JPS6036602A - Iron powder for powder metallurgy - Google Patents

Iron powder for powder metallurgy

Info

Publication number
JPS6036602A
JPS6036602A JP58144298A JP14429883A JPS6036602A JP S6036602 A JPS6036602 A JP S6036602A JP 58144298 A JP58144298 A JP 58144298A JP 14429883 A JP14429883 A JP 14429883A JP S6036602 A JPS6036602 A JP S6036602A
Authority
JP
Japan
Prior art keywords
iron powder
powder
mesh
iron
metallurgy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58144298A
Other languages
Japanese (ja)
Inventor
Kunihiko Imahashi
今橋 邦彦
Mamoru Okamoto
守 岡本
Keiji Ogino
荻野 恵司
Tomoyoshi Nagata
永田 伴喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58144298A priority Critical patent/JPS6036602A/en
Publication of JPS6036602A publication Critical patent/JPS6036602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture inexpensively iron powder with superior compressibility and moldability by specifying the upper limit of the grain sizes of iron powder for powder metallurgy and the percentage of iron powder of certain grain sizes. CONSTITUTION:Iron powder is prepd. so as to adjust the upper limit of the grain sizes to 32 mesh and the content of iron powder of 32-80 mesh grain sizes to 2-30wt%. The prepd. iron powder is filled into the cavity of a metallic mold, compression-molded, and sintered to obtain a molded body of high density.

Description

【発明の詳細な説明】 本発明は、粉末冶金用鉄粉に関し、詳しくは。[Detailed description of the invention] The present invention relates to iron powder for powder metallurgy, and more particularly.

圧縮性・成形性に優れ、しかも、安価に製造できる粉末
冶金用鉄粉にかかる。
It relates to iron powder for powder metallurgy that has excellent compressibility and formability and can be manufactured at low cost.

従来、粉末冶金用鉄粉は、主に還元法と噴!l法によっ
て製造されているう 以下、粉末冶金用鉄粉の要求特性を、確保するために必
要な製造上の留意点、及び、従来の粉末冶金用鉄粉の現
状・問題点について、水噴霧法に例をとって述べる。
Traditionally, iron powder for powder metallurgy has been mainly produced using the reduction method and the injection method. Below, we will discuss the manufacturing considerations necessary to ensure the required properties of iron powder for powder metallurgy, as well as the current status and problems of conventional iron powder for powder metallurgy. Let's take the law as an example.

粉末冶金用鉄粉(以下単に鉄粉という)に要求される多
くの特性のうち、持に重要な特性は。
Among the many properties required for iron powder for powder metallurgy (hereinafter simply referred to as iron powder), which are the most important properties?

■ 圧粉成形する時に、成形体の密度が−(1昇(〕や
すいこと。いわゆる、圧縮性のよいこと。
■ The density of the molded product can easily rise by -(1) during powder compaction. So-called good compressibility.

■ 成形体強度が高いこと。いわゆる、成形性のよいこ
と。
■ High strength molded product. So-called good moldability.

である。It is.

ここで、圧縮性に対しては、主に、鉄粉の硬さ。Here, compressibility mainly refers to the hardness of the iron powder.

成形性に対しては、鉄粉の形状が大きく影響し。Formability is greatly influenced by the shape of the iron powder.

それぞれ1硬さの低いこと、イレギュラー形状であるこ
とが望ましい。
It is desirable that the hardness be low and that the shape be irregular.

水噴霧法は周知のように、落丁する溶湯1こ高圧水を噴
霧し、扮体化後、脱水・乾燥・還元・粉砕篩分は工程を
経て、製品化する鉄粉の製造法である。
As is well known, the water spray method is a method of manufacturing iron powder in which high-pressure water is sprayed over one piece of falling molten metal, and after shaping, the metal is dehydrated, dried, reduced, crushed, and sieved to become a product.

これらの工程で、鉄粉の硬さは、還元工程で焼鈍軟化し
た鉄粉に、粉砕工程で過激なインパクトを与えて加工硬
化させないことが必要であり、鉄粉形状のイレギュラー
化は、噴霧工程でイレギュラー化をはかるとともに、還
元工程で、特に、微粉末同士の焼結を促進することIこ
よって、2次粒子化]ノ、レイギュラー形状扮の比率を
増すことが必要とされる。
In these processes, it is necessary to control the hardness of the iron powder so that the iron powder, which has been annealed and softened in the reduction process, does not undergo work hardening by giving a radical impact during the crushing process. It is necessary to aim for irregularity in the process and, in particular, to promote sintering of the fine powders in the reduction process, thereby increasing the ratio of the formation of secondary particles and the formation of regular shapes.

一方、従来の鉄粉は、篩工程で80〜100メツシユと
、篩目の狭い金網で、上限がカットされているため、ヒ
述のような鉄粉の特性値を満足する鉄粉が製造されてい
ない。
On the other hand, with conventional iron powder, the upper limit of the sieving process is 80 to 100 meshes, which is cut through the wire mesh with narrow sieve mesh, making it difficult to produce iron powder that satisfies the characteristic values of iron powder as described above. Not yet.

このため、従来の鉄粉には、以下に述べるような9品質
面、コスト面での欠点がある。
For this reason, conventional iron powder has nine drawbacks in terms of quality and cost as described below.

まず9品質1mからは、鉄粉粒度の上限を80〜100
メソシユ(金網の篩目149〜177μ)と、微粉側に
規制されているため、製品鉄粉の歩留りを確保するため
に、粉砕工程で強粉砕する必要があり9強粉砕された鉄
粉は、加工硬化によって硬くなり、鉄粉形状も、噴霧工
程、還元工程で得られたイレギュラー形状粉が破壊され
、単純形状に近くなる。
First of all, from 9 quality 1m, the upper limit of iron powder particle size is 80 to 100.
Since the iron powder is regulated to be fine (wire mesh sieve size 149-177μ) and fine powder, it is necessary to crush it strongly in the crushing process to ensure the yield of product iron powder. The iron powder becomes hard due to work hardening, and the irregularly shaped powder obtained in the spraying process and reduction process is destroyed, and the iron powder shape becomes close to a simple shape.

このような鉄粉は、前述のように、圧縮性・成形性が低
く、鉄粉として品質的に満足できない欠点がある。
As mentioned above, such iron powder has low compressibility and moldability, and has the disadvantage that it is not satisfactory as an iron powder in terms of quality.

一般的に、水噴霧鉄粉においては1粒度の粗い鉄粉に、
イレギュラー形状のものが多(1粒度が細かくなるにつ
れ、単純形状のものの比率が多くなる傾向がある。
Generally, in water spray iron powder, coarse iron powder of 1 grain size is used.
Many have irregular shapes (as the particle size becomes finer, the proportion of simple shapes tends to increase).

この点からも、鉄粉粒度の上限を細かくすることは、成
形性を低下する要因となっている。
From this point of view as well, making the upper limit of the iron powder particle size fine is a factor in reducing formability.

また、鉄粉の製造コスト面からは、前述のように篩目が
狭いため1強粉砕を加えても、篩網上への残留鉄粉が、
大域に発生する。
In addition, from the aspect of manufacturing cost of iron powder, as mentioned above, the sieve mesh is narrow, so even if 1-strong crushing is applied, the residual iron powder on the sieve mesh is small.
Occurs in a large area.

そして、この残留鉄粉は、廃却するか、付加価値の低い
用途にしか、振り向けることができない。
This residual iron powder can only be disposed of or used for low value-added purposes.

このため、製品鉄粉としての歩留りが低下し。As a result, the yield as a product iron powder decreases.

設m償却費、原料費、ランニングコストをヒ昇させる結
果となり、鉄粉製造コストを著しく高いものとする欠点
がある。
This results in increased depreciation costs, raw material costs, and running costs, and has the drawback of significantly increasing the cost of producing iron powder.

本発明は、鉄粉を金型キャビティ内に充填して。In the present invention, iron powder is filled into a mold cavity.

圧縮成形により成形体となした後、焼結する。粉末冶金
用鉄粉の粒度構成を制御することによって。
After forming a molded body by compression molding, it is sintered. By controlling the particle size composition of iron powder for powder metallurgy.

圧縮性・成形性に優れ、しかも、製造コストの安い粉末
冶金用鉄粉を提供することを目的としている。
The purpose of this invention is to provide iron powder for powder metallurgy that has excellent compressibility and formability and is inexpensive to produce.

このような目的は1本発明によれば、鉄粉を金型キャビ
ティ内に充填して、圧縮成形によって成。
According to the present invention, iron powder is filled into a mold cavity and formed by compression molding.

形体となした後、焼結する粉末冶金用鉄粉であって、鉄
粉粒度上限を32メツシユとし、32〜80メツシユの
範囲の粒度比率を9重量比率で2%以ヒ、30%以下と
したことを特徴とする粉末冶金用鉄粉によって達成され
る。
An iron powder for powder metallurgy that is sintered after being formed into a shape, with an upper limit of iron powder particle size of 32 mesh, and a particle size ratio in the range of 32 to 80 mesh at a weight ratio of 2% or more and 30% or less. This is achieved by using iron powder for powder metallurgy, which is characterized by the following.

このように1本発明にかかる粉末冶金用鉄粉において、
32〜80メツシユの範囲の粒度比率を。
In this way, in the iron powder for powder metallurgy according to the present invention,
Particle size ratio ranging from 32 to 80 mesh.

重量比率で2%〜30%としたのは、30%を越えると
粉末特性のうち流動性が、さらに、焼結特性のうち引張
特性が、従来鉄粉に比較し低下するからであり、また、
2%未満では9本発明の目的である粉末冶金用鉄粉の、
圧縮性、成形性の向ヒ。
The reason why the weight ratio is set at 2% to 30% is because if it exceeds 30%, the powder properties such as fluidity and sintering properties such as tensile properties deteriorate compared to conventional iron powders. ,
If it is less than 2%, the iron powder for powder metallurgy, which is the object of the present invention,
Good for compressibility and moldability.

及び、製造コストの低減が期待できないからである。In addition, reduction in manufacturing costs cannot be expected.

以F、添付図面に基づいて1本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on the accompanying drawings.

実施例として、水噴霧法により製造した。粉末5− 冶金用鉄粉(以下単に鉄粉という)を例にとって以下に
述べる。
As an example, it was manufactured by a water spray method. Powder 5 - Metallurgical iron powder (hereinafter simply referred to as iron powder) will be described below as an example.

第1図は、鉄粉の成形性の代用特性である成形体曲げ強
さに及ぼす、鉄粉中の32〜80メツシユ扮の比率の影
響をFe −2Cu −0,8Gr−I St、 Zn
 Ml成で成形体密度68に成形した時の結果によって
示している。
Figure 1 shows the influence of the ratio of 32 to 80 mesh in the iron powder on the bending strength of the molded product, which is a property substitute for the formability of the iron powder.
The results are shown when molding to a molded body density of 68 using Ml composition.

この図から明らかなように、鉄粉中の32〜80メツシ
ユ粉の比率の低い従来鉄粉に比べ、鉄粉中の32〜80
メツシユ粉の比率の高い本発明鉄粉は。
As is clear from this figure, compared to conventional iron powder which has a low ratio of 32 to 80 mesh powder in iron powder,
The iron powder of the present invention has a high ratio of mesh powder.

明らかに成形体曲げ強さが高く、従って、成形性に優れ
ていることが理解される。
It is understood that the molded product clearly has high bending strength and therefore has excellent moldability.

また、第2図は、鉄粉の圧縮性の代用特性である成形体
密度に及ぼす、鉄粉中の32〜80メツシユ扮の比率の
影響をFe−2Cu−0,8Gr−1,8t、 Znの
組成で成形圧力5 ton/dで成形した結果によって
示している。
In addition, Figure 2 shows the influence of the ratio of 32 to 80 mesh in iron powder on compact density, which is a substitute characteristic for the compressibility of iron powder, for Fe-2Cu-0,8Gr-1,8t, Zn The results are shown by molding at a molding pressure of 5 ton/d with the composition.

第1図と同様に、この図から、鉄粉中の32〜80メツ
シユ粉の比率の低い従来鉄粉に比べ、鉄粉中の32〜8
0メツシユ粉の比率の高い本発明鉄6一 扮は、成形体密度が明らかに高く、従って、圧縮性に優
れていることが理解される。
Similar to Figure 1, this figure shows that compared to conventional iron powder, which has a low ratio of 32 to 80 mesh powder in iron powder,
It is understood that the iron 6 of the present invention, which has a high proportion of 0 mesh powder, has a clearly high compact density and therefore has excellent compressibility.

つぎに、水噴緋法により製造した鉄粉を還元した鉄粉ケ
ーキを、ハンマーミルクイブの粉砕機で粉砕(ッ、粉砕
工程での粉砕エネルギ(具体的にはハンマーの回転数)
を6水準設定し、各々の条件で粉砕した鉄粉について、
緒特性を評価した。
Next, the iron powder cake obtained by reducing the iron powder produced by the water fountain scarlet method is crushed using a Hammer Milk Eve crusher (the crushing energy in the crushing process (specifically, the number of rotations of the hammer)
6 levels were set, and for iron powder crushed under each condition,
The characteristics of the fibers were evaluated.

第3図に、各々の粉砕エネルギレベルで得られた。鉄粉
の粒度構成のうち、32〜80メツシユ扮の比率、32
メツシユ網目ヒ残留鉄粉(以下、単に一132メソシュ
鉄粉という)の比率を示す。
Figure 3 shows the results obtained at each grinding energy level. Among the particle size composition of iron powder, the ratio of 32 to 80 mesh, 32
The ratio of residual iron powder in the mesh mesh (hereinafter simply referred to as 1132 mesh iron powder) is shown.

また、第4図に各々の粉砕エネルギ・レベルで得られた
鉄粉の見掛密度・流動度を示す。
Moreover, FIG. 4 shows the apparent density and fluidity of iron powder obtained at each grinding energy level.

第3図及び第4図から、粉砕エネルギが高くなるにつれ
、+32メツシュ鉄粉比率、32〜80メツシユ粉の比
率は低減し、見掛密度はヒ昇、流動度が減少することが
オ〕かる。
From Figures 3 and 4, it can be seen that as the crushing energy increases, the +32 mesh iron powder ratio and the 32-80 mesh iron powder ratio decrease, the apparent density increases, and the fluidity decreases. .

ここで、粉砕エネルギが一定レベル以下になると、粉砕
されない粗大粉(+32メツシユ鉄粉)が残り、特に、
流動性を低fさせることから、粉砕エネルギレベルには
F限がある。
Here, when the crushing energy falls below a certain level, coarse powder (+32 mesh iron powder) that is not crushed remains, and in particular,
There is an F limit to the grinding energy level because it lowers the fluidity.

一方、粉砕エネルギを高くしても、32〜80メソシユ
扮は、極端には低減しない。
On the other hand, even if the crushing energy is increased, the 32 to 80 mesh size does not decrease significantly.

これは、噴霧工程での1次粒子が存在し、完全には破壊
されないためで、このことから、従来鉄粉のように、製
品鉄粉の粒度上限を80〜iooメツシユとした場合、
篩工程での篩目、ヒの残留鉄粉が、一定量は確実に発生
することがわかる。
This is because primary particles exist during the spraying process and are not completely destroyed.For this reason, when the upper limit of the particle size of the product iron powder is set to 80 to ioo mesh, as with conventional iron powder,
It can be seen that a certain amount of residual iron powder is definitely generated in the sieving process.

たとえば、従来鉄粉レベルで粉砕した場合で。For example, when grinding at the conventional level of iron powder.

製品鉄粉粒度上限を80メツシユとした場合、その17
%を廃却するか、付加価値の低い用途に振り向けること
になる。
If the upper limit of product iron powder particle size is 80 mesh, then 17
% will be discarded or redirected to low value-added uses.

第5図は2本実施例で製造した鉄粉を用いて。Figure 5 shows the results using the iron powder produced in the two examples.

SMF 4040相当材の引張試験片を製作し、焼結体
の引張強さを実測したものである。
A tensile test piece of a material equivalent to SMF 4040 was manufactured, and the tensile strength of the sintered body was actually measured.

この図から、従来鉄粉に比べ32〜80メツシユ粉を含
有した鉄粉は、引張強さにおいて、全く同等であること
がわかる。
From this figure, it can be seen that the iron powder containing 32 to 80 mesh powder has exactly the same tensile strength as the conventional iron powder.

ただし、32〜80メツシユ粉が30%をこすと。However, if 30% is 32-80 mesh powder.

若干低下する傾向にある。There is a tendency to decrease slightly.

第1表は、従来鉄粉、及び、この実施例により製造した
。32〜80メツシュ扮30%を含む鉄粉を用いて、 
Fe −C−CIJ系焼結合金の、板状試験片を焼結鍛
造にて作成し、疲労強度を評価lノを二結果である。
Table 1 shows conventional iron powders and those produced according to this example. Using iron powder containing 30% of 32-80 mesh,
A plate-shaped test piece of Fe-C-CIJ-based sintered alloy was prepared by sintering and forging, and its fatigue strength was evaluated.

第 1 表 第1表から明らかなように1本発明鉄粉を用いた焼結鍛
造品の耐久限は、従来鉄粉を用いた焼結鍛造品のそれと
同等であることがわかる。
Table 1 As is clear from Table 1, the durability limit of the sintered forged product using the iron powder of the present invention is equivalent to that of the sintered forged product using the conventional iron powder.

つぎに、上記水噴霧法により製造した鉄粉の。Next, the iron powder produced by the above water spray method.

従来鉄粉と本発明鉄粉の歩留り比較を第2表に示す。Table 2 shows a comparison of yields between conventional iron powder and iron powder of the present invention.

第2表 9− 第2表から明らかなように、従来鉄粉に比べ。Table 2 9- As is clear from Table 2, compared to conventional iron powder.

本発明鉄粉の製品歩留りが、著しく向上している。The product yield of the iron powder of the present invention is significantly improved.

そして、製品鉄粉の歩留りが製造コストを左右すること
は言うまでもなく1本発明鉄粉によれば。
According to the iron powder of the present invention, it goes without saying that the yield of the product iron powder affects the manufacturing cost.

従来鉄粉に比べ、20%近い大幅な製造コスト低減を達
成できることを示している。
This shows that compared to conventional iron powder, it is possible to achieve a significant manufacturing cost reduction of nearly 20%.

以ヒをこより明らかなように1本発明にかかる粉末成形
用鉄粉によれば、鉄粉の粒度構成を制御することによっ
て、圧縮性、成形性に優れ、しかも。
As is clear from the following, the iron powder for powder molding according to the present invention has excellent compressibility and moldability by controlling the particle size structure of the iron powder.

製造コストが安いという利点がある。It has the advantage of low manufacturing cost.

上述の説明は、水噴霧法により製造した純鉄粉について
述べたが1本発明は、鉄粉製造の最終工程である粉砕・
h1j工程に関する発明であることから、他の鉄粉製造
法、たとえば、還元法等の鉄粉製造法であっても1本発
明の範囲において、全く同様)こ適用できる。
The above explanation has been about pure iron powder produced by the water spray method, but the present invention also focuses on the final process of pulverization and iron powder production.
Since the invention relates to the h1j process, it is equally applicable to other iron powder manufacturing methods, for example, iron powder manufacturing methods such as reduction methods, within the scope of the present invention.

また、鉄粉の種類にも影響されないことはdうまでもな
い。
It goes without saying that it is not affected by the type of iron powder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来鉄粉と本発明鉄粉の成形性を比10− 較した図。 第2図は、従来鉄粉と本発明鉄粉の圧縮性を比較した図
。 第3図は、粉砕エネルギと鉄粉中の+32メソシュ鉄粉
、32〜80メツシユ鉄粉の比率との関係を示す図。 第4図は、粉砕エネルギと、鉄粉の見掛密度及び流動度
の関係を示す図。 第5図は、32〜80メツシユ粉の比率と焼結体の引張
強さの関係を示す図である。 出願人 トヨタ自動車株式会社 11− イ分石卆エネルヘ゛−レベノン 第3図 第5図 第4図
FIG. 1 is a diagram comparing the formability of conventional iron powder and iron powder of the present invention. FIG. 2 is a diagram comparing the compressibility of conventional iron powder and iron powder of the present invention. FIG. 3 is a diagram showing the relationship between crushing energy and the ratio of +32 mesh iron powder and 32 to 80 mesh iron powder in the iron powder. FIG. 4 is a diagram showing the relationship between crushing energy and the apparent density and fluidity of iron powder. FIG. 5 is a diagram showing the relationship between the ratio of 32 to 80 mesh powder and the tensile strength of the sintered body. Applicant Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] (1) 鉄粉を金型キャビティ内に充填して、圧縮成形
によって成形体となした後、焼結する粉末冶金用鉄粉で
あって、鉄粉粒度上限を32メツシユとし、32〜80
メツシユの範囲の粒度比率を1重量比率で2%以ヒ、3
0%以下としたことを特徴とする粉末冶金用鉄粉。
(1) Iron powder for powder metallurgy that is filled into a mold cavity and formed into a compact by compression molding and then sintered, with an upper limit of iron powder particle size of 32 mesh and 32 to 80 mesh.
The particle size ratio in the mesh range is 1% by weight or more, 3
An iron powder for powder metallurgy characterized by having a content of 0% or less.
JP58144298A 1983-08-06 1983-08-06 Iron powder for powder metallurgy Pending JPS6036602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58144298A JPS6036602A (en) 1983-08-06 1983-08-06 Iron powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58144298A JPS6036602A (en) 1983-08-06 1983-08-06 Iron powder for powder metallurgy

Publications (1)

Publication Number Publication Date
JPS6036602A true JPS6036602A (en) 1985-02-25

Family

ID=15358811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58144298A Pending JPS6036602A (en) 1983-08-06 1983-08-06 Iron powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JPS6036602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173901A (en) * 1990-11-07 1992-06-22 Kawasaki Steel Corp Iron powder for powder metallurgy
US6464751B2 (en) 2000-10-06 2002-10-15 Kawasaki Steel Corporation Iron-based powders for powder metallurgy
US6533836B2 (en) 2000-07-07 2003-03-18 Kawasaki Steel Corporation Iron-based powders for powder metallurgy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157904A (en) * 1982-03-12 1983-09-20 Kawasaki Steel Corp Atomized iron powder of medium apparent density having excellent moldability and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58157904A (en) * 1982-03-12 1983-09-20 Kawasaki Steel Corp Atomized iron powder of medium apparent density having excellent moldability and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04173901A (en) * 1990-11-07 1992-06-22 Kawasaki Steel Corp Iron powder for powder metallurgy
US6533836B2 (en) 2000-07-07 2003-03-18 Kawasaki Steel Corporation Iron-based powders for powder metallurgy
US6464751B2 (en) 2000-10-06 2002-10-15 Kawasaki Steel Corporation Iron-based powders for powder metallurgy

Similar Documents

Publication Publication Date Title
KR100596171B1 (en) Titanium powder and its manufacturing method
CA2969511C (en) Iron-based alloy powder for powder metallurgy, and sinter-forged member
JPS6036602A (en) Iron powder for powder metallurgy
JP2608178B2 (en) Iron powder for powder metallurgy
JPH062007A (en) Pure iron powder for powder metallurgy excellent in compressibility and magnetic characteristic
JPH07310101A (en) Reduced iron powder for sintered oilless bearing and its production
JPS5959810A (en) Steel powder for powder metallurgy and its manufacture
US4518427A (en) Iron or steel powder, a process for its manufacture and press-sintered products made therefrom
JPH07188714A (en) Iron-based powder excellent in compactibility
JP4999283B2 (en) Iron-based powder for powder metallurgy
JP2544017B2 (en) Method for producing copper powder for powder metallurgy
KR20200128157A (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
KR102507938B1 (en) iron for powder metallurgy
EP0157750B1 (en) Material for the powder metallurgical manufacture of soft magnetic components
JP2002047501A (en) Titanium base powder
JPS6156283B2 (en)
JPS607681B2 (en) Atomized iron powder with low apparent density and excellent formability and its manufacturing method
JP3392228B2 (en) Alloy steel powder for powder metallurgy
CA1100788A (en) Iron-phosphorus powder for manufacture of soft magnetic components
JPH0213001B2 (en)
JPS63293102A (en) Production of fe-base sintered alloy member having high strength and high toughness
JPS6372805A (en) Method for pulverizing porous prereduced metallic particles
JP2020132902A (en) Pre-alloyed steel powder for sintered member, powder for sintered member, and sintered member
JPH1096003A (en) Titanium-based powder and its production
JPH0372008A (en) Manufacture of powder