above are used in a heat exchanger, it is highly effective to use seawater, river seawater, etc. as the cooling fluid that is circulated within or on the surface of the tubes. However, it is of course possible to use other cooling water such as river water or lake water. In addition, heat exchangers using titanium heat exchange tubes or Gj heat exchange plates are used not only for atomic coupler condensers that require high reliability, but also for other various types of heat exchangers. In addition, the cleaning methods used in maintenance work include not only the sponge ball cleaning method, but also various cleaning methods such as carborundum ball cleaning, brush cleaning, and cleaning. 4).

次に、本発明をさらに具体的に1ジノらかにするため、
本発明のいくつかの実施例を示して説明するが、本発明
がそれらの実施例のg13 Hl、12によって何等の
制約を受番づるものでないことは、言うまでも7フrい
ところである。
Next, in order to make the present invention more concrete,
Several embodiments of the present invention will be shown and explained, but it goes without saying that the present invention is not subject to any restrictions by these embodiments.

実施例 1 幅79.3 mm1、厚さ0.7 mm 、、長さ約5
0mのチタン条を、ロール別布研磨機にて片面のみ研磨
した。
Example 1 Width 79.3 mm1, thickness 0.7 mm, length approximately 5 mm
A 0 m titanium strip was polished on only one side using a cloth polishing machine with separate rolls.

研磨条件は、オープンザイザル調布(麻製)にて油性ザ
イザーを研磨材として用いた研磨を3回繰り返した後、
さらに、綿製のM4羽布にて青棒(酸化クロム)を研磨
イオとして用いた研磨を4回繰り返した。なお、チタン
条送り速度は800印/分で、調布を揺動さぜつつ行っ
た。研磨後、研磨面が内側となるようにロール成形し、
TIG溶接によりチタン管を製造した。比較のため、未
研磨のチタン条より製造した溶接チタン管、引抜法にて
製造したアルミ黄銅管、10%キュプロニッケル管を準
備した。
The polishing conditions were as follows: After repeating the polishing three times with open Xyzal Chofu (made of hemp) using oil-based Xyzal as the abrasive,
Furthermore, polishing was repeated four times with a cotton M4 cloth using a blue rod (chromium oxide) as a polishing ion. The titanium strip was fed at a speed of 800 marks/min while the Chofu was being rocked. After polishing, roll forming with the polished surface facing inside.
A titanium tube was manufactured by TIG welding. For comparison, a welded titanium tube manufactured from unpolished titanium strip, an aluminum brass tube manufactured by a drawing method, and a 10% cupronickel tube were prepared.

次に、上記4種類の管内に、塩素無処理の清浄な海水を
、生物の繁殖期に当る3月から8月までの6箇月間、管
内流速2m/秒で通水し、管内面に付着したトj着物の
種類、付着状況を目視観察すAととも[で、イ、1着物
量、zgh、侶靭(伝執性a目)を測定した。結果を第
3表に示す。
Next, clean seawater without chlorine treatment was passed through the above four types of pipes at a flow rate of 2 m/sec for 6 months from March to August, which corresponds to the breeding season of living organisms, and the water adhered to the inner surface of the pipes. The type of kimono and the state of adhesion were visually observed, and the amount of kimono, zgh, and strength (density A) were measured. The results are shown in Table 3.

さらに、その付ja物の管内面への密着性を評価するた
め、管内′径より2町大ぎいスポンジボールを、管内流
速2m/秒で1個ずつ5回通過さゼ、1回通過させる毎
に付)音物量(mg/cnl)を測定した。結果を第4
表に示す。なお、()内は洗浄+)iJの付着物量に列
する付着物除去率(%)を示したものである。
Furthermore, in order to evaluate the adhesion of the attachment to the inner surface of the pipe, a sponge ball 2 towns larger than the inside diameter of the pipe was passed through the pipe five times at a flow rate of 2 m/sec. ) The sound volume (mg/cnl) was measured. 4th result
Shown in the table. Note that the numbers in parentheses indicate the removal rate (%) of deposits corresponding to the amount of deposits of cleaning +) iJ.

チタン管については、さらにスポンジボールを300回
通過せ、はぼ完全に付着物を除去したと思われる状態で
、10月より翌年4月までの7箇月間、2回/週の頻度
でスポンジボール(5個/回)を通過させつつ、」二連
と同じ条件のffrj水を」131水し、試験後の付着
物量および汚れ係数を7ijjl定した。結果を@5表
に示す。
The titanium tube was passed through a sponge ball 300 times, and after it was thought that all the deposits had been removed, the titanium tube was passed through a sponge ball twice a week for seven months from October to April of the following year. (5 pieces/time), 131 times of FFRJ water under the same conditions as the two tests was applied, and the amount of deposits and staining coefficient after the test were determined. The results are shown in Table @5.

これ等第3表乃至第5表の結果から明らか4I、ように
、洗浄なしの状態で海水を通水した場合の海洋生物等の
イ」着物量については、本発明にかかる研磨チタン管は
、アルミ黄銅管、ギュプロニツケル管にはやや劣るもの
の、従)j6の未イ1lFIff5チタン管に対しては
格段に優れた結果を示している(第3表)。また、この
ような付着物をスポンジボー)vi5し浄で除去する場
合においても、未研磨チタン管は5回の洗浄で約55%
しか除去され得ないのに苅して、研磨チタン管は約89
%とアルミ黄銅管に近い結果が14)られ、付着物の密
着性が4rめて弱くなっていることが判る(第4表)。
It is clear from the results of Tables 3 to 5 that the polished titanium tube according to the present invention has the following effects: Although it is slightly inferior to aluminum brass tubes and Gypronickel tubes, it shows significantly superior results compared to J6 and 11 FIff5 titanium tubes (Table 3). In addition, even when removing such deposits with sponge cleaning, approximately 55% of the unpolished titanium tube is removed after 5 cleanings.
However, the polished titanium tube is about 89
%, which is close to that of the aluminum brass tube14), and it can be seen that the adhesion of deposits becomes weaker after 4r (Table 4).

さらに、付う;キ物を除去した後の海洋生物≦ニア:の
再付着に関しても、研磨チタン管は未研磨チタン管に比
較して大幅に抑制されることを示している(第5表)。
Furthermore, the reattachment of marine organisms ≦ near after the removal of materials is also shown to be significantly suppressed on polished titanium tubes compared to unpolished titanium tubes (Table 5). .

\1、 ゝ1、 ゛・2、\ \\ \、 \、 \ 第 3 表 第 4 表 第5表 実施例 2 実施例1と同様に長さ15mの研磨チタン管を製造し、
比較のため従来の未研磨チタン管も準備した。そして、
これ等2種類のチタン管を、清浄お、この間の海水温1
19は14〜29°c1蒸気温度は27〜42°Cであ
り、管内流速は2m/秒であった。また、試験)9r間
中管内径より2mm大きいスポンジボールを、1回/殉
の頻度で1回につき10個ずつ通過させた。
\1, ゝ1, ゛・2,\ \\\ \, \, \ Table 3 Table 4 Table 5 Example 2 A polished titanium tube with a length of 15 m was manufactured in the same manner as in Example 1,
A conventional unpolished titanium tube was also prepared for comparison. and,
These two types of titanium tubes were cleaned and the seawater temperature was 1.
In No. 19, the steam temperature was 14-29°C1, 27-42°C, and the flow velocity in the pipe was 2 m/sec. Also, during test) 9r, 10 sponge balls 2 mm larger than the inner diameter of the tube were passed through the tube at a frequency of 1 time per death.

そして、通水開始後31;ζ1月の時の汚れ係数(ぜる
毎に測定し、さらにその1週間後にお(づる汚れ係数も
同様にして測定した。
Then, the soiling coefficient was measured every 31 months after the start of water flow, and the soiling coefficient was also measured in the same manner one week later.

結果を第6表若水す。この結果から、研Fg′;チタン
管は未研磨チタン管に比1咬してその付着物の密着性が
弱く、スポンジボール洗浄によって汚れ係数(伝熱性能
)が良好に維持されることが判る。
The results are shown in Table 6. From this result, it can be seen that the adhesion of deposits on polished Fg' titanium tubes is 1 bit weaker than that of unpolished titanium tubes, and that the fouling coefficient (heat transfer performance) is maintained well by sponge ball cleaning. .

第 6 表Table 6

Claims (2)

【特許請求の範囲】[Claims] (1)熱交換管または熱交換板としてチタン材料が用い
られ、その一方の側の表面に冷却流体として海水、河海
水または河、湖水等の冷却水が接触せしめられる熱交換
Rgにおいて、 該冷却流体が接触せしめられる前記熱交換管または熱交
換板の表面が、Ra表示にて約15μm以下の表面粗さ
となるように研磨されていることを特徴とする熱交換器
(1) In a heat exchange Rg in which a titanium material is used as a heat exchange tube or a heat exchange plate, and cooling water such as sea water, river sea water, river, lake water, etc. is brought into contact with the surface of one side as a cooling fluid, the cooling A heat exchanger characterized in that the surface of the heat exchange tube or the heat exchange plate with which the fluid comes into contact is polished so as to have a surface roughness of about 15 μm or less in terms of Ra.
(2)前記熱交換管が、長手のチタン板材をその幅方向
に湾曲せしめて突き合わぜ、その突き合わせ部を溶接し
てなる溶接管であり、且つその溶接部の管周方向におけ
る20mm以下の幅の領域を除く管内面に前記研磨が施
されている特許請求の範囲第1項に記載の熱交換器。
(2) The heat exchange tube is a welded tube made by bending longitudinal titanium plates in the width direction and butting them together, and welding the butted portions, and the welded portion has a diameter of 20 mm or less in the circumferential direction of the tube. The heat exchanger according to claim 1, wherein the inner surface of the tube except for the width region is polished.
JP58144626A 1983-08-08 1983-08-08 Heat exchanger Pending JPS6036895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144626A JPS6036895A (en) 1983-08-08 1983-08-08 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144626A JPS6036895A (en) 1983-08-08 1983-08-08 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS6036895A true JPS6036895A (en) 1985-02-26

Family

ID=15366408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144626A Pending JPS6036895A (en) 1983-08-08 1983-08-08 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS6036895A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141049A (en) * 1990-08-09 1992-08-25 The Badger Company, Inc. Treatment of heat exchangers to reduce corrosion and by-product reactions
US5196632A (en) * 1990-08-09 1993-03-23 The Badger Company, Inc. Treatment of heat exchangers to reduce corrosion and by-product reactions
WO2004051174A1 (en) * 2002-12-02 2004-06-17 Tuchenhagen Dairy Systems Gmbh Device for increasing the service life of a tube-bundle heat exchanger in indirectly-heated uht units for foodstuffs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5141049A (en) * 1990-08-09 1992-08-25 The Badger Company, Inc. Treatment of heat exchangers to reduce corrosion and by-product reactions
US5196632A (en) * 1990-08-09 1993-03-23 The Badger Company, Inc. Treatment of heat exchangers to reduce corrosion and by-product reactions
WO2004051174A1 (en) * 2002-12-02 2004-06-17 Tuchenhagen Dairy Systems Gmbh Device for increasing the service life of a tube-bundle heat exchanger in indirectly-heated uht units for foodstuffs

Similar Documents

Publication Publication Date Title
KR101459984B1 (en) Stainless steel plate and manufacturing method thereof
JP5401359B2 (en) Alkali detergent composition for hard surface
JPS6036895A (en) Heat exchanger
BR9503245A (en) Processing process of cold rolled stainless steel in the form of a strip or sheet
EP0212894B1 (en) Removal of iron fouling in cooling water systems
JPH10330974A (en) Production of stainless steel strip for clad material
CN111230515A (en) Production method of seamless stainless steel tube for boiler heat exchanger
JP2003286592A (en) Pickling process for stainless steel strip
JP4316034B2 (en) Surface treatment method for stainless steel sheet
RU2301286C1 (en) Composition for removal of the corrosion products from the surfaces of the details produced out of the zinc-coated and cadmium-plated carbon steel
JP3829189B2 (en) Grain boundary measurement method for steel with prior austenite grain boundaries.
CN106890854A (en) A kind of carburizing control method for HastelloyC276 steel bands
US20180163159A1 (en) Cleaning agent composition for glass hard disk substrate
JP6778500B2 (en) Processed stainless steel products with excellent corrosion resistance and their manufacturing methods
JP2003226990A (en) Ferritic stainless steel sheet and production method therefor
JP2001262232A (en) Method for producing stainless steel strip
JPS60207725A (en) Processing fluid for mirror surface
EP3360643A1 (en) Stainless steel pipe with excellent corrosion resistance and manufacturing method thereof
CN107377667A (en) A kind of stainless-steel seamless pipe coil pipe manufacture method of nickel-base alloy monel400
JP6722489B2 (en) Stainless steel processed product excellent in corrosion resistance and method for manufacturing the same
JP3190163B2 (en) Stainless steel plate excellent in buffing property and method for producing the same
JP2004169089A (en) Hot rolled ferritic stainless steel sheet excellent in surface properties and its production method
CN117773509A (en) Production process of high-purity gas stainless steel pipeline
JPH0499859A (en) Method for blackening surface of copper-based shape memory alloy material
JP2749702B2 (en) Al or Al alloy plate excellent in weldability and method for producing the same