JPS6036020B2 - Non-contact ultrasonic flaw detection method and equipment used for its implementation - Google Patents

Non-contact ultrasonic flaw detection method and equipment used for its implementation

Info

Publication number
JPS6036020B2
JPS6036020B2 JP53075016A JP7501678A JPS6036020B2 JP S6036020 B2 JPS6036020 B2 JP S6036020B2 JP 53075016 A JP53075016 A JP 53075016A JP 7501678 A JP7501678 A JP 7501678A JP S6036020 B2 JPS6036020 B2 JP S6036020B2
Authority
JP
Japan
Prior art keywords
laser beam
flaw detection
mirror
strip
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53075016A
Other languages
Japanese (ja)
Other versions
JPS551571A (en
Inventor
久雄 山口
和夫 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP53075016A priority Critical patent/JPS6036020B2/en
Priority to PCT/JP1979/000151 priority patent/WO1980000099A1/en
Priority to US06/191,338 priority patent/US4338822A/en
Priority to DE2952885A priority patent/DE2952885C2/en
Priority to GB8001094A priority patent/GB2038481B/en
Publication of JPS551571A publication Critical patent/JPS551571A/en
Priority to EP79900653A priority patent/EP0019002B1/en
Publication of JPS6036020B2 publication Critical patent/JPS6036020B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は厚鋼板等の製造工程において、熱間圧延中の高
温(60000〜120000)の厚鋼板等(以下スト
リップという)を探傷する非接触超音波探傷方法及びそ
の実施に使用する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a non-contact ultrasonic flaw detection method for detecting flaws in thick steel plates, etc. (hereinafter referred to as strips) at high temperatures (60,000 to 120,000 ℃) during hot rolling in the manufacturing process of thick steel plates, etc., and its implementation. This relates to equipment used for.

‐例えば被探傷物として幅
広のストリップを探傷する場合、従来は第5図に示すよ
うに白抜き矢符で示す長手方向に移送されているストリ
ップMの表面に臨ませて探触子AをストリップMの幅方
向にその略全幅に亘つて適宜の速度で往復移動させ、実
線Gで示すようにジグザグ状に連続的に走査して深傷す
る方法あるいは、第6図に示すように同じく白抜き矢符
方向に移送されているストリップMの表面に臨ませて、
ストリップMの幅方向に多数の探触子B,B・・・Bn
を配設しておき、これら各探触子を電気的に走査し、G
,,G2・・・Gnのように点状に探傷する方法等が探
られている。
- For example, when testing a wide strip as an object to be tested, conventionally, as shown in Fig. 5, the strip probe A is placed facing the surface of the strip M that is being transported in the longitudinal direction indicated by the white arrow. A method of reciprocating in the width direction of M at an appropriate speed over almost the entire width, and scanning continuously in a zigzag pattern as shown by the solid line G to create deep scratches, or a method of making deep scratches as shown in FIG. facing the surface of the strip M being transported in the direction of the arrow,
A large number of probes B, B...Bn are arranged in the width direction of the strip M.
are installed, each of these probes is electrically scanned, and the G
, , G2...Gn, methods of detecting flaws in a dotted manner are being explored.

ところがこのような深傷に使用される探触子A、B,B
2・・・Bnはいずれも発、受信側共、圧電素子等の振
動子を使用しているため探触子A、B1,馬・・・Bn
と被探傷物たるストリップMとの間は音響的に結合する
必要があり、第5,6図のいずれの方法で探傷する場合
にも、探触子A、B,B2・・・BnとストリップMと
の間には水、油等の接触煤質W.,W2を介在させる必
要がある。従って例えば被探傷物が熱間圧延中のストリ
ップ等のように非常に高温の場合は適当な接触煤質が得
られず、探触子と被探傷物との間に音響的結合が得られ
ないため、実質的には高温の被探揚物に対する探傷は従
来不可能であった。更に広幅の被検査材においては幅方
向位置に応じて探傷ピッチ又はポイント数を変えたいと
いう要求があるが、従来のものはこのような要求には応
え得なかった。
However, probes A, B, and B used for such deep wounds
2...Bn uses a vibrator such as a piezoelectric element on both the transmitting and receiving sides, so probes A, B1, horse...Bn
It is necessary to couple acoustically between the probes A, B, B2...Bn and the strip M, which is the object to be tested. Between contact soot such as water and oil between W. , W2 must intervene. Therefore, if the object to be tested is at a very high temperature, such as a hot-rolled strip, suitable contact soot quality cannot be obtained, and acoustic coupling cannot be obtained between the probe and the object to be tested. Therefore, it has been virtually impossible to perform flaw detection on high-temperature objects. Furthermore, for wide materials to be inspected, there is a demand for changing the flaw detection pitch or the number of points depending on the position in the width direction, but conventional devices have not been able to meet such demands.

また高温の熱間圧延材を非接触で探傷できるものとして
所謂電磁超音波探触子を用いる方法が公知であるが超音
波深傷子と被検査材との距離(リフトオフ)の変動の影
響を受け易いという欠点がある。
In addition, a method using a so-called electromagnetic ultrasonic probe is known as a method for detecting flaws in hot-rolled materials at high temperatures without contact. It has the disadvantage of being easy to accept.

本発明はかかる事情に鑑みなされたものであって、その
目的とするところは、レーザビームを利用し、レーザビ
ームが被探揚物に入射した際の衝撃によって発生する衝
撃波(超音波)を被探傷物内に伝播させて非接触状態で
の探傷を可能にし、接触煤質を必要とせず。
The present invention has been made in view of the above circumstances, and its purpose is to use a laser beam to transmit shock waves (ultrasonic waves) generated by the impact when the laser beam enters the object to be detected. Enables non-contact flaw detection by propagating into the object, eliminating the need for contact soot.

従って彼深傷物の温度の如何にかかわらず正確かつ高速
度で探傷し得、また広幅の被検査材については幅方向位
置で探傷ピッチを異ならせることができ、更にリフトオ
フ変動の影響の少ない非接触超音波深傷法及びその実施
に使用する装置を提供するにある。本発明に係る非接触
超音波深傷方法は、パルス状のレーザビームをその進路
に配設した複数個のハーフミラに入射こせ、夫々入射光
量の一部を反射させるとともに、透過したレーザビーム
を順次後方のハ−フミラに入射させ、各ハーフミラから
反射したレーザビームを夫々被探傷物に対する反射面の
角度が経時的に変化する各回転ミラに入射させ、この各
回転ミラから反射したレーザビームを夫々被探傷物表面
の相異なる領域に対し投射走査させ、投射時の衝撃によ
り発生した衝撃波(超音波)を被探傷物内に伝播させ、
伝播波を電磁超音波探触子にて受信することを特徴とす
る。
Therefore, flaws can be detected accurately and at high speed regardless of the temperature of deeply flawed objects, and for wide materials to be inspected, the flaw detection pitch can be varied depending on the position in the width direction.Furthermore, it is non-contact with less influence of lift-off fluctuations. An object of the present invention is to provide an ultrasonic deep injury method and a device used for its implementation. In the non-contact ultrasonic deep wound method according to the present invention, a pulsed laser beam is made incident on a plurality of half mirrors arranged in its path, and a part of the incident light is reflected from each half mirror, and the transmitted laser beam is sequentially The laser beam reflected from each half mirror is made incident on each rotating mirror whose reflection surface angle with respect to the object to be inspected changes over time, and the laser beam reflected from each rotating mirror is Projection scans different areas on the surface of the object to be tested, and the shock waves (ultrasonic waves) generated by the impact during projection are propagated into the object to be tested.
It is characterized by receiving propagating waves with an electromagnetic ultrasonic probe.

以下、本発明の方法及びその実施に使用する装置を、実
施例を示す図面に基いて具体的に説明する。第1図は本
発明方法及びその実施に使用する装層の実施例を示す平
面図、第2図はその側面図、第3図は第2図におけるm
−m線方向にみた部分正面図であって、図中Mは熱間圧
延中の高温ストリップであり、白抜き失符方向に略一定
速度で搬送されていて、この被探傷物たるストリップM
の搬送域に側方から臨んでその上面側には大出力のレー
ザ発生装置LがそのヘッドをストリップM側に向けその
搬送方向と直交する向きにして、配設されている。
EMBODIMENT OF THE INVENTION Hereinafter, the method of this invention and the apparatus used for carrying out the same will be concretely demonstrated based on the drawing which shows an Example. FIG. 1 is a plan view showing an example of the method of the present invention and a coating used in its implementation, FIG. 2 is a side view thereof, and FIG. 3 is a
- It is a partial front view seen in the m line direction, and M in the figure is a high-temperature strip during hot rolling, and it is conveyed at a substantially constant speed in the direction of the blank square, and this strip M is the object to be tested.
A high-output laser generating device L is disposed on the upper surface side of the conveying area when facing from the side, with its head facing the strip M side and perpendicular to the conveying direction.

レーザ発生装置LはNd:YAG0(Nが十イオン添加
のガーネット構造)レーザ等の赤外領域の波長を有する
非常に持続時間の短いパルス状レーザピーム(例えば1
00HZ)を発生するものであって、これから発射され
たレーザビームはその進路中に該レーザビームと一定角
度(実施例では45o )煩斜させて略平行に配設した
複数個(実施例では2個)のハーフミラ日,.日2及び
1個の全反射ミラKからなる反射鏡群に入射される。ハ
ーフミラ日,,日2及びこのハーフミラ日2の後方に位
置する全反射ミラKが、夫々ストリップMの搬送方向と
直交する幅方向に3等分した各領域M,,M2,M8の
中央上に配設されている。各ハーフミラ日,,日2の透
過率はハーフミラ日.が2/3に、またハーフミラ日2
が1/2に設定してあり、従ってし−ザ発生装置Lから
発射されたし−ザビームはその全光量の1/3がハーフ
ミラ日,で反射され、2/3が透過してハーフミラ日2
に達し、ここでハーフミラ日2への入射光量の1/2す
なわち全光量の1/3が反射され、他の1/2の光量、
すなわち全光量の1/3が透過して全反射ミラKに達し
、ここで全反射され全体として各ハーフミラ日,,日2
、全反射ミラKからの反射光量はしーザ発生装置Lから
の発射光量の1/3ずっとなり、互いに全く等しい光量
のレーザビームが夫々に対応して配設した回転ミラR,
,R2,R3の下面に向け平行入射される。なお実施例
では反射鏡群をハーフミラを2個、全反射ミラを1個配
設した全体として3枚で構成した場合を示したがこの反
射鏡群をn−1個のハーフミラと1個の全反射ミラKか
らなるn枚で構成した場合には、各ハーフミラの透過率
はしーザビームの進行方向に向けて順次n−1/n,n
−2/n−1…1/2に設定すればし−ザビームは光量
がn等分に分割されて夫々相互に等しい光量で対応する
回転ミラR,,R2・・・Rn‘こ入射されることとな
る。各回転ミラR,,R2,R3は同じく夫々ストリッ
プMの前記各領域M,,M2,M3上にあって、ストリ
ップMの搬送方向に夫々ハーフミラ日,,日2及び全反
射ミラKから等しい距離を隔てて配設されており、各回
転ミラR,,R2,R3はタイミングベルト等の伝動系
Tを介して駆動源Eに蓮撃され、夫々同方向に等速度で
回転駆動されるようにしてある。また各回転ミラR,,
R2,R3はいずれも6角柱形に形成されていて、その
外周の6面に反射面R,′,R2′,R3′を具えてお
り、その中心に配した各鰍XをストリップMの搬送方向
と平行にして配設されている。前記各ハーフミラ日,,
日2全反射ミラKから反射されたレーザビ−ムは夫々回
転ミラR,,R2,R3の下側、すらわちストリップM
表面と対向する側に回動位置させられた反射面R,′,
R2′,R3′に入射し、ここから反射射されて夫々ス
トリップMの領域M,,M2,M3に夫々入射される。
各回転ミラR,,R2,R3が軸×回りに60℃回転す
る間、すなわちレーザビームが各反射面R,′,R2′
,R3′における回転ミラの回転方向前側端部R^から
回転方向のの後側端部RBにまでその入射点が移動する
と、各反射面R,′,R2′,R3′から反射されたレ
ーザピームはストリップMの各領域M,,M2,M3に
おける幅方向例えば領域M,についてみると第3図に示
す如く一端○,から他端02まで1200の角度内でそ
の投射点が順次移動する。いま発射周期が100日2の
パルス状レーザビームを1/6HZ(6秒間に1回転)
で回転している回転ミラR,,R2,R3に入射させた
とすると、レーザビ−ムは各回転ミラR,,R2,R3
の各反射面R,′,R2′,R3′ごとにR^からRB
までに100回ずつ入射し、夫々ストリップM表面に向
けて反射されるからストリップMの各領域M,,M2,
M3ごとに一走査で100箇所にレーザビームが投射さ
れ、全幅で30並箇所の探傷を行なえることとなる。回
転ミラR,,R2,R3の回転を行なえば1/3HZ(
3秒間に1回転)に高めると、各反射面R.′,R2′
,R3′ごとに50回しーザビームが入射することとな
り、ストリップMの各領域M,,地,M3ごとに一走査
で5の蓋所探擬されることとなり、回転ミラの回転速度
を調節することによって探傷点の数を調節し得る。従っ
て回転ミラR2に比して回転ミラR,,R3の回転速度
を低くして、中央部に比して側部の深傷の密度を高めて
深傷することが可能である。なお実施例では回転ミラR
,,R2,R3はいずれも正6角柱形のものとして構成
した場合を示したが、何らこれに限るものではなく、例
えば正8角柱形、あるいは正la角柱形等適宜撰択して
よい。一般に正m角柱形の回転ミラを使用した場合はし
ーザビームの反射方向が720o/m変わるかり、mが
小さくなる程レーザピームによるストリップMへの投射
城、換言すれば探傷城が広くなり、mが大きくなる程探
傷域は狭くなるので、このmを変えることによって任意
に探傷城を調節しうる。
The laser generator L uses a very short-duration pulsed laser beam (for example, 1
00Hz), and the laser beam emitted from this laser beam has a plurality of laser beams (in the example, 2 )'s half day,. The light is incident on a group of mirrors consisting of a mirror 2 and one total reflection mirror K. Half mirror day,, day 2 and total reflection mirror K located behind this half mirror day 2 are placed on the center of each area M, , M2, M8 divided into three equal parts in the width direction perpendicular to the conveying direction of the strip M, respectively. It is arranged. The transmittance of each half-mira day, day 2 is the half-mira day. will be on 2/3, and half mira day 2
is set to 1/2, therefore, 1/3 of the total light intensity of the beam emitted from the laser generator L is reflected by the half-mirror beam, and 2/3 is transmitted, resulting in the half-mirror beam.
At this point, 1/2 of the amount of light incident on Half Mira Day 2, that is, 1/3 of the total amount of light, is reflected, and the other 1/2 amount of light,
In other words, 1/3 of the total light is transmitted and reaches the total reflection mirror K, where it is totally reflected and as a whole each half mirror day, day 2
, the amount of light reflected from the total reflection mirror K is 1/3 of the amount of light emitted from the laser generator L, and the rotating mirrors R, in which laser beams with exactly the same amount of light are respectively arranged, correspond to each other.
, R2, and R3 in parallel. In the example, the case where the reflecting mirror group is composed of two half mirrors and one total reflection mirror is shown, but this reflecting mirror group is composed of n-1 half mirrors and one total reflection mirror. When configured with n reflecting mirrors K, the transmittance of each half mirror is sequentially n-1/n, n in the traveling direction of the laser beam.
If the beam is set to -2/n-1...1/2, the light intensity of the beam is divided into n equal parts, and each beam is incident on corresponding rotating mirrors R,, R2...Rn' with equal light intensity. That will happen. The rotating mirrors R, , R2, and R3 are respectively located on the areas M, , M2, and M3 of the strip M, and are at equal distances from the half mirrors, , 2, and the total reflection mirror K, respectively, in the conveying direction of the strip M. The rotating mirrors R, , R2, and R3 are driven by a drive source E via a transmission system T such as a timing belt, so that they are rotated in the same direction at the same speed. There is. Also, each rotating mirror R,,
Both R2 and R3 are formed in the shape of a hexagonal prism, and have reflective surfaces R, ′, R2′, and R3′ on the six outer surfaces, and each fin It is arranged parallel to the direction. Each half-mira day mentioned above,,
2. The laser beam reflected from the total reflection mirror K is located on the lower side of the rotating mirrors R, , R2, and R3, respectively, and on the straight strip M.
A reflective surface R,′, rotated to the side opposite to the surface.
The light enters R2' and R3', is reflected from there, and enters regions M, , M2, and M3 of the strip M, respectively.
While each rotating mirror R,, R2, R3 rotates by 60 degrees around the axis
, R3', the laser beam reflected from each reflecting surface R,', R2', R3' moves from the front end R^ in the rotational direction of the rotating mirror to the rear end RB in the rotational direction. In the width direction of each region M, M2, M3 of the strip M, for example, region M, the projection point sequentially moves within an angle of 1200 from one end 0 to the other end 02, as shown in FIG. Now, the pulsed laser beam with a firing period of 100 days2 is 1/6 Hz (1 rotation every 6 seconds).
If the laser beam is incident on the rotating mirrors R, , R2, R3 which are rotating at
From R^ to RB for each reflective surface R,', R2', R3'
Since each area of the strip M is incident 100 times and reflected toward the surface of the strip M, each area M,, M2,
The laser beam is projected at 100 locations in one scan for each M3, and approximately 30 locations can be detected over the entire width. If rotating mirrors R, , R2, and R3 are rotated, 1/3 Hz (
1 rotation per 3 seconds), each reflective surface R. ', R2'
, R3', the laser beam will be incident 50 times, and each area M, , M3 of the strip M will be searched for 5 lids in one scan, and the rotation speed of the rotating mirror must be adjusted. The number of flaw detection points can be adjusted by Therefore, it is possible to lower the rotational speed of the rotating mirrors R, . In addition, in the example, the rotating mirror R
, , R2, and R3 are shown as having a regular hexagonal prism shape, but they are not limited to this in any way, and may be appropriately selected from, for example, a regular octagonal prism shape or a regular la prism shape. In general, when using a regular m-prismatic rotating mirror, the reflection direction of the laser beam changes by 720o/m, and the smaller m is, the wider the projection area of the laser beam onto the strip M, or in other words, the wider the flaw detection area. As the flaw detection area becomes larger, the flaw detection area becomes narrower, so by changing this m, the flaw detection area can be arbitrarily adjusted.

この深傷城の調節は回転ミラのストリップM表面からの
設置高さを変えることによっても調節しうろことは勿論
である。
Needless to say, the depth of the damage can be adjusted by changing the installation height of the rotary mirror from the surface of the strip M.

ストリップM表面にレーザビームが投射されると各投射
点には、その投射の際の衝撃に依る超音波が発生し、ス
トリップM内に伝播されてゆく。
When a laser beam is projected onto the surface of the strip M, ultrasonic waves are generated at each projection point due to the impact during the projection, and are propagated within the strip M.

ストリップM内に癖がなければ超音波はストリップMの
厚さに応じた通常の減衰を伴ってストリップMの下面に
達し、癖があれば超音波はここで反射され、また、庇の
大きさに応じて減衰されてストリップMの下面に達する
か若し〈は全く達しないこととなる。なお第3図に明ら
かなように、各回転ミラR,,等から反射されてストリ
ップMの表面に投射されるレーザビームの入射角はスト
リップMの幅方向において変化するが、このレーザビー
ムの入射角の変化は、超音波発生レベルに対し殆んと影
響しないことが実験により確認されている。
If there are no kinks in the strip M, the ultrasonic waves will reach the bottom surface of the strip M with normal attenuation depending on the thickness of the strip M. If there are kinks, the ultrasonic waves will be reflected here, and depending on the size of the eaves. It will be attenuated depending on the value and reach the lower surface of the strip M, or it will not reach the lower surface of the strip M at all. As is clear from FIG. 3, the incident angle of the laser beam reflected from each rotating mirror R, etc. and projected onto the surface of the strip M changes in the width direction of the strip M. It has been confirmed through experiments that the change in angle has almost no effect on the ultrasonic generation level.

この実験における実測値をグラフ化したものが第4図に
示すものであり、横軸に入射角度(度)を、縦軸に超音
波発生レベル(dB)をとってあって、これをみると、
入射角が大きくなるにつれ、僅かに超音波発生レベルに
低下の傾向がみられるもののその低下は非常に小さく探
傷精度に殆んど影響を与えるものではないことが鱗る。
さて、ストリップMには図示しないが永久磁石又は電磁
石によって静磁場がかけられており、このストリップM
にレーザビームの投射に基〈超音波の歪が加わると、渦
電流が発生する。
Figure 4 shows a graph of the actual measured values in this experiment, with the incident angle (degrees) on the horizontal axis and the ultrasonic generation level (dB) on the vertical axis. ,
Although there is a slight tendency for the ultrasonic generation level to decrease as the incident angle increases, it can be seen that the decrease is very small and has almost no effect on flaw detection accuracy.
Although not shown, a static magnetic field is applied to the strip M by a permanent magnet or an electromagnet, and this strip M
When ultrasonic distortion is applied to the projection of a laser beam, eddy currents are generated.

探触子Pはこの渦電流を検出する平板状コイルを具備し
ており、超音波レベルの変化に応じた渦電流を検出して
これを超音波探傷器S(第2図参照)に出力.する。探
触子PはストリップMには非接触であって、また図面に
は示さないが、過熱防止のための強制冷却機構を備えて
おり、ストリップMの温度に何ら影響されることがない
。前記超音波深傷器Sは受信信号の増幅検波を行ないブ
ラウン管等の表示装置に表示するようになっている。
The probe P is equipped with a flat coil that detects this eddy current, detects eddy current according to changes in the ultrasonic level, and outputs it to the ultrasonic flaw detector S (see Figure 2). do. The probe P is not in contact with the strip M, and although not shown in the drawings, it is equipped with a forced cooling mechanism to prevent overheating, and is not affected by the temperature of the strip M in any way. The ultrasonic wound instrument S is designed to amplify and detect the received signal and display it on a display device such as a cathode ray tube.

レーザビームのストリップ表面への投射点は前述したよ
うな条件では100箇所となるから、夫々この各投射点
に対応するようにストリップMの下面側に探触子Pを配
設してもよいが、数Z筒の投射点を兼用させて適当箇数
の走査可能な探触子Pを設けるようにしてもよい。そし
てこれらの探触子は電気的又は機械的にスキャンニング
される。なお上述の実施例ではしーザビームを回転ミラ
JR3に入射するために全反射ミラKを用いたが、これ
に替えてハーフミラを用い反射鏡群を総てハーフミラで
構成してもよい。
Since the number of projection points of the laser beam on the strip surface is 100 under the above-mentioned conditions, probes P may be arranged on the lower surface side of the strip M so as to correspond to each of these projection points. , an appropriate number of scanning probes P may be provided by using several Z projection points. These probes are then scanned electrically or mechanically. In the above-described embodiment, the total reflection mirror K was used to make the laser beam incident on the rotary mirror JR3, but instead of this, a half mirror may be used and all the reflecting mirror groups may be constituted by half mirrors.

この場合は各ハーフミラの透過率は前述したところと異
るが、レーザ発生装置L側のハーフミラが大であるよう
にして各回転ミラへの反射光量が均一になるようにする
ことは言うまでもない。而してこのように全てをハーフ
ミラによる場合は全反射ミラKに替るハーフミラからは
幾許かのレーザビームが透過洩出することになるが、こ
の洩出ビームは回転ミラの回転と探触子Pのスキャンニ
ング操作との同期信号として用いることができる。また
図面に示した実施例では、探触子PをストリップMに対
し回転ミラR,,R2,R3と反対側に配設し、ストリ
ップMを透過してきた超音波を受信する透過法の場合を
示したが、探傷子PをストリップMに対し、回転ミラR
,,R2,R3と同側に配設してストリップMからしー
ザビーム投射方向へ現れる超音波を受信する反射法を採
ってもよい。また他にレーザビームの干渉現象を利用し
て被探傷物たるストリップ表面の変位を検出して超音波
に基因する歪を受信する方法等、超音波受信方法につい
ては特に限定するものではなく、従来知られているもの
を適宜採択すればよい。叙上の如く本発明にあっては、
超音波はしーザビームの投射によって被探傷物表面に発
生せしめられ、被探傷物内に伝播させられるから被探傷
物に非接触の状態でその探傷を行うことが可能であり、
被探揚物の温度の如何にかかわらず探傷できることは勿
論、回転ミラの回転数の調節によって探傷ポイント数を
自在に調節でき、しかも被探傷物を複数の領域に分割し
て探傷し得るので、広幅の被探揚物に対しても高密度の
探傷が行え、深傷精度の向上が図れ、また幅方向の位置
に応じて探傷ピッチ又はポイント数を相違させて各位層
の必要に応じた探傷を行うことができる。
In this case, the transmittance of each half mirror is different from that described above, but it goes without saying that the half mirror on the side of the laser generator L is made large so that the amount of light reflected to each rotating mirror is uniform. In this way, if everything is done using a half mirror, some laser beam will pass through and leak from the half mirror that replaces the total reflection mirror K, but this leaked beam is caused by the rotation of the rotating mirror and the probe P. It can be used as a synchronization signal with scanning operations. Furthermore, in the embodiment shown in the drawings, the probe P is disposed on the opposite side of the strip M to the rotating mirrors R, , R2, R3, and a transmission method is used in which the ultrasonic waves transmitted through the strip M are received. As shown, the flaw detector P is connected to the strip M using a rotating mirror R.
, , R2, R3 may be disposed on the same side as the strip M to receive the ultrasonic waves appearing in the laser beam projection direction. In addition, there are no particular limitations on the ultrasonic reception method, such as a method that uses the interference phenomenon of laser beams to detect the displacement of the surface of the strip, which is the object to be inspected, and receives distortion caused by ultrasonic waves. What is known can be selected as appropriate. As mentioned above, in the present invention,
Ultrasonic waves are generated on the surface of the object to be tested by projection of a laser beam and propagated within the object, so it is possible to perform flaw detection without contacting the object.
Not only can flaws be detected regardless of the temperature of the object to be inspected, but the number of detection points can be freely adjusted by adjusting the rotation speed of the rotating mirror, and the object to be detected can be divided into multiple areas for flaw detection, allowing for a wide range of flaws. It is possible to perform high-density flaw detection even on objects to be detected, improving the depth accuracy, and by changing the flaw detection pitch or number of points depending on the position in the width direction, flaw detection can be performed according to the needs of each layer. be able to.

また深傷領域の調節も被探傷物に応じて回転ミラの被探
傷物に対する高さ調節あるいは回転ミラの形状によって
容易に行うことができる。そして本発明では超音波発振
のためにレーザビームを使用し、受信に電磁超音波探触
子を用いているので、発受信に電磁超音波探触子を用い
る従来の方法に比してリフトオフの変動による影響を受
けにくいという利点がある。
Furthermore, the deep flaw area can be easily adjusted depending on the object to be inspected by adjusting the height of the rotating mirror relative to the object to be inspected or by adjusting the shape of the rotating mirror. Since the present invention uses a laser beam for ultrasonic oscillation and an electromagnetic ultrasonic probe for reception, lift-off is lower than in the conventional method that uses an electromagnetic ultrasonic probe for emission and reception. It has the advantage of being less affected by fluctuations.

即ち発振用の電磁超音波探触子と受信用の電磁超音波探
触子とを被検査材の両面に対向させる従来方法によれば
被検査材の両探触子に対するリフトオフの変動は一方の
探触子に対しては増大、他方に対しては減少として作用
する結果、その影響は倍加されるが、本発明では受信側
にしか超音波探触子を用いていないので、リフトオフ変
動による影響は少なくなる。このように本発明は優れた
効果を奏するものである。
In other words, according to the conventional method in which the oscillating electromagnetic ultrasonic probe and the receiving electromagnetic ultrasonic probe face both sides of the inspected material, the lift-off fluctuation for both probes of the inspected material is smaller than that of the one side. As a result, the effect is doubled because it acts as an increase on the probe and a decrease on the other side, but in the present invention, since the ultrasonic probe is used only on the receiving side, the effect of lift-off fluctuation is becomes less. As described above, the present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法及びその実施に使用する装置の実施
例を示す平面図、第2図は同側面図、第3図は第2図で
皿−m線方向にみた部分正面図、第4図はしーザビーム
の被探傷物表面への入射角度と超音波発生レベルとの関
係を示すグラフ、第5図は従来方法の実施状態を示す斜
視図、第6図は他の従来方法の実施状態を示す斜視図で
ある。 E・・・駆動源、日,,日2・・・ハーフミラ、K・・
・全反射ミラ、M…ストリップ、R,,R2,R3…回
転ミラ、R,′,R2′,R3′・・・反射面。第1図
第2図 第4図 第3図 第5図 第6図
FIG. 1 is a plan view showing an embodiment of the method of the present invention and the apparatus used for carrying out the method, FIG. 2 is a side view of the same, and FIG. 3 is a partial front view of FIG. Figure 4 is a graph showing the relationship between the incident angle of the laser beam on the surface of the object to be tested and the ultrasonic generation level, Figure 5 is a perspective view showing the state of implementation of the conventional method, and Figure 6 is the implementation of another conventional method. It is a perspective view showing a state. E... Drive source, day,, day 2... half mirror, K...
- Total reflection mirror, M...Strip, R,, R2, R3...Rotating mirror, R,', R2', R3'...Reflecting surface. Figure 1 Figure 2 Figure 4 Figure 3 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1 パルス状のレーザビームをその進路に配設した複数
個のハーフミラに入射させ、夫々入射光量の一部を反射
させるとともに、透過したレーザビームを順次後方のハ
ーフミラに入射させ、各ハーフミラから反射したレーザ
ビームを夫々被探傷物に対する反射面の角度が経時的に
変化する各回転ミラに入射させ、この各回転ミラから反
射したレーザビームを夫々被探傷物表面の相異なる領域
に対し投射走査させ、投射時の衝撃により発生した衝撃
波(超音波)を被探傷物内に伝播させ、伝播波を電磁超
音波探触子にて受信することを特徴とする非接触超音波
探傷方法。 2 パルス状のレーザ発生装置と、該レーザ発生装置が
発生するレーザビームの進路中に、いずれも該レーザビ
ームと略等角度をなして交叉するように略平行配設され
た複数個のハーフミラと、各ハーフミラから反射された
レーザビーム夫々の進路中に配設され被探傷物に対する
反射面の角度を経時的に変化させるべくなした複数個の
ミラとを具備することを特徴とする非接触超音波探傷装
置。 3 前記ハーフミラの透過率はレーザ発生装置に近いも
の程大である特許請求の範囲第2項記載の非接触超音波
探傷装置。
[Scope of Claims] 1. A pulsed laser beam is made incident on a plurality of half mirrors disposed in its path, and a portion of the incident light is reflected at each, and the transmitted laser beams are sequentially made incident on a rear half mirror. , the laser beam reflected from each half mirror is incident on each rotating mirror whose reflection surface angle with respect to the object to be tested changes over time, and the laser beam reflected from each rotating mirror is directed to different areas on the surface of the object to be tested. Non-contact ultrasonic flaw detection characterized by projecting and scanning the object, propagating shock waves (ultrasonic waves) generated by the impact during projection into the object to be tested, and receiving the propagated waves with an electromagnetic ultrasonic probe. Method. 2. A pulsed laser generator, and a plurality of half mirrors disposed substantially parallel to each other so as to intersect the laser beam at substantially equal angles in the path of the laser beam generated by the laser generator. , a non-contact superstructure characterized by comprising a plurality of mirrors disposed in the respective paths of the laser beams reflected from each half mirror so as to change the angle of the reflecting surface with respect to the object to be inspected over time. Sonic flaw detection equipment. 3. The non-contact ultrasonic flaw detection device according to claim 2, wherein the transmittance of the half mirror increases as it approaches the laser generator.
JP53075016A 1978-06-20 1978-06-20 Non-contact ultrasonic flaw detection method and equipment used for its implementation Expired JPS6036020B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP53075016A JPS6036020B2 (en) 1978-06-20 1978-06-20 Non-contact ultrasonic flaw detection method and equipment used for its implementation
PCT/JP1979/000151 WO1980000099A1 (en) 1978-06-20 1979-06-13 Method of non-contact supersonic flaw detection and apparatus therefor
US06/191,338 US4338822A (en) 1978-06-20 1979-06-13 Method and apparatus for non-contact ultrasonic flaw detection
DE2952885A DE2952885C2 (en) 1978-06-20 1979-06-13 Device for non-contact ultrasonic flaw testing
GB8001094A GB2038481B (en) 1978-06-20 1979-06-13 Method of non-contact supersonic flaw detection and apparatus therefor
EP79900653A EP0019002B1 (en) 1978-06-20 1980-01-29 Method and apparatus for non-contact ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53075016A JPS6036020B2 (en) 1978-06-20 1978-06-20 Non-contact ultrasonic flaw detection method and equipment used for its implementation

Publications (2)

Publication Number Publication Date
JPS551571A JPS551571A (en) 1980-01-08
JPS6036020B2 true JPS6036020B2 (en) 1985-08-17

Family

ID=13563954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53075016A Expired JPS6036020B2 (en) 1978-06-20 1978-06-20 Non-contact ultrasonic flaw detection method and equipment used for its implementation

Country Status (1)

Country Link
JP (1) JPS6036020B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368015A (en) * 1986-09-08 1988-03-26 株式会社クボタ Rice planter
JPH0520106Y2 (en) * 1986-03-26 1993-05-26

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119376A (en) * 2012-12-18 2014-06-30 Seiko Epson Corp Irradiation device and measuring device
JP6115440B2 (en) * 2013-10-16 2017-04-19 新日鐵住金株式会社 Steel pipe wall thickness measuring device and steel pipe wall thickness measuring method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140698A (en) * 1974-10-04 1976-04-05 Tokyo Shibaura Electric Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140698A (en) * 1974-10-04 1976-04-05 Tokyo Shibaura Electric Co

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0520106Y2 (en) * 1986-03-26 1993-05-26
JPS6368015A (en) * 1986-09-08 1988-03-26 株式会社クボタ Rice planter

Also Published As

Publication number Publication date
JPS551571A (en) 1980-01-08

Similar Documents

Publication Publication Date Title
US4338822A (en) Method and apparatus for non-contact ultrasonic flaw detection
US4379409A (en) Apparatus for producing ultrasonic waves in a workpiece
US4541280A (en) Efficient laser generation of surface acoustic waves
EP0400770B1 (en) Measuring the strength of a material within a moving web
JP2004101189A (en) Apparatus and method for inspecting defect
US20200096330A1 (en) Apparatus for measuring crystal grain size of steel sheet
JPS6036020B2 (en) Non-contact ultrasonic flaw detection method and equipment used for its implementation
US3922907A (en) In-bore turbine inspection device
US6474163B1 (en) Ultrasonic flaw detection method and instrument therefor
JPS5831872B2 (en) Non-contact ultrasonic flaw detection method
RU2153163C1 (en) Method of intratube ultrasonic diagnostics of condition of pipe-line
JPS6036019B2 (en) Non-contact ultrasonic flaw detection method
JPS61198056A (en) Ultrasonic flaw detecting method for steel pipe by array type probe
KR101008172B1 (en) Laser ultrasonic inspecting method using thermoelastic effect of laser pulse
JPH0146027B2 (en)
JPH10153587A (en) Compound type angle beam probe
JPH0972887A (en) Flaw detection of pipe by ultrasonic surface acoustic sh wave
JPH0232578B2 (en)
JP2002257800A (en) Ultrasonic flaw detection method and device for square billet
JPS59116543A (en) Method for detecting flaw of square steel piece by electronic sector scanning
JPH07181170A (en) Evaluation method of congested cracks on surface of solid by ultrasonic waves
SU1056048A1 (en) Ultrasonic mirror mask flaw detection method
-C. Wooh et al. Nondestructive characterization of planar defects using laser-generated ultrasonic shear waves
SU1569696A1 (en) Transducer for ultrasonic inspection
SU1497561A1 (en) Method of mirrow-shadow ultrasonic inspection of articles of continuous section