JPS6035997B2 - Method for producing N-substituted phenylglycine - Google Patents

Method for producing N-substituted phenylglycine

Info

Publication number
JPS6035997B2
JPS6035997B2 JP53082916A JP8291678A JPS6035997B2 JP S6035997 B2 JPS6035997 B2 JP S6035997B2 JP 53082916 A JP53082916 A JP 53082916A JP 8291678 A JP8291678 A JP 8291678A JP S6035997 B2 JPS6035997 B2 JP S6035997B2
Authority
JP
Japan
Prior art keywords
group
present
cathode
carbon dioxide
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53082916A
Other languages
Japanese (ja)
Other versions
JPS5511126A (en
Inventor
祥三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP53082916A priority Critical patent/JPS6035997B2/en
Priority to US06/056,187 priority patent/US4248677A/en
Publication of JPS5511126A publication Critical patent/JPS5511126A/en
Publication of JPS6035997B2 publication Critical patent/JPS6035997B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はN−置換フェニルグリシンの製造方・に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing N-substituted phenylglycine.

詳しくはペンジリデンァミン類を炭酸ガスの存在下に陰
極として固体電極を用いて電解還元することにより、収
率よくN−置換フェニルグリシンを製造する方法を提供
するものである。N−置換フェニルグリシンは医薬品の
製造原料、ポリマーの安定剤として利用され、工業的に
有用な化合物である。従釆N−置換フェニルグリシンの
製法としては、次に示す2,3の方法が知られている。
‘1} ベンズアルデヒド誘導体を、アミンあるいはア
ミンの鉱酸塩の存在下にシアン化ナトリウムあるいはシ
アン化カリウムを反応させて一旦アミノニトリル誘導体
となし、このものを加水分解して合成する方法。
Specifically, the present invention provides a method for producing N-substituted phenylglycine in good yield by electrolytically reducing penzylideneamines in the presence of carbon dioxide using a solid electrode as a cathode. N-substituted phenylglycine is used as a raw material for the production of pharmaceuticals and as a stabilizer for polymers, and is an industrially useful compound. The following two or three methods are known as methods for producing N-substituted phenylglycine.
'1} A method in which a benzaldehyde derivative is reacted with sodium cyanide or potassium cyanide in the presence of an amine or a mineral acid salt of an amine to form an aminonitrile derivative, which is then hydrolyzed to synthesize it.

■ フェニル酢酸あるいはその誘導体(カミド、ヱステ
ル、ニトリル)を一旦臭素化してQ−フロムフェニル酢
酸誘導体とし、このものにアミンを作用させる方法。
(2) A method in which phenylacetic acid or its derivatives (camido, ester, nitrile) is once brominated to give a Q-fromphenylacetic acid derivative, and this product is treated with an amine.

しかしながら。however.

前者mの方法では反応試薬として猛毒性の青酸誘導体を
用いなければならず、反応操作上ならびに廃棄物の処理
上から避け難い大きな欠点を有している。さらに、中間
生成物であるァミノニトリル誘導体を加水分解して、対
応するフェニルグリシンとする際に相当量のタール状重
合物が生成することも難点であった。また後者■の方法
においても、一般にフェニル酢酸誘導体が極めて強い催
涙性を有し、さらに反応試薬として有毒で取り扱い難い
臭素を用いなければならないことも大きな欠点であった
。本発明者は電解炭素化によるN−置換フェニルグリシ
ンの製造方法を鋭意研究した結果、ベンジリデンアミン
類を極性非水溶液中で炭酸ガスの存在下に、陰極として
固体陰極を用いて電解還元することにより好収率でN−
置換フェニルグリシンが得られることを見出し、本発明
を完成するに至った。
The former method (m) requires the use of highly toxic hydrocyanic acid derivatives as a reaction reagent, and has a major drawback that cannot be avoided from the viewpoint of reaction operation and waste disposal. Furthermore, it is also difficult that a considerable amount of tar-like polymer is produced when the intermediate product, the aminonitrile derivative, is hydrolyzed to produce the corresponding phenylglycine. In addition, the latter method (1) also has major drawbacks in that phenylacetic acid derivatives generally have extremely strong lachrymatory properties, and that bromine, which is toxic and difficult to handle, must be used as a reaction reagent. As a result of intensive research into a method for producing N-substituted phenylglycine by electrolytic carbonization, the present inventors discovered that benzylidene amines were electrolytically reduced in a polar non-aqueous solution in the presence of carbon dioxide using a solid cathode as the cathode. N- with good yield
It was discovered that substituted phenylglycine could be obtained, and the present invention was completed.

即ち、本発明は樋性非水溶液中で炭酸ガス存在下にペン
ジリデンアミン類を、陰極として固体電極を用いて電解
還元するN−置換フェニルグリシンの製造方法である。
本発明の原料物質であるペンジリデンアミン類は一般式
R−CH=N−R′で示される物質で、該一般式におい
てRは置換または非置換芳香族炭化水素残基であるもの
であり、一般にはRが置換または非置換フェニル基であ
る場合が最も広く用いられる。
That is, the present invention is a method for producing N-substituted phenylglycine in which penzylidene amines are electrolytically reduced in a gutter nonaqueous solution in the presence of carbon dioxide using a solid electrode as a cathode.
Penzylideneamines, which are the raw materials of the present invention, are substances represented by the general formula R-CH=N-R', where R is a substituted or unsubstituted aromatic hydrocarbon residue, Generally, the case where R is a substituted or unsubstituted phenyl group is most widely used.

また上記の置換基は本発明に於ける電解条件下で不活性
なものであれば特に限定されず、一般に好適に使用され
る代表的なものを例示すれば、フッ素、塩素、臭素又は
ヨウ素のハロゲン原子;ァルキル基:ェステル基;エー
テル基;カルポキシル基:フェニル基などの原子又は基
である。また前記一般式中のR′は本発明の電解条件で
不活性なものであれば特に限定されないが、一般には前
記一般式のRとして例示した芳香族炭化水素残基;メチ
ル基、エチル基、ブチル基、アミル基、ヘキシル基、ラ
ゥリル基等の炭素原子数1〜20の直鎖状あるいは分枝
状アルキル基:シクoベンチル、シクロヘキシルなどの
シクロアルキル基;前記芳香族炭化水素残基、アルキル
基またはシクロァルキル基の1個または数個の水素原子
が前記したRの置換基として例示した置換または非置換
フェニル、シクロアルキル基、フッ素、塩素、臭素、ヨ
ウ素などのハロゲン原子、ェステル基、エーテル基、カ
ルボキシル基、たとえばフェネチル基、P−クロルベン
ジル基、r−メトキシーnーベンチル基、ベンジリデン
アミノ基などの原子あるいは基と置換しているもの等が
好適である。本発明で用いられる電解溶媒としては樋性
非水溶媒が好適に使用される。
Furthermore, the above-mentioned substituents are not particularly limited as long as they are inert under the electrolytic conditions of the present invention, and typical examples of commonly used substituents include fluorine, chlorine, bromine, or iodine. These are atoms or groups such as halogen atom; alkyl group: ester group; ether group; carpoxyl group: phenyl group. Further, R' in the general formula is not particularly limited as long as it is inert under the electrolysis conditions of the present invention, but is generally an aromatic hydrocarbon residue exemplified as R in the general formula; a methyl group, an ethyl group, Straight chain or branched alkyl groups having 1 to 20 carbon atoms such as butyl group, amyl group, hexyl group, lauryl group; cycloalkyl groups such as cyclobentyl and cyclohexyl; the above-mentioned aromatic hydrocarbon residues, alkyl Substituted or unsubstituted phenyl, cycloalkyl group, halogen atom such as fluorine, chlorine, bromine, iodine, ester group, ether group, etc., where one or several hydrogen atoms of the group or cycloalkyl group are exemplified as substituents of R above , a carboxyl group, such as a phenethyl group, a P-chlorobenzyl group, an r-methoxy n-bentyl group, a benzylideneamino group, etc., are preferable. As the electrolytic solvent used in the present invention, a gutter nonaqueous solvent is preferably used.

一般にはアセトニトリル、プロピオニトリル、N−ジメ
チルホルムアミド、ジメチルスルホキシド、ヘキサメチ
ルホスホトリアミド、ベンゾニトリルなどが単独あるい
は混合して好適に使用される。特に入手が容易で且つ安
価であり、しかも沸点が低く蒸留除去操作が容易な点で
アセトニトリルは最適である。本発明で用いる炭酸ガス
は電解液中に炭酸ガスを吹き込んで実施すればよいが、
炭酸ガス加圧下電解を行なうことも、あるいは固体状炭
酸(ドライアイス)を適宜少量づつ添加しながら電解を
行なってもよい。
In general, acetonitrile, propionitrile, N-dimethylformamide, dimethylsulfoxide, hexamethylphosphotriamide, benzonitrile and the like are preferably used alone or in combination. Acetonitrile is particularly suitable because it is easily available, inexpensive, has a low boiling point, and is easy to remove by distillation. The carbon dioxide gas used in the present invention may be produced by blowing carbon dioxide gas into the electrolytic solution.
Electrolysis may be carried out under pressure of carbon dioxide gas, or electrolysis may be carried out while appropriately adding solid carbonic acid (dry ice) little by little.

その他、電解系内に炭酸ガスが存在する手段を必要に応
じて適宜選択して採用すればよい。本発明は陰極として
固体電極を用いることが必要であり、該固体電極の材質
は電解条件下に充分電導性を有するものであれば特に制
限されず如何なるものを用いてもよい。
In addition, means for causing carbon dioxide gas to exist in the electrolytic system may be appropriately selected and employed as required. The present invention requires the use of a solid electrode as a cathode, and the material of the solid electrode is not particularly limited and any material may be used as long as it has sufficient conductivity under electrolytic conditions.

一般に好適に使用される代表的な固体陰極を例示すれば
真ちゆう、黒鉛、インコネル、銅、ニクロム、亜鉛、鉛
、白金、ニッケル、ステンレススチール、アルミニウム
等が挙げられる。一般に電解の陰極としては水銀が最も
広く用いられるが、本発明において水銀陰極を用いるこ
とは固体陰極の場合に比べて得られれるN−置換フェニ
ルグリシンの収率が十分でない点で好ましくない。また
陽極として特に限定されず、本発明の電解条件下に侵れ
難いものであればよく、一般には公知の白金、黒鉛など
が用いられる。本発明の実施に際しては、電解系の電導
性を付与する目的で極性非水溶液に可溶な且つ電解条件
下で難還元性の電解質を加えることは非常に好適な態様
である。
Examples of representative solid cathodes that are generally suitably used include brass, graphite, Inconel, copper, nichrome, zinc, lead, platinum, nickel, stainless steel, and aluminum. Generally, mercury is most widely used as a cathode for electrolysis, but the use of a mercury cathode in the present invention is not preferred because the yield of N-substituted phenylglycine obtained is insufficient compared to the case of a solid cathode. The anode is not particularly limited as long as it is resistant to corrosion under the electrolytic conditions of the present invention, and commonly known platinum, graphite, etc. are used. In carrying out the present invention, it is a very preferred embodiment to add an electrolyte that is soluble in the polar non-aqueous solution and is difficult to reduce under electrolytic conditions for the purpose of imparting conductivity to the electrolytic system.

上記電解質は特に限定されず公知のものが使用出来るが
、一般には電解還元で得られる生成物と容易に分離出来
るものを選ぶのがよい。一般に好適に使用されるものを
例示すると、一般式R″4N由Xeで示されるテトラァ
ルキルアンモニウム塩がある。上記一般式に於けるR″
は炭素原子数1〜6のアルキル基が、XはCI,Br,
1,OH,OSQCH3,BF4,CI04,等が好通
に使用される。
The above-mentioned electrolyte is not particularly limited and any known one can be used, but it is generally best to choose one that can be easily separated from the product obtained by electrolytic reduction. An example of what is generally preferably used is a tetraalkyl ammonium salt represented by the general formula R''4N derived Xe.In the above general formula, R''
is an alkyl group having 1 to 6 carbon atoms, and X is CI, Br,
1, OH, OSQCH3, BF4, CI04, etc. are commonly used.

更に具体的に最も好適に用いられるものを挙げれば、ハ
ロゲン化テトラアルキルアンモニウム特にヨウ化テトラ
エチルアンモニウムが最適である。また該電解質として
テトラフェニルホスホニウムテトラフルオロポレートな
どのホスホニウム塩或いは過塩素酸マグネシウムなでの
電解条件下で鍵還元性化合物なども必要に応じて用いう
る。本発明における電解手段としては、少くとも原料で
あるペンジリデンアミン類が還元される条件さえ設定で
きるならば定電流電解法、定電圧電解法など必要に応じ
て選択すればよい。
More specifically, tetraalkylammonium halides, particularly tetraethylammonium iodide, are most suitable. Further, as the electrolyte, a phosphonium salt such as tetraphenylphosphonium tetrafluoroporate or a key reducing compound under electrolytic conditions using magnesium perchlorate may be used as required. As the electrolytic means in the present invention, a constant current electrolysis method, a constant voltage electrolysis method, etc. may be selected as necessary, as long as the conditions for reducing at least the raw material penzylidene amines can be set.

電解還元は一般に常温で行なうのが便利であるが、温度
は特に限定的ではなく、溶媒の凝固点から沸点までの間
であれば特に支障はない。また反応圧力は炭酸ガス雰囲
気下常圧で行なうのが便利であるが、炭酸ガスあるいは
炭酸ガスの存在下陰極還元され得ない不活性ガスで加圧
下に行なっても支障はない。電解液は縄拝することが望
ましいが、炭酸ガスおよびその他の不活性ガスを液中に
吹き込みながら電解を行なう場合は、該吹き込むことに
よって起こる液縄梓で充分である場合もある。本発明で
用いる電解セルは、特に限定されず公知のものが用いる
ことができる。
Although it is generally convenient to carry out electrolytic reduction at room temperature, the temperature is not particularly limited, and there is no particular problem as long as it is between the freezing point and boiling point of the solvent. Although it is convenient to carry out the reaction at normal pressure in a carbon dioxide atmosphere, there is no problem in carrying out the reaction under pressure using carbon dioxide or an inert gas which cannot be cathodically reduced in the presence of carbon dioxide. It is desirable to pour the electrolyte solution into the solution, but when electrolysis is carried out while blowing carbon dioxide gas or other inert gas into the solution, it may be sufficient to pour the electrolyte solution into the solution. The electrolytic cell used in the present invention is not particularly limited, and any known electrolytic cell can be used.

蔓解槽の陰・陽極室間は適当な粗さのふるい状ガラス隔
板で仕切ってもよいが、物質移動による生成物の収率な
らびに電流効率などの低下を危甥する場合にはカチオン
交換膜で仕切ることが好ましい。本発明における電解還
元反応機構は次式によって示される。
The anode and anode chambers of the decomposition tank may be separated by a sieve-like glass partition of appropriate roughness, but if there is a risk of deterioration in product yield or current efficiency due to mass transfer, cation exchange may be used. It is preferable to partition with a membrane. The electrolytic reduction reaction mechanism in the present invention is shown by the following equation.

上記の如く、本発明の目的物は反応に炭酸ガスが関与し
たN−置換フェニルグリシンであるが、副生成物として
ペンジルァミン類も得られる。
As mentioned above, the target product of the present invention is N-substituted phenylglycine in which carbon dioxide gas is involved in the reaction, but penzylamines are also obtained as by-products.

ペンジルアミン類は単独でポリマー安定剤、医薬品中間
体として公知のものである。したがって、本発明におい
ては必要に応じて反応生成物からN−置換フェニルグリ
シンと共にペンジルアミン類を分離すれば、餅産法とし
て工業的にも有利に実施できる。また上式から明らかな
如く、本発明においては反応にまず炭酸ガスを関与させ
ることが必要であり、この点で電解液中における水分な
どのプロトン供与体の介在はN−置換フェニルグリシン
の収率を向上させるために出来る限り避けることが望ま
しい。本発明によって得られる目的生成物が電解液に不
溶である場合には、単に炉過することによって単離すれ
ばよい。
Penzylamines alone are known as polymer stabilizers and pharmaceutical intermediates. Therefore, in the present invention, if penzylamines are separated from the reaction product together with N-substituted phenylglycine as necessary, the method can be industrially advantageously implemented as a rice cake production method. Furthermore, as is clear from the above formula, in the present invention, it is necessary to first involve carbon dioxide gas in the reaction, and in this point, the intervention of a proton donor such as water in the electrolyte solution increases the yield of N-substituted phenylglycine. It is desirable to avoid this as much as possible in order to improve If the desired product obtained by the present invention is insoluble in the electrolyte, it can be isolated simply by filtration.

他方、目的生成物が電解液に可溶である場合には、通常
水および鉱酸などをプロトン供与体として加えた後処理
で遊離の形で単機すればよい。上記後処理によって単離
する方法は特に限定的ではなく、適宜必要な手段を採用
し得るが、以下に代表的な単離方法を例示する。すなわ
ち、電解終了後に溶媒を蒸留して除き、残澄に水を加え
てペンジルアミン類を水と混じらないクロロホルム、ベ
ンゼン、エーテルなどの溶媒で抽出する。この抽出溶媒
を蒸留し去ればペンジルアミン類が得られることになる
。上記の水を加える操作により、N−置換フェニルグリ
シンが固体となって析出する場合には、単に炉適するこ
とによりN−置換フェニルグリシンを単離し得るが、析
出しない場合には該溶媒抽出を行なったあとのアルカリ
性を呈する水層を滋酸によって中性ないしは弱酸性(p
H2〜6)とし、対応するN−直換フェニルグリシンを
単鰍する。このようにして得られるN−置換フェニルグ
リシンはほとんどの錫合純品であるが、さらに精製を行
なう必要がある場合にはアルコール、酢酸エチルなどの
溶媒から再結晶をすればよい。本発明を詳しく記述説明
するため以下実施例及び比較例を挙げて説明するが、本
発明はこれらの実施例に限定されるものではない。
On the other hand, if the desired product is soluble in the electrolyte, it can be isolated in a free form by post-treatment, usually by adding water and a mineral acid as a proton donor. The method of isolation by the above-mentioned post-treatment is not particularly limited, and any necessary means may be employed as appropriate, but typical isolation methods are exemplified below. That is, after the electrolysis is completed, the solvent is removed by distillation, water is added to the residue, and penzylamines are extracted with a solvent that does not mix with water, such as chloroform, benzene, or ether. If this extraction solvent is distilled off, penzylamines will be obtained. If N-substituted phenylglycine becomes solid and precipitates as a result of the above operation of adding water, it can be isolated by simply heating it in a furnace, but if it does not precipitate, perform the solvent extraction. The remaining alkaline water layer is made neutral or weakly acidic (p
H2-6), and the corresponding N-directly substituted phenylglycine is monopolized. Most of the N-substituted phenylglycine thus obtained is a pure tin compound product, but if further purification is required, it may be recrystallized from a solvent such as alcohol or ethyl acetate. EXAMPLES In order to describe and explain the present invention in detail, Examples and Comparative Examples will be given below, but the present invention is not limited to these Examples.

なお、実施例における目的生成物の収率は用いたペンジ
リデンアミンの重量に対する目的生成物の重量から算出
した。実施例 1 イオン交換膜で仕切ったH型セルの陰極側にペンザルア
ニリン(1.00夕、5.52hmole)、ョウ化テ
トラエチルアンモニウム(1.0夕)、無水アセトニト
リル(100M)を入れた。
Note that the yield of the desired product in the Examples was calculated from the weight of the desired product relative to the weight of penzylidene amine used. Example 1 Penzalaniline (1.00 hours, 5.52 hmole), tetraethylammonium iodide (1.0 hours), and anhydrous acetonitrile (100M) were placed on the cathode side of an H-type cell partitioned with an ion exchange membrane. .

次いで陽極側にョウ化テトラエチルアンモニウム(5.
0夕)およびアセトニトリル(70のZ)を入れた。陰
極として真ちゆう極(4×8仇、厚さ2肌)、陽極とし
て白金円筒(6×8仇、厚さ0.2柵)を用い、陰極電
位を飽和甘東電極に対して−1.85Vに保ちつつ、電
気燈梓下に常時炭酸ガスを吹き込みながら1940クー
ロンだけ通電を行なった。このときはじめの電流値は5
仇hA、おわりの電流値は0.3hAであった。電解終
了後、陰極液をナス型フラスコに移してアセトニトリル
を留去し、残漣に水20の‘を加えた。
Next, tetraethylammonium iodide (5.
0) and acetonitrile (Z of 70). A brass pole (4 x 8 squares, 2 walls thick) was used as the cathode, and a platinum cylinder (6 x 8 squares, 0.2 inch thick) was used as the anode, and the cathode potential was -1 relative to the saturated Kanto electrode. While maintaining the voltage at .85V, a current of 1940 coulombs was applied while constantly blowing carbon dioxide gas under the electric lamp. At this time, the initial current value is 5
The current value at the end was 0.3 hA. After the electrolysis was completed, the catholyte was transferred to an eggplant-shaped flask, acetonitrile was distilled off, and 20 parts of water was added to the residue.

まずペンゼル100の‘でベンゼン可溶物(主としてア
ミン誘導体)を除去した後、残存するアルカリ性水溶液
を塩酸で注意深く酸性にすることにより、融点190〜
191℃(分解)のN,2ージフェニルグリシン1.0
67夕を得た。収率は85.1%であつた。比較例 1 陰極として精製水銀(15の【)を用いた以外は、実施
例1とほぼ同様に−1.90Vで電解還元した。
First, after removing benzene solubles (mainly amine derivatives) with Penzel 100', the remaining alkaline aqueous solution was carefully acidified with hydrochloric acid, and the melting point was 190~
N,2-diphenylglycine 1.0 at 191°C (decomposed)
I got 67 evenings. The yield was 85.1%. Comparative Example 1 Electrolytic reduction was carried out at −1.90 V in substantially the same manner as in Example 1, except that purified mercury (15 [) was used as the cathode.

電解後に陰極液を同様に処理してペンジリデンアニリン
1.00夕からN.2−ジフエニルグリシン0.485
夕を得た。収率は387%であった。実施例 2 陰極として真ちゆう陰極の代わりに、ほぼ同一面積の種
々の固体金属極を用いた以外は、実施例1とほぼ同様に
してペンジリデンアニリン1.00夕を定電位電解還元
を行った。
After electrolysis, the catholyte was treated in the same manner as penzylidene aniline from 1.00 to N. 2-diphenylglycine 0.485
I got the evening. The yield was 387%. Example 2 1.00 g of penzylidene aniline was subjected to potentiostatic electrolytic reduction in substantially the same manner as in Example 1, except that various solid metal electrodes with approximately the same area were used as the cathode instead of a brass cathode. Ta.

主な電解条件ならびにN,2ージフェニルグリシンの収
率は表1に示す通りであった。実施例 3 実施例1に於けるペンザルアニリンに代り表2に示す種
々のペンジリデンアミン類を用い、電流値を第2表に示
すものとした以外は実施例1と同様に実施した。
The main electrolysis conditions and the yield of N,2-diphenylglycine were as shown in Table 1. Example 3 The same procedure as in Example 1 was carried out except that various penzylideneamines shown in Table 2 were used instead of penzalaniline in Example 1, and the current values were changed to those shown in Table 2.

聡 セ J 蓮 N ト 4 ミ 七 ミ ふ ト ・) ■ Z Z ご り 霊 ミ 9 ・b り ☆ 霊 ※ ※Satoshi Se J lotus N to 4 Mi seven Mi debt to ・) ■ Z Z Go the law of nature spirit Mi 9 ・b the law of nature ☆ spirit * *

Claims (1)

【特許請求の範囲】[Claims] 1 極性非水溶液中で炭酸ガス存在下にベンジリデンア
ミン類を、陰極として固体電極を用いて電解還元するこ
とを特徴とするN−置換フエニルグリシンの製造方法。
1. A method for producing N-substituted phenylglycine, which comprises electrolytically reducing benzylidene amines in the presence of carbon dioxide gas in a polar nonaqueous solution using a solid electrode as a cathode.
JP53082916A 1978-07-10 1978-07-10 Method for producing N-substituted phenylglycine Expired JPS6035997B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP53082916A JPS6035997B2 (en) 1978-07-10 1978-07-10 Method for producing N-substituted phenylglycine
US06/056,187 US4248677A (en) 1978-07-10 1979-07-10 Process for producing alpha-aminocarboxylic acids and salts thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53082916A JPS6035997B2 (en) 1978-07-10 1978-07-10 Method for producing N-substituted phenylglycine

Publications (2)

Publication Number Publication Date
JPS5511126A JPS5511126A (en) 1980-01-25
JPS6035997B2 true JPS6035997B2 (en) 1985-08-17

Family

ID=13787566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53082916A Expired JPS6035997B2 (en) 1978-07-10 1978-07-10 Method for producing N-substituted phenylglycine

Country Status (1)

Country Link
JP (1) JPS6035997B2 (en)

Also Published As

Publication number Publication date
JPS5511126A (en) 1980-01-25

Similar Documents

Publication Publication Date Title
CA1321973C (en) Method for producing high purity quaternary ammonium hydroxides
US4162948A (en) Method of dehalogenating halogenated hydrocarbon to yield elemental halogen
JPS6140040B2 (en)
JPS6035997B2 (en) Method for producing N-substituted phenylglycine
JP4587329B2 (en) Method for producing primary amines having a primary amino group and a cyclopropyl unit bonded to an aliphatic or alicyclic C-atom
US7052593B2 (en) Process for the production of diaryl iodonium compounds
JPS60243293A (en) Manufacture of m-hydroxybenzyl alcohol
US4988416A (en) Process for the electrosynthesis of aldehydes
CA2002599A1 (en) Process for the electrochemical iodination of aromatic compounds
JPH037758B2 (en)
JPS6342712B2 (en)
EP0618312A1 (en) Process for obtaining n-acetyl homocysteine thiolactone from DL-homocystine by electrochemical methods
JPS60187689A (en) Nanufacture of 3-exo-methylenecepham derivative
RU2221765C1 (en) Perfluorinated organic compound production process
JP2622115B2 (en) Method for producing benzyl alcohols
JP2674767B2 (en) Method for producing polyfluoroaromatic aldehyde
JP3653590B2 (en) Process for producing bromo-substituted azetidinone compounds
JPS59116387A (en) Manufacture of triphenylphosphine
SU1157797A1 (en) Method of producing solutions of cyclopentadiene ionic compounds
SU833976A1 (en) Method of tetraethyllead preparation
JPH05279885A (en) Halogenated pyridine carbaldehyde derivative and its production
SU1685907A1 (en) Method for obtaining aminopropanones
JPS6035436B2 (en) Method for producing N-substituted phenylglycine
JP2946045B1 (en) Novel perfluoro (piperazine-N, N'-di-acetylfluoride) and process for producing the same
JPH032957B2 (en)