JPS60207725A - Processing fluid for mirror surface - Google Patents

Processing fluid for mirror surface

Info

Publication number
JPS60207725A
JPS60207725A JP6428884A JP6428884A JPS60207725A JP S60207725 A JPS60207725 A JP S60207725A JP 6428884 A JP6428884 A JP 6428884A JP 6428884 A JP6428884 A JP 6428884A JP S60207725 A JPS60207725 A JP S60207725A
Authority
JP
Japan
Prior art keywords
mirror surface
acid
mirror
titanium
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6428884A
Other languages
Japanese (ja)
Inventor
Hiroshi Kamata
釜田 浩
Hidehiko Maehata
英彦 前畑
Hiroyuki Daiku
博之 大工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP6428884A priority Critical patent/JPS60207725A/en
Publication of JPS60207725A publication Critical patent/JPS60207725A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/12Working media

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Lubricants (AREA)

Abstract

PURPOSE:To assure a high quality mirror surface in composite electrolytic mirror surface processing for titanium and alloy thereof by adding for use a specific fatty acid surfactant to an electrolyte containing a trace amount of an electrolyte. CONSTITUTION:A processing fluid 19 is adjusted by adding a fatty acid surfactant such as oleic acid or lauric acid or linolic acid or stearic acid. Hereby, composite mirror surface processing profitably employing both an abrasion by an abrasive grain 22 and an electrolytic effect can be effected to provide high quality mirror surface processing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電解作用と砥粒擦過作用とを複合してチタ
ンおよびその合金を鏡面仕上げ加工する電解複合鏡面加
工方法に用いる鏡面加工液に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a mirror polishing liquid used in an electrolytic composite mirror polishing method for mirror finishing titanium and its alloys by combining electrolytic action and abrasive abrasion action. .

〔従来技術〕[Prior art]

一般に、チタンおよびその合金のチタン材は、すぐれた
耐塩素性、耐食性、耐熱性があシ、また軽くて強度が高
いことなどから、航空機用構造材。
In general, titanium and its alloys are used as structural materials for aircraft because they have excellent chlorine resistance, corrosion resistance, and heat resistance, as well as being light and strong.

石油化学工業などを初めとして、海水淡水化装置や自動
車部品などにも使われている。
It is used not only in the petrochemical industry but also in seawater desalination equipment and automobile parts.

これらの!れた性質を有効に生かすためには、たとえば
熱交換用配管や石油化学搭槽類などでは、管および塔槽
の内面を鏡面に仕上げることにより、熱伝導性の向上や
壁面への付着堆積抑制が図られ、また、耐食性も格段に
向上する。
these! In order to make effective use of these characteristics, for example, in heat exchange piping and petrochemical towers, the inner surfaces of the pipes and towers should be finished to a mirror finish to improve thermal conductivity and suppress the buildup on walls. In addition, corrosion resistance is greatly improved.

しかし、一般に、チタン材を鏡面に仕上げる方法はむず
かしく、かつ局所欠陥のない高品質な鏡面を得る方法と
してはまだ見当たらない。
However, in general, it is difficult to finish a titanium material to a mirror surface, and a method for obtaining a high-quality mirror surface without local defects has not yet been found.

〔発明の目的〕[Purpose of the invention]

この発明は、チタンおよびその合金のチタン材を鏡面仕
上げ加工する鏡面加工液を提供することを目的とする。
An object of the present invention is to provide a mirror finishing liquid for mirror finishing titanium materials such as titanium and its alloys.

〔発明の構成〕[Structure of the invention]

この発明は、電解作用と砥粒擦過作用とを複せしてチタ
ンおよびその合金を鏡面仕上は加工する電解複合鏡面加
工方法に用いるψ面加工液において、微量の電解質を混
入した電解液に、オレイン酸またはラウリン酸またはリ
ノール酸またはステアリン酸などの脂肪酸界面活性剤を
添加したことを特徴とする鏡面加工液である。
This invention provides an electrolytic solution mixed with a trace amount of electrolyte in a ψ surface processing solution used in an electrolytic composite mirror finishing method for processing titanium and its alloys to a mirror finish by combining electrolytic action and abrasive grain abrasion action. This is a mirror finishing liquid characterized by adding a fatty acid surfactant such as oleic acid, lauric acid, linoleic acid or stearic acid.

〔発明の効果〕〔Effect of the invention〕

したがって、この発明の鏡面゛加工液を用いることによ
り、電解作用と砥粒擦過作用とを複合した電解複合焼面
加工方法にょシ、チタン材を鏡面仕上げすることができ
る。
Therefore, by using the mirror polishing liquid of the present invention, a titanium material can be mirror-finished using an electrolytic composite surface machining method that combines electrolytic action and abrasive grain abrasion action.

〔実施例〕〔Example〕

従来、金属の砥粒加〒を行なう場合、加工面の温度上昇
を抑制し加工屑の排出性を高めるために、水が加工液と
して多用される。
Conventionally, when abrasive grains are added to metal, water is frequently used as a machining fluid in order to suppress the temperature rise of the machining surface and improve the discharge of machining debris.

ところが、第1図に示すように、加工液に水f11を用
い、チタン材(2)を砥粒(31により加工すると、チ
タン材121は熱の伝導性が低いだめ砥粒(31の押退
に伴なう発熱で容易に温度上昇し、その結果、擦過面は
凹凸変化の著しい粗い面になる。
However, as shown in Fig. 1, when water f11 is used as the machining fluid and the titanium material (2) is processed with abrasive grains (31), the titanium material 121 is processed by the abrasive grains (31) with low thermal conductivity. The temperature easily rises due to the heat generated, and as a result, the abraded surface becomes a rough surface with significant changes in unevenness.

したがって、チタン材の加工面粗さを小さくし御面に仕
上げるためには、このような凹凸変化を抑制して砥粒に
よる均一な擦過条痕を形成させねばならない。
Therefore, in order to reduce the roughness of the machined surface of titanium material and finish it as a finished surface, it is necessary to suppress such unevenness changes and form uniform scratch marks caused by abrasive grains.

この発明は、砥粒擦過時のチタン材表面に保護膜を形成
させ、前記のような荒れをなくすようにした加工液であ
り、つぎにその原理と実施例について詳細に説明する。
The present invention is a machining fluid that forms a protective film on the surface of a titanium material when rubbed by abrasive grains to eliminate the above-mentioned roughness.Next, the principle and examples thereof will be explained in detail.

まず、チタン材に表面の荒れを抑制しつつ均一な擦過条
痕を形成させるためには、表面の発熱を抑制するため適
度な表面保護膜を形成させる必要がある。
First, in order to form uniform scratch marks on a titanium material while suppressing surface roughness, it is necessary to form an appropriate surface protective film to suppress heat generation on the surface.

このような保護膜を形成させる方法として、ある種の界
面活性剤による吸着現象を利用する方法があり、オレイ
ン酸、ラウリン酸、リノール酸あるいはステアリン酸な
どの脂肪酸界面活性剤は、チタン材表面に形成される酸
化皮膜に対して高い吸着性を示し、ち密な吸着保護膜が
形成される。
One way to form such a protective film is to utilize the adsorption phenomenon of certain types of surfactants. It exhibits high adsorption to the formed oxide film, forming a dense adsorption protective film.

第2図は・チタン材12)の表面の酸イヒ皮膜(4)上
に吸着膜([i)が形成された状況を示すものであり、
チタン材(2)はこのような表面保護膜によって保紳さ
れることになる。
Figure 2 shows the situation in which an adsorption film ([i) is formed on the acidic film (4) on the surface of the titanium material 12).
The titanium material (2) will be protected by such a surface protective film.

また、前記酸化皮膜(4)は大気中に2いても自然形成
されるが、第3図に示すように、微量の電解質を加えた
電解液(6〕中で、直流電源(7)によりチタン材12
1を陽極とし、陰極(8)を用いて電解させることによ
り、より均一な陽極酸化皮膜(9)が形成され、界面活
性剤成分の吸着性が高まる。
The oxide film (4) is naturally formed even in the atmosphere, but as shown in Figure 3, titanium is coated with a DC power source (7) in an electrolytic solution (6) containing a small amount of electrolyte. Material 12
By using 1 as an anode and electrolyzing using the cathode (8), a more uniform anodic oxide film (9) is formed and the adsorption of the surfactant component is increased.

第4図はこのような加工液中での砥粒擦過状況を示し、
チタン材(2)上に成長した保護膜αOの働きで擦過時
の発熱が抑制され、表面の荒れのない均一な擦過条痕が
形成されることになる。
Figure 4 shows the abrasive friction situation in such a machining fluid.
The protective film αO grown on the titanium material (2) suppresses heat generation during scratching, and uniform scratch marks without surface roughness are formed.

つぎに・前記加工原理に基ついたチタン椙の鏡面加工方
法の例を、第5図および第6図とともに説明する。
Next, an example of a method for mirror-finishing a titanium spoon based on the above-mentioned processing principle will be explained with reference to FIGS. 5 and 6.

第5図に3いて、(Illは直流電源の負極に接続され
た電極、l121は絶縁性1通水性の不織布などに研摩
砥粒が塗布または含浸された研摩材であり、電極(11
)に研摩材Q21が接着されて電極工具(13が、)群
成されている。a41は直流電源の正極に接続されたチ
タン材、(15)は電極(l!)に形成された加工液(
161の供給路であり、電極工具09をチタン材−に押
し当て、加工液[161を供給路(I51から研摩材Q
21を通してチタン材tl−41に、流i出し、電極工
具αJを一方向または往復動させて加工を行なう。
In Fig. 5, (Ill is an electrode connected to the negative electrode of a DC power source, l121 is an abrasive material such as an insulating and water-permeable nonwoven fabric coated with or impregnated with abrasive grains,
), an abrasive material Q21 is adhered to form an electrode tool (13). a41 is the titanium material connected to the positive electrode of the DC power supply, (15) is the machining liquid (1!) formed on the electrode (l!)
161, the electrode tool 09 is pressed against the titanium material, and the machining fluid [161
21 to the titanium material tl-41, and the electrode tool αJ is moved in one direction or reciprocatingly to perform processing.

つぎに、第6図において、a’r+1は下端部が皿状に
拡大した導電性の回転円板型電極工具の基部、(1,[
!1は基部θηに形成された加工液(19)の供給路、
囚1は基部−の下端面に装着され直流電源の負極に接続
された円板電極、ワ1)は電極−に透設された複数個の
加工液(19)の流出口、(ロ)は電極−の下面、すな
わち剛体工具面に装着された絶縁性1通水性の研摩材で
あV、不織布などに研摩砥粒が塗布または含浸されて構
成されている。(財)は直流電源の正極に接続されたチ
タン材であ)、電極工具をチタン材の)に押し当て、加
工液(【9)を供給路(181から流出口gn 。
Next, in FIG. 6, a'r+1 is the base of a conductive rotating disk type electrode tool whose lower end is expanded into a dish shape, (1,[
! 1 is a supply path for machining fluid (19) formed in the base θη,
Cap 1 is a disk electrode attached to the lower end surface of the base and connected to the negative electrode of a DC power source, Wa 1) is a plurality of outlet ports for machining fluid (19) provided through the electrode, and (B) is It is an insulating and water-permeable abrasive material attached to the lower surface of the electrode, that is, the surface of the rigid tool, and is composed of a nonwoven fabric or the like coated with or impregnated with abrasive grains. (Foundation) is a titanium material connected to the positive electrode of a DC power source), the electrode tool is pressed against the titanium material), and the machining fluid ([9) is passed from the supply path (181 to the outlet gn).

研摩材@を通してチタン材間に流出し、電極工具を回転
させながら移動させて加工を行なう。
The abrasive material flows through the titanium material and is processed by moving the electrode tool while rotating it.

つきに、実験結果を第7(2)とともに説明する。Finally, the experimental results will be explained together with Section 7 (2).

同図において、A線はこの発明の加面加工液。In the same figure, line A is the surface machining liquid of this invention.

BiWは水性加工液、C線は水をそれぞれ用いた場合で
あシ、同図より明らかなように、加工面の粗さは、同じ
粒度の砥粒を用いても、この発明による加工液を用いた
場合が最も小さくなり、チタ:材を鏡面に仕上げること
が可能になる。
BiW is the case when a water-based machining fluid is used, and C line is when water is used.As is clear from the figure, the roughness of the machined surface is different from that of the machining fluid according to the present invention even when using abrasive grains of the same particle size. When used, it is the smallest, and it is possible to finish the chita wood to a mirror finish.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は加工原理図、第2図および第3図はノれぞれ保
護膜の状況説明図、第4図は加工原理e第5図および第
6図はそれぞれこの発明に使用層れる電極工具の正面図
および一部切断正面図、尤7図は砥粒粒度と加工面粗さ
の関係図である。 12)・・・チタン材、(3)・・・砥粒、(6)・・
・電解液。 代理人 弁理士 藤 1)龍太部 引・ 第2図 第3図 1 第4図 第5図 第6図 第7図 □石t!、紘 来り八し
Figure 1 is a diagram of the processing principle, Figures 2 and 3 are diagrams each explaining the state of the protective film, Figure 4 is the processing principle, and Figures 5 and 6 are the electrodes used in this invention, respectively. The front view and partially cut-away front view of the tool, and Figure 7 are diagrams showing the relationship between abrasive grain size and machined surface roughness. 12)...Titanium material, (3)...Abrasive grain, (6)...
・Electrolyte solution. Agent Patent Attorney Fuji 1) Ryutabeki・Figure 2Figure 3Figure 1Figure 4Figure 5Figure 6Figure 7□Ishi t! , Hiro Kiriyashi

Claims (1)

【特許請求の範囲】[Claims] ■電解作用と砥粒擦過作用とを複合してチ、タンおよび
その合金を鏡面仕上げ加工する電解複合錆面加工方法に
用いる鏡面加工液において、微量の電解質を混入した電
解液に、オレイン酸またはラウリン酸またはリノール酸
またはステアリン酸などの脂肪酸界面活性剤を添加した
ことを特徴とする鏡面加工液。
■In the mirror polishing solution used in the electrolytic composite rust surface processing method that combines electrolytic action and abrasive abrasion action to mirror finish titanium, tan and their alloys, oleic acid or A mirror finishing liquid characterized by adding a fatty acid surfactant such as lauric acid, linoleic acid, or stearic acid.
JP6428884A 1984-03-31 1984-03-31 Processing fluid for mirror surface Pending JPS60207725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6428884A JPS60207725A (en) 1984-03-31 1984-03-31 Processing fluid for mirror surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6428884A JPS60207725A (en) 1984-03-31 1984-03-31 Processing fluid for mirror surface

Publications (1)

Publication Number Publication Date
JPS60207725A true JPS60207725A (en) 1985-10-19

Family

ID=13253894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6428884A Pending JPS60207725A (en) 1984-03-31 1984-03-31 Processing fluid for mirror surface

Country Status (1)

Country Link
JP (1) JPS60207725A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018954A (en) * 2002-06-17 2004-01-22 Takahisa Deguchi Production method for titanium-based metal product, and titanium-based metal product
ES2239912A1 (en) * 2004-03-26 2005-10-01 Marc Sarsanedas Gimpera Electrolytic polishing of metals in amphipathic molecule emulsions comprises immersion or spraying with inert particles in suspension mixed with organic and polar substances
JP2006312735A (en) * 2005-04-07 2006-11-16 Shinei Seisakusho:Kk Electrolyzed water solution for metal working

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376938A (en) * 1976-12-21 1978-07-07 Inoue Japax Res Electrochemical working liquid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376938A (en) * 1976-12-21 1978-07-07 Inoue Japax Res Electrochemical working liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018954A (en) * 2002-06-17 2004-01-22 Takahisa Deguchi Production method for titanium-based metal product, and titanium-based metal product
JP4570315B2 (en) * 2002-06-17 2010-10-27 埼玉県 Method for producing titanium metal product and titanium metal product
ES2239912A1 (en) * 2004-03-26 2005-10-01 Marc Sarsanedas Gimpera Electrolytic polishing of metals in amphipathic molecule emulsions comprises immersion or spraying with inert particles in suspension mixed with organic and polar substances
JP2006312735A (en) * 2005-04-07 2006-11-16 Shinei Seisakusho:Kk Electrolyzed water solution for metal working

Similar Documents

Publication Publication Date Title
TW473403B (en) Method for cleaning a surface
US11230782B2 (en) Passivation surface treatment of stainless steel
US3409522A (en) Electrochemical machining of titanium and alloys thereof
JPH057147B2 (en)
CN107747113A (en) A kind of surface treatment method of non-ferrous metal workpiece
Muster Copper distributions in Aluminium alloys
JPS60207725A (en) Processing fluid for mirror surface
US3300349A (en) Chemical milling process and related solutions for aluminum
Kim et al. A study of the improvement surface roughness and optimum machining characteristic of L-shaped tube STS 316L by electropolishing
US20160168742A1 (en) Method for anodizing aluminum alloy workpiece, method for surface treating aluminum alloy workpiece, and anodizing solution mixes
JPS60186318A (en) Mirror-face finishing for titanium and its alloy
US3803776A (en) Method for treating surfaces of zirconium alloy tubes
JP2015025181A (en) Production method for chemically treating and simultaneously barrel polishing formed part comprising magnesium alloy
JPH07185939A (en) Method for electrolytic polishing of member made of alloy steel
JPS60217018A (en) Method of grinding electrolytic combined mirror-like surface made of titanium or titanium alloy metal
JP2014018923A (en) Cmp polishing fluid, cmp slurry, and polishing method
JPS60114739A (en) Grinding and corrosion of ti
CN118219070B (en) Polishing process for metal workpiece and metal workpiece
JPH07185941A (en) Method for electrolytic polishing of member made of stainless steel
Hoare et al. Electrochemical machining
JP7492206B1 (en) Stainless steel components for semiconductor manufacturing equipment and their manufacturing method
US2730494A (en) Process of electrolytic deburring of metal
JPH07185940A (en) Method for electrolytic polishing of member made of stainless steel
JPS60207723A (en) Mirror surface processing method for titanium and alloy thereof
Mihaela OBTAINING BY ELECTROCHEMICAL AND ABRASIVE MACHINING OF THE POLISHED SURFACES FOR WORK PIECES FROM TITANIUM