JPS6036828B2 - Condensate treatment method - Google Patents
Condensate treatment methodInfo
- Publication number
- JPS6036828B2 JPS6036828B2 JP53100370A JP10037078A JPS6036828B2 JP S6036828 B2 JPS6036828 B2 JP S6036828B2 JP 53100370 A JP53100370 A JP 53100370A JP 10037078 A JP10037078 A JP 10037078A JP S6036828 B2 JPS6036828 B2 JP S6036828B2
- Authority
- JP
- Japan
- Prior art keywords
- condensate
- filter
- precoat
- ion exchange
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 title claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 54
- 238000010612 desalination reaction Methods 0.000 claims description 31
- 238000001914 filtration Methods 0.000 claims description 22
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 17
- 239000007787 solid Substances 0.000 claims description 17
- 238000005342 ion exchange Methods 0.000 claims description 16
- 239000003456 ion exchange resin Substances 0.000 claims description 13
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 13
- 241000047703 Nonion Species 0.000 claims description 11
- 238000005115 demineralization Methods 0.000 claims description 11
- 230000002328 demineralizing effect Effects 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 8
- 239000003957 anion exchange resin Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 239000003729 cation exchange resin Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000012209 synthetic fiber Substances 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- 239000000835 fiber Substances 0.000 claims 2
- 239000002245 particle Substances 0.000 claims 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 24
- 239000011347 resin Substances 0.000 description 17
- 229920005989 resin Polymers 0.000 description 17
- 239000000463 material Substances 0.000 description 16
- 238000000576 coating method Methods 0.000 description 9
- 230000008929 regeneration Effects 0.000 description 9
- 238000011069 regeneration method Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 238000012544 monitoring process Methods 0.000 description 6
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 235000019814 powdered cellulose Nutrition 0.000 description 1
- 229920003124 powdered cellulose Polymers 0.000 description 1
- 239000012492 regenerant Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 150000003385 sodium Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Filtration Of Liquid (AREA)
Description
【発明の詳細な説明】
本発明は、ボィラ、タービンのスケール生成および腐食
を防止するために、復水中に存在する不純物質を除去す
る復水処理方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a condensate treatment method for removing impurities present in condensate in order to prevent scale formation and corrosion in boilers and turbines.
一般に復水脱塩装置には強酸性腸イオン交側樹脂のH形
と強塩基性陰イオン交換樹脂のOH形とを混合して用い
、陽イオン交予期樹脂が復水中のアンモニアで飽和した
時点で再生を行なうHサイクル処理方法と、いま一つは
陽イオン交予期樹脂が復水のアンモニアで破過したあと
も引き続いてアンモニア形に置換した樹脂を利用して処
理を継続するNH3サイクルの処理方法がある。Generally, in a condensate desalination device, a mixture of H type of strongly acidic ion exchange resin and OH type of strongly basic anion exchange resin is used, and when the cation exchange resin is saturated with ammonia in the condensate, The other is the NH3 cycle treatment method, in which the treatment continues using the resin that has been replaced with ammonia even after the cationic exchange resin has been overcome by the ammonia in the condensate. There is a way.
最近では、復水脱塩装置の再生薬剤の節約と、運転管理
の面から再生頻度の少ないNH3サイクルの復水処理を
採用するところが多い。しかしながら、NH3サイクル
の運転においては、Hサイクルとは異なった種々の制限
を受けるために、装置が複雑になったり再生に長時間を
要するなどの欠点もあって、必ずしも完成された技術と
は言えないのが現状である。従来行なわれているNH3
サイクルでは脱塩塔流入水のアンモニアが脱塩塔内で吸
着除去されることなくそのまま流出水に含まれてくるの
で、再生後脱塩塔に充填されている樹脂に不純物が残っ
ていると、これら不純物と復水中のアンモニアが反応し
て、樹脂から不純物が漆離し、それが処理水に煽って、
処理水質を劣化させることになる。Recently, many companies have adopted condensate treatment using the NH3 cycle, which requires less frequency of regeneration, in order to save regeneration chemicals for condensate desalination equipment and to improve operational management. However, the operation of the NH3 cycle is subject to various limitations different from those of the H cycle, and there are drawbacks such as the equipment being complicated and regeneration taking a long time, so it cannot necessarily be said that it is a perfected technology. The current situation is that there is no such thing. Conventionally done NH3
In the cycle, ammonia in the demineralization tower inflow is not adsorbed and removed in the demineralization tower and is contained in the outflow water as it is, so if impurities remain in the resin packed in the demineralization tower after regeneration, These impurities react with ammonia in the condensate, causing the impurities to separate from the resin, which is then transferred to the treated water.
This will deteriorate the quality of treated water.
例えば苛性ソーダで陰イオン交換樹脂を再生するときに
、若干の腸イオン交換樹脂が苛性ソーダと接触してNa
形となり、これが通水工程で復水のアンモニアと反応し
て処理水にNaが漏出してくるもその一例である。この
Na漏出を低減させる方法として、消石灰溶液を通液す
る方法とかアンモニア水を利用する方法等が実用化され
ているが、いずれも特殊な薬品を使用し、さらに再生に
は長時間を要するなどの欠点があった。本発明は、これ
ら従来の復水脱塩方法の欠点を排除し、Hサイクルはも
とよりNH3サイクルの運転においても極めて高純度の
処理水を安定して得る有効な処理方法を提供することを
目的としている。For example, when regenerating an anion exchange resin with caustic soda, some of the intestinal ion exchange resin comes into contact with the caustic soda and becomes Na.
An example of this is when Na reacts with ammonia in the condensate during the water flow process, causing Na to leak into the treated water. Methods to reduce this sodium leakage include passing slaked lime solution and using ammonia water, but both use special chemicals and require a long time for regeneration. There was a drawback. The present invention aims to eliminate the drawbacks of these conventional condensate desalination methods and provide an effective treatment method for stably obtaining treated water of extremely high purity not only in H cycle but also in NH3 cycle operation. There is.
また本発明の他の目的は、復水脱塩装置の再生剤量を大
中に低減させると共に維持管理を容易にすることが可能
な有効な処理方法並びにその装置を提供することにある
。Another object of the present invention is to provide an effective treatment method and device that can significantly reduce the amount of regenerant in a condensate desalination device and facilitate maintenance.
本発明はプレコート炉過機と温床式イオン交換樹脂塔か
らなる復水処理装置を用いて高圧ボィラ復水を処理し、
復水中の溶解固形物並びに懸濁物質を除去する方法にお
いて、ボィラ起動時のように多量の懸濁物質を含む復水
を処理する場合には、復水を粉末セルロースとか、粉末
合成繊維、もしくは粉末活性炭のような非イオン交換性
粉末炉過助材のうち1種類あるいは、これら炉過助村を
数種混合したり、複層にプレコートしたプレコート炉過
機へ通水して復水中の懸濁物質の大部分を除去したあと
、引き続いて粒状のH形強酸性陽イオン交換樹脂とOH
形強塩基性陰イオン交換樹脂を混合して充填した温床式
脱塩塔へ直列に通水して処理する。The present invention treats high-pressure boiler condensate using a condensate treatment device consisting of a pre-coat furnace filter and a hot bed type ion exchange resin tower,
In the method for removing dissolved solids and suspended solids in condensate, when treating condensate containing a large amount of suspended solids such as when starting a boiler, the condensate may be treated with powdered cellulose, powdered synthetic fibers, or powdered synthetic fibers. One type of non-ion-exchange powder furnace auxiliary material such as powdered activated carbon, or a mixture of several types of these furnace auxiliary materials, or water can be passed through a pre-coated furnace filtration machine pre-coated in multiple layers to remove suspended water in condensate. After removing most of the turbid substances, granular H-type strongly acidic cation exchange resin and OH
The water is treated by being passed in series to a hot bed type desalination tower filled with a mixture of strongly basic anion exchange resins.
ボィラ起動時に復水に含まれる懸濁物質の主成分は鉄の
酸化物であって、それらの50%以上は前記非イオン交
換性炉過助材のうちの1種類をプレコ−トしたプレコー
ト炉過機で除去されるのであるが、さらに好ましくは、
炉過助材数種を組み合せたプレコート層によって懸濁物
質の除去率は向上する。プレコート炉過機の型式は特に
限定するものでは無く、通常使用されている管型ェレメ
ント、あるいは葉状のプレコート支持体からなる、いず
れの型式のものでも用いられる。前記プレコート炉過助
材としては粉末のイオン交≠剣樹脂を使用することもで
きるのであるが、懸濁物質を多量に含む復水を処理する
場合には炉過機の差圧上昇によって頻繁にプレコート炉
過層を更新しなければならず、そのつど高価な粉末イオ
ン交去勢樹脂をプレコートし直すのは経済的とは言い難
いので本発明ではこの点をも考慮してボィラ起動時にお
いては、プレコート炉過機の炉過助材を非イオン交換性
の粉末助剤とし、平常時のように復水中の懸濁物質が少
ない場合には粉末イオン交換樹脂をプレコートしたプレ
コート炉過法を採用することによって、良質の処理水を
経済的に得るようにしてある。The main component of suspended solids contained in condensate at the time of boiler startup is iron oxide, and more than 50% of them are precoated with one type of non-ion exchange furnace additive. More preferably, it is removed by filtration.
The removal rate of suspended solids is improved by a precoat layer that combines several types of furnace auxiliary materials. The type of precoat filter is not particularly limited, and any type consisting of a commonly used tubular element or a leaf-shaped precoat support can be used. Powdered ion exchange resin can also be used as the pre-coating furnace filter aid, but when treating condensate containing a large amount of suspended solids, the increase in differential pressure in the furnace filter frequently causes The pre-coat furnace overlayer must be renewed, and it is difficult to say that it is economical to re-pre-coat with expensive powdered ion exchange resin each time, so the present invention takes this point into account when starting up the boiler. The pre-coat filtration method uses a non-ion-exchange powder auxiliary as the auxiliary material for the pre-coat filtration machine, and when there are few suspended solids in the condensate as in normal times, a pre-coat filtration method in which powdered ion-exchange resin is pre-coated is used. This makes it possible to obtain high-quality treated water economically.
そしてボィラ起動後、時間の経過につれて脱塩装置に流
入する復水純度は徐々に高まり、懸濁物質及び溶解固形
物は共に減少しながら、平常時の運転に移行する。この
ような平常時に於ては、プレコート炉過機のプレコート
層は粉末の陽、陰イオン交灘樹脂を混合してプレコート
したものを層底部に構成し、その上層部に前記非イオン
交換性炉過助材をプレコートさせた複層式プレコート層
として、該プレコ−ト層を通して復水を処理し、プレコ
ート炉過機流出水がボィラ給水基準水質を満足したら、
粒状のイオン交換樹脂を充填した温床式脱塩塔への通水
は停止する。この場合平常時のプレコート炉過機を複層
に構成することによって、粉末イオン交モ剣樹脂のプレ
コート量を従来の1′2以下の0.2〜0.5k9/力
に減少させることができる。非イオン交換性炉退助材の
プレコート量は0.5〜1.0kg/であれば十分で、
通水時間と濁質補促に伴う圧損上昇が著しい場合には、
適時、間欠的に非イオン交換性炉過助材を先のプレコー
ト層へボディフィードして差圧を低く保つ方法が採られ
る。粉末イオン交換樹脂のイオン形は陽イオン交換樹脂
がH形もしくはN比形とし、陰イオン交換樹脂はOH形
を使用することによって、Hサイクルはもとより、NH
3サイクルにおいても良好な処理水を得ることができる
。脱塩塔への流入水例えばボィラ復水のカチオン導電率
、あるいはナトリウム濃度の上昇を検出して復水器漏洩
事故を探知した場合は、直ちにプレコート炉過機流出水
を温床式脱塩塔へ通水してプレコート炉過層単独では吸
着除去できないような不純物を粒状イオン交換樹脂層で
除去する。一方温床式脱塩塔内の樹脂は常にH形とOH
形のイオン形で待機しているので、大きな復水器事故で
あつても十分に余裕をもって復水処理を継続することが
できるものである。本発明の一実施態様を図面を参照し
つつ説明すると、プレコート炉過機1と温床式脱塩塔3
とを直列に連結したものからなる復水処理装置において
、プレコート層2を有するプレコート炉過機1と温床式
樹脂層4を有する温床式脱塩塔3とが開閉弁のある配管
経路で連結配備され、この配管経路の少なくとも一つに
プレコート材溶解槽5,6が前記プレコート炉過機1に
関連して備えられ、このプレコート炉過機1と温床式脱
塩塔3との流入流出経路にそれぞれ脱塩装置流入復水水
質監視計Mi、プレコート炉過機流出水水質監視計Mc
、温床式脱塩塔流出水水質監視計Meが装備されている
。After the boiler is started, the purity of the condensate flowing into the desalination equipment gradually increases as time passes, and while both suspended solids and dissolved solids decrease, the operation returns to normal operation. In normal times, the precoat layer of the precoat furnace is composed of a mixture of powdered cationic and anionic exchange resins at the bottom of the layer, and the upper layer is the non-ion exchange furnace. Condensate is treated through the precoat layer as a multilayer precoat layer precoated with a filtering agent, and when the precoat furnace filtration effluent satisfies the boiler feed water standard water quality,
Water flow to the hotbed desalination tower filled with granular ion exchange resin is stopped. In this case, by configuring the pre-coating filter in a multi-layer structure during normal operation, the amount of pre-coating of powdered ionized resin can be reduced to 0.2 to 0.5 k9/force, which is less than the conventional 1'2. . It is sufficient that the pre-coat amount of non-ion exchange furnace retirement aid is 0.5 to 1.0 kg/
If the pressure drop increases significantly due to water flow time and turbidity replenishment,
A method is adopted in which the differential pressure is kept low by body-feeding a non-ion-exchange furnace additive to the precoat layer intermittently at appropriate times. By using the ion form of the powdered ion exchange resin, the cation exchange resin is in the H form or the N ratio form, and the anion exchange resin is in the OH form.
Even in 3 cycles, good treated water can be obtained. If a condenser leakage accident is detected by detecting an increase in the cation conductivity or sodium concentration of the inflow water to the desalination tower, for example, the boiler condensate, the outflow water from the pre-coat furnace filtration machine should be immediately transferred to the hotbed desalination tower. The granular ion-exchange resin layer removes impurities that cannot be adsorbed and removed by the pre-coat furnace layer alone by passing water through it. On the other hand, the resin in the hot bed demineralization tower is always in H type and OH type.
Since it is on standby in the ionized form, even in the event of a major condenser accident, condensate treatment can be continued with sufficient margin. One embodiment of the present invention will be described with reference to the drawings. A precoating furnace 1 and a hotbed desalination tower 3
In the condensate treatment equipment, a precoat filter 1 having a precoat layer 2 and a hotbed desalination tower 3 having a hotbed resin layer 4 are connected through a piping route with an on-off valve. Precoat material dissolving tanks 5 and 6 are provided in at least one of the piping routes in association with the precoat filter 1, and the inflow and outflow routes between the precoat filter 1 and the hotbed desalination tower 3 are provided. Desalination equipment inflow condensate water quality monitoring meter Mi, precoating furnace filtration machine outflow water quality monitoring meter Mc
, is equipped with a water quality monitoring meter Me for the effluent water of the hotbed type desalination tower.
7はプレコート材循環ポンプ、21はプレコート材スラ
リ鷹梓機、8,9,10,11,12,13,14,1
5,16,17,18,19,20はそれぞれ弁を示す
。7 is a pre-coat material circulation pump, 21 is a pre-coat material slurry hawk machine, 8, 9, 10, 11, 12, 13, 14, 1
5, 16, 17, 18, 19, and 20 each indicate a valve.
一般に、復水脱塩装置においては、被処理水を複数系列
の処理装置に分割して通水するのが普通である。本発明
の方法においても同様に、複数個の処理系列を有してい
るのであるが、ここでは1系列のみを図示し、他の系列
は省略してある。ボィラ起動時においては、脱塩装置流
入復水水質監視計Miを通り、流入水弁8を経てプレコ
ート炉過機1に導入された復水は、非イオン交換性炉過
助材層2を通過する間に吸着炉過作用によって懸濁物質
が除去されたのち、水質監視計Mcで水質を連続的にチ
ェックされ、弁9,10を通って温床式脱塩塔3に導入
され、該塔3内の温床式樹脂層4で最終的にポリシング
されてから、脱塩塔流出水水質監視計Meで導電率、ナ
トリウム濃度等をチェックされ、弁11を経て系外へ導
出される。Generally, in a condensate desalination apparatus, it is common to divide the water to be treated into a plurality of treatment apparatuses and pass the water through the treatment apparatuses. Similarly, the method of the present invention has a plurality of processing sequences, but only one sequence is illustrated here, and the other sequences are omitted. When the boiler is started, condensate passes through the desalination equipment inflow condensate water quality monitor Mi, passes through the inflow water valve 8, and is introduced into the precoating furnace filtration machine 1.The condensate passes through the non-ion exchange furnace filter aid layer 2 After the suspended solids are removed by the overaction of the adsorption furnace, the water quality is continuously checked by a water quality monitor Mc, and the water is introduced into the hotbed desalination tower 3 through valves 9 and 10. After final polishing in the hot bed type resin layer 4 inside the desalination tower, the conductivity, sodium concentration, etc. of the water effluent from the desalination tower are checked by a water quality monitor Me, and then the water is led out of the system via a valve 11.
ボィラ起動時の懸濁質濃度は少ない場合で数十山夕/夕
、多いときには数千r夕/れこも達する。このような多
量の濁質を含む復水を直接温床塔へ導入させると、塔内
樹脂が濁質で汚染されるために、頻繁に温床式樹脂層の
再生を行なわなければならず、その結果、多量の洗浄水
と薬剤を必要とし、さらに、再生には長時間を要するこ
とになるのでこれに対処して温床式脱塩塔3の前段にプ
レコート炉過工程を経て復水処理装置に流入する懸濁物
質の大部分はプレコート炉過工程で分離除去させるよう
にし、温床式脱塩塔3の負荷を著しく軽減されるように
なっている。ボィラ起動期間にプレコート炉過機1の差
圧が設定値を越えると、弁8,9を閉じ、弁13を開い
て、流入復水を直接温床式脱塩塔へ通水して処理する。
この間に弁14,15を開いて、弁14から導入される
加圧水によってプレコートケーキを剥離し、弁15を経
て槽外へ排出したあと弁14,15を閉じる。次いで、
プレコート材溶解槽5に懸濁させたスラリ状のプレコー
ト炉過助材を、弁17,20,16を開き、循環ポンプ
7を作動させてプレコート層支持体に炉過助材を循環補
促させてプレコート層を形成させる。プレコート層が2
種類以上の炉過助村から成る複層炉材の場合は、プレコ
ート材溶解槽6を利用して同様にプレコート層を形成さ
せることができる。プレコート工程が終了すると、弁1
7,20,16を閉じ、ポンプ7を停止し、弁8,9を
開くと同時に弁13を閉じ、再び、復水をプレコート炉
過機1へ導入する。プレコート作業中は、復水は直接温
床式脱塩塔3へ通水されるので、復水処理を中断するこ
とないこ連続的に行うことができる。また、この間に温
床式脱塩塔3に持ち込まれる懸濁物質の量は比較的少な
いので、脱塩塔3内の樹脂が濁質で汚染を受ける程度は
無視できる程度に小さい。なお前記流入復水水質監視計
Mi及び炉過機流出水水質監視計Mcによって、脱塩塔
流入水と炉過水の水質が設定値に入ると、プレコート炉
過機1のプレコート層2を非イオン交換性のみのプレコ
ート層から、粉末イオン交換樹脂と非イオン交換性炉過
助材の榎層式炉過層に変える。When the boiler is started, the suspended solids concentration can be as low as several tens of hours per night, and as high as several thousand hours per hour. If condensate containing such a large amount of turbidity is introduced directly into the hotbed tower, the resin in the tower will be contaminated with turbidity, and the hotbed resin layer must be frequently regenerated. , a large amount of washing water and chemicals are required, and regeneration takes a long time, so in order to deal with this, the water flows into the condensate treatment equipment through a pre-coating furnace process before the hotbed desalination tower 3. Most of the suspended solids are separated and removed in the precoating furnace filtration process, and the load on the hotbed desalination tower 3 is significantly reduced. When the differential pressure of the precoat filter 1 exceeds a set value during the boiler startup period, valves 8 and 9 are closed, valve 13 is opened, and the inflow condensate is passed directly to the hotbed desalination tower for treatment.
During this time, valves 14 and 15 are opened, and the precoat cake is peeled off by pressurized water introduced from valve 14 and discharged to the outside of the tank via valve 15, and then valves 14 and 15 are closed. Then,
Open the valves 17, 20, and 16, and operate the circulation pump 7 to circulate the slurry-like precoat furnace auxiliary material suspended in the precoat material dissolving tank 5 to the precoat layer support. to form a precoat layer. 2 pre-coat layers
In the case of a multilayer furnace material consisting of more than one type of furnace material, the precoat layer can be similarly formed using the precoat material dissolving tank 6. When the pre-coating process is finished, valve 1
7, 20, 16 are closed, pump 7 is stopped, valves 8, 9 are opened, and at the same time valve 13 is closed, and condensate is introduced into precoat filter 1 again. During the precoating operation, the condensate is directly passed to the hot bed type demineralization tower 3, so that the condensate treatment can be carried out continuously without interruption. Moreover, since the amount of suspended solids brought into the hot bed type demineralization tower 3 during this period is relatively small, the extent to which the resin in the demineralization tower 3 is contaminated by the suspended solids is negligibly small. Note that when the water quality of the demineralization tower inflow water and the furnace filtrate reaches the set value by the inflow condensate water quality monitor Mi and the furnace filtration machine effluent water quality monitor Mc, the precoat layer 2 of the precoat furnace filtration machine 1 is turned off. Changed from a pre-coat layer with only ion exchange properties to an Enoki-type furnace layer made of powdered ion exchange resin and non-ion exchange furnace additive.
操作は先に述べたプレコート操作と同様に行なうことが
でき、まず、粉末の際、陰イオン交モ期樹脂を水に混合
懸濁させたスラリをプレコート支持体にプレコートした
あと、その上層部へ非イオン交換性炉過助材をプレコー
トする。プレコートが完了したら復水をプレコート炉過
機1へ通水し、炉過機流出水水質監視計Mcによって炉
過水がボィラ給水基準値を満足することを確認したのち
、弁12を開き、弁10,11を閉じて温床式脱塩塔を
バイパスさせて処理を行なう平常時の運転に移行する。
平常時の運転においてプレコート炉過機1の差圧が上昇
してくると、プレコート材溶解槽5に懸濁させて貯蔵し
ておいた非イオン交換性炉過助材を間欠的に復水に添加
しながらプレコート炉過を行う。いわゆるボディフイー
ド法を採用し、プレコート炉過機1の圧損上昇を緩和さ
せ、プレコート炉過機の運転継続時間をできる限り長く
とり、粉末イオン交≠剣樹脂消費量の削減にっとめるこ
とが考慮されている。また前記脱塩装置流入復水水質監
視計Miによって、流入復水中に溶解固形物の増加を検
出したら、直ちに弁12を閉じ、弁10,11を開いて
プレコート炉過機流出水を温床式脱塩塔3へ直列に通水
処理する。The operation can be carried out in the same manner as the pre-coating operation described above. First, when powdering, a slurry in which an anionic phase resin is mixed and suspended in water is pre-coated on a pre-coated support, and then the upper layer is coated on the pre-coated support. Pre-coat with non-ion exchange furnace additive. After the precoating is completed, the condensate is passed through the precoating furnace filtration machine 1, and after confirming that the furnace filtrate satisfies the boiler water supply standard value using the furnace filtration machine effluent water quality monitor Mc, the valve 12 is opened, and the valve 12 is opened. 10 and 11 are closed to bypass the hotbed demineralization tower and proceed to normal operation.
During normal operation, when the differential pressure in the pre-coating furnace 1 increases, the non-ion exchange furnace auxiliary material suspended and stored in the pre-coating material dissolving tank 5 is intermittently added to the condensate. Perform precoat filtration while adding. It is considered that the so-called body feed method is adopted to alleviate the increase in pressure drop in the pre-coat filtration machine 1, to extend the operating time of the pre-coat filtration machine as long as possible, and to reduce the consumption of powder ion exchange ≠ sword resin. ing. In addition, when an increase in dissolved solids is detected in the inflow condensate by the desalination equipment inflow condensate water quality monitor Mi, the valve 12 is immediately closed and the valves 10 and 11 are opened to remove the pre-coating furnace filtration machine outflow water from hot bed demineralization. Water is passed in series to the salt tower 3 for treatment.
本発明の方法によると、温床式脱塩塔は復水器漏洩時と
か、ボィラ起動時等の異常時にだけ利用されるので、再
生頻度は少なく、さらにH形とOH形混合樹脂の状態で
待機しているので、処理水は純水となることから、大規
模な復水器漏洩事故にも対処できるものであり、しかも
温床式樹脂の再生は、塔内方式、あるいは塔外再生装置
を利用して、従来のHサイクルの復水脱塩装置と同じ様
に行なうことができる。According to the method of the present invention, the hotbed desalination tower is used only in abnormal situations such as when the condenser leaks or when the boiler is started, so the frequency of regeneration is low, and furthermore, the H-type and OH-type mixed resin is on standby. As the treated water becomes pure water, it is possible to deal with large-scale condenser leakage accidents.Moreover, hotbed resin regeneration can be done using an in-column method or an external regeneration device. Thus, it can be carried out in the same manner as in the conventional H cycle condensate desalination apparatus.
またNH3サイクルのための特殊な薬品類は一切必要と
しないで運転できる。以上述べたように、本発明の方法
によれば、ポィラ起動時と復水器漏洩時のように復水の
不純物が多い場合にはプレコート炉過機と温床式粒状イ
オン交モ期間脂層の直列処理によって、また、復水の不
純物が徴量の鉄酸化物を主成分とする平常時には粉末イ
オン交換樹脂と非イオン交換性炉過助材の複層プレコー
ト層による処理を行なうことによって、復水脱塩装置の
再生薬剤を大中に減少でき運転維持管理も容易となると
共に、従来の復水脱塩方法の欠点を排除し、Hサイクル
はもとよりNQサイクルの運転においても極めて高純度
の処理水を安定して得るものである。Moreover, it can be operated without any special chemicals required for the NH3 cycle. As described above, according to the method of the present invention, when there are many impurities in the condensate, such as at the time of starting a boiler or when a condenser leaks, the fat layer is By serial treatment, and by treatment with a multilayer pre-coat layer of powdered ion exchange resin and non-ion exchange furnace additive, which is mainly composed of iron oxide, which contains condensate impurities. The amount of regenerating chemicals in the water desalination equipment can be drastically reduced, making operation and maintenance easier, and eliminating the shortcomings of conventional condensate desalination methods, resulting in extremely high purity treatment not only in H cycle but also in NQ cycle operation. It is a stable source of water.
図面は本発明の一実施態様を示す系統説明図である。
1・・・・・・プレコート炉過機、2…・・・プレコー
ト層、3・・・・・・温床式脱塩塔、4・・・…温床式
樹脂層、5,6・・・・・・プレコート材溶解槽、7・
・・・・・プレコート材循環ポンプ、8,9,10,1
1,12,13,14,15,16,17,18,19
,20・・・…弁、21・・・・・・蝿梓機、Mi・・
・・・・流入復水水質監視計、Mc・…・・プレコート
炉過機流出水水質監視計、Me・・・・・・温床式脱塩
塔流出水水質監視計。The drawing is a system explanatory diagram showing one embodiment of the present invention. 1... Precoat filter, 2... Precoat layer, 3... Hotbed desalination tower, 4... Hotbed resin layer, 5, 6...・Precoat material dissolution tank, 7・
...Precoat material circulation pump, 8, 9, 10, 1
1, 12, 13, 14, 15, 16, 17, 18, 19
, 20... Valve, 21... Fly Azusa machine, Mi...
...Inflow condensate water quality monitoring meter, Mc... Precoat furnace filtration machine effluent water quality monitoring meter, Me...Hotbed type desalination tower effluent water quality monitoring meter.
Claims (1)
通水して復水中の不純物を除去する復水処理工程におい
て、ボイラ起動時には復水を粉末の天然繊維、合成繊維
、粉末活性炭のような非イオン交換性粉末濾過助材のう
ちの1種類もしくは、それら濾過助材を数種プレコート
したプレコート濾過機へ通水してプレコート濾過工程を
経て引き続いて粒状のH形のイオン交換樹脂とOH型の
陰イオン交換樹脂とのイオン交換樹脂粒子を混合して充
填した温床式脱塩塔へ直列に通水して処理し、流入復水
の溶解固形物濃度の低い平常時には粉末の陽イオン交換
樹脂と粉末陰イオン交換樹脂をプレコートしたプレコー
ト層上部に前記非イオン交換性濾過助材をプレコートし
た多層式プレコート層から成るプレコート濾過機単独で
復水を処理し、復水処理すべく流入する復水中での溶解
固形物の増加検出によつて、プレコート濾過機流出水を
温床式脱塩塔に通水して復水を脱塩することを特徴とす
る復水処理方法。 2 前記のプレコート濾過工程が、プレコート濾過機の
差圧上昇で間欠的に前記非イオン交換性濾過助材をボデ
イフイードするものである特許請求の範囲第1項記載の
復水処理方法。[Scope of Claims] 1. In a condensate treatment process in which boiler condensate is passed through a precoat filter and a hot bed desalination tower to remove impurities in the condensate, when the boiler is started, the condensate is mixed with powdered natural fibers, synthetic fibers, etc. The water is passed through a pre-coated filter machine pre-coated with one or more of non-ion exchange powder filter aids such as fibers and powdered activated carbon, and is then passed through a pre-coat filtration process to form a granular H-type filter. The water is passed in series to a hotbed demineralization tower filled with a mixture of ion exchange resin particles of ion exchange resin and OH type anion exchange resin, and the inflow condensate has a low concentration of dissolved solids. Sometimes condensate is treated by a precoat filter alone, which consists of a multilayer precoat layer in which the non-ion exchange filter aid is precoated on top of a precoat layer precoated with powdered cation exchange resin and powdered anion exchange resin. A condensate treatment method characterized in that by detecting an increase in dissolved solids in the condensate flowing into the condensate to be treated, the effluent from the precoat filter is passed through a hotbed desalination tower to desalinate the condensate. . 2. The condensate treatment method according to claim 1, wherein the pre-coat filtration step intermittently body-feeds the non-ion exchange filter aid by increasing the differential pressure of the pre-coat filter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53100370A JPS6036828B2 (en) | 1978-08-17 | 1978-08-17 | Condensate treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP53100370A JPS6036828B2 (en) | 1978-08-17 | 1978-08-17 | Condensate treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5527080A JPS5527080A (en) | 1980-02-26 |
JPS6036828B2 true JPS6036828B2 (en) | 1985-08-22 |
Family
ID=14272155
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP53100370A Expired JPS6036828B2 (en) | 1978-08-17 | 1978-08-17 | Condensate treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6036828B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS642656Y2 (en) * | 1985-07-11 | 1989-01-23 | ||
CN103304070A (en) * | 2013-07-08 | 2013-09-18 | 南通市长海实业有限公司 | Condensate water recycling device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62277116A (en) * | 1986-05-26 | 1987-12-02 | Chugoku Electric Power Co Ltd:The | Precoated filter |
JP4923540B2 (en) * | 2005-11-29 | 2012-04-25 | 井関農機株式会社 | Crop cleaning equipment |
CN111762956B (en) * | 2020-07-31 | 2023-07-18 | 西安热工研究院有限公司 | SCAL type inter-cooling system circulating water quality regulation and control device and application method thereof |
-
1978
- 1978-08-17 JP JP53100370A patent/JPS6036828B2/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS642656Y2 (en) * | 1985-07-11 | 1989-01-23 | ||
CN103304070A (en) * | 2013-07-08 | 2013-09-18 | 南通市长海实业有限公司 | Condensate water recycling device |
Also Published As
Publication number | Publication date |
---|---|
JPS5527080A (en) | 1980-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3250703A (en) | Process and apparatus for removing impurities from liquids | |
JPS60132693A (en) | Washing method of granular ion exchange resin with ultra-pure water and preparation of ultra-pure water | |
US3250704A (en) | Method for removing impurities from water streams | |
JP7093202B2 (en) | Water treatment system | |
US3062739A (en) | Treatment of chemical wastes | |
US3414508A (en) | Condensate purification process | |
WO2014064754A1 (en) | Method of desalinating boron-containing solution | |
US3823086A (en) | Pretreatment for reverse osmosis process | |
US3849306A (en) | Process and apparatus for removing impurities from condensate water | |
JPS6036828B2 (en) | Condensate treatment method | |
US4528101A (en) | Method of separating acid from salt by adsorption with recycling | |
IL133319A (en) | Generating inorganic polymer electret in colloidal state | |
JP2677384B2 (en) | Treatment method of recycled waste liquid of ion exchange device | |
US3583908A (en) | Condensate purification process | |
JP3319053B2 (en) | Treatment method for fluoride-containing water | |
US2248055A (en) | Apparatus and method for carrying out chemical reactions | |
US2422821A (en) | Liquid purifier having cation exchangers communicating selectively with anion exchangers | |
JPS6036829B2 (en) | Condensate treatment method | |
JPS5833005B2 (en) | How to recover and reuse backwash liquid | |
Richardson et al. | Feature. Ion exchange traps chromates for reuse | |
US1697835A (en) | Base-exchange filter and softener | |
JP3613376B2 (en) | Pure water production apparatus and pure water production method | |
JPS586297A (en) | Treatment of raw water of high content of silica | |
US3692670A (en) | Treatment of cation and anion exchange resins with sodium sulfite | |
JP2018111091A (en) | Treatment apparatus of treated water, treatment method of treated water, back washing method of cation exchange resin and production apparatus of pure water |