JPS6035274A - Current measuring circuit - Google Patents

Current measuring circuit

Info

Publication number
JPS6035274A
JPS6035274A JP14410583A JP14410583A JPS6035274A JP S6035274 A JPS6035274 A JP S6035274A JP 14410583 A JP14410583 A JP 14410583A JP 14410583 A JP14410583 A JP 14410583A JP S6035274 A JPS6035274 A JP S6035274A
Authority
JP
Japan
Prior art keywords
measured
input terminal
output
terminal
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14410583A
Other languages
Japanese (ja)
Inventor
Koichi Shimada
耕一 嶋田
Kyo Ishikawa
協 石川
Keizo Emori
江森 啓蔵
Tomoaki Sato
友昭 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Electronics Ltd
Original Assignee
Toa Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Electronics Ltd filed Critical Toa Electronics Ltd
Priority to JP14410583A priority Critical patent/JPS6035274A/en
Publication of JPS6035274A publication Critical patent/JPS6035274A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enables the measurement of fine current using a relatively long cable by connecting a detection resistor between the inversion input terminal and the output terminal of a differential amplifier, one end of an object to be measured to the inversion input terminal and the other end of the object to the output terminal through the power source. CONSTITUTION:A differential amplifier 17 with a high gain and non-saturable is used. The non-inversion input terminal is grounded and a detection resistor 13 is connected between the inversion input terminal and the output terminal thereof. One end of an object 11 to be measured is connected to the inversion input terminal while the other end of the object 11 is connected to the output terminal through the power source 12. With such an arrangement, with the feedback action through the detection resistor 13, the inversion input terminal has almost the ground potential. The current I1 flowing through the object 11 to be measured runs to the detection resistor 13 and the product RsI1 of the current I1 and the resistance value Rs of the detection resistor 13 is measured with a voltometer 18 to determine the current I1.

Description

【発明の詳細な説明】 この発明は被測定物に電圧を印加することによシ被測定
物に流れる電流を、測定する電流測定回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current measuring circuit that measures a current flowing through an object to be measured by applying a voltage to the object.

〈従来技術〉 第1図に示すように被測定物11に電圧源12を接続し
、これによ電流れる電流を検出用抵抗器13に流し、そ
の検出用抵抗器13に生じる降下電圧を増幅器14で増
幅し、その増幅出力電圧を電圧計15により測定するこ
とにより、被測定物11に流れる電流を測定することが
行われている。
<Prior art> As shown in FIG. 1, a voltage source 12 is connected to an object to be measured 11, the current generated by the voltage source 12 is passed through a detection resistor 13, and the voltage drop generated in the detection resistor 13 is collected by an amplifier. 14 and measuring the amplified output voltage with a voltmeter 15, the current flowing through the object to be measured 11 is measured.

被測定物11が例えば絶縁抵抗のような場合は被測定物
11を流れる電流が微小なものとなり、この微小電流を
測定可能な電圧とするために、検出用抵抗器13の抵抗
値を高くせざるを得なくなり、これに伴い増幅器14の
入力インピーダンスを高くすることになる。検出用抵抗
器13と増幅器14とを接続するケーブル16が長くな
ると、その大地に対する浮遊容量が大きくなり、出力電
圧、即ち測定値が安定するまでの時間が長くなる。この
ためケーブル16を長くすることができない。一方、微
小電流を並列帰還増幅器によって電圧に変換して測定す
ることも行われているが、この場合は高利得の増幅器を
必要とし、雑音をも大きく増幅して出力し、つまシ雑音
の影響を受け易い欠点があった。更に高抵抗を測定する
ために高抵抗のブリッジ回路を用いることもあるが、こ
の場合も高抵抗のため浮遊容量の影響を受け易い欠点が
あった。このように従来においては浮遊容量の影響が避
けられず被測定物と測定器との間に比較的長いケーブル
を接続することはできなかった。
If the object to be measured 11 is, for example, an insulation resistance, the current flowing through the object to be measured 11 will be minute, and in order to make this minute current a measurable voltage, the resistance value of the detection resistor 13 must be increased. This has no choice but to increase the input impedance of the amplifier 14. As the cable 16 connecting the detection resistor 13 and the amplifier 14 becomes longer, its stray capacitance with respect to the ground increases, and the time it takes for the output voltage, that is, the measured value, to stabilize becomes longer. For this reason, the cable 16 cannot be made long. On the other hand, it is also possible to measure small currents by converting them into voltages using parallel feedback amplifiers, but in this case a high-gain amplifier is required, and noise is also greatly amplified before being output. There were drawbacks that made it easy to accept. Furthermore, a high-resistance bridge circuit is sometimes used to measure high resistance, but this also has the drawback of being susceptible to stray capacitance due to its high resistance. As described above, in the past, the influence of stray capacitance was unavoidable, and it was not possible to connect a relatively long cable between the object to be measured and the measuring instrument.

〈発明の概要〉 この発明の目的は被測定物と測定器との間に比較的長い
ケーブルを存在させることができ、かつ雑音の影響を受
け難い電流測定回路を提供することにある。
<Summary of the Invention> An object of the present invention is to provide a current measurement circuit that allows a relatively long cable to be present between an object to be measured and a measuring device and is less susceptible to noise.

この発明によれば非反転入力端子を接地した差動増幅器
の反転入力端子と出力端子との間に検出用抵抗器を接続
し、その反転入力端子に被測定物の一端を接続し、その
被測定物の他端を電源を介して差動増幅器の出力端子に
接続する。
According to this invention, a detection resistor is connected between the inverting input terminal and the output terminal of a differential amplifier whose non-inverting input terminal is grounded, and one end of the object to be measured is connected to the inverting input terminal. Connect the other end of the object to be measured to the output terminal of the differential amplifier via a power supply.

〈実施例〉 第2図はこの発明による電流測定回路の実施例を示し、
充分利得が高く、かつ測定範囲内で飽和を起さない差動
増幅器17が用いられ、差動増幅器17の非反転入力端
子は接地され、反転入力端子と出力端子との間に検出用
抵抗器13が接続される。差動増幅器17の反転入力端
子に被測定物11の一端が接続され、被測定物11の他
端は電源12を介して差動増幅器17の出力端子に接続
される。差動増幅器17の出力端子に電圧計18が接続
される。
<Embodiment> FIG. 2 shows an embodiment of the current measuring circuit according to the present invention,
A differential amplifier 17 that has a sufficiently high gain and does not cause saturation within the measurement range is used, the non-inverting input terminal of the differential amplifier 17 is grounded, and a detection resistor is connected between the inverting input terminal and the output terminal. 13 are connected. One end of the device under test 11 is connected to the inverting input terminal of the differential amplifier 17, and the other end of the device under test 11 is connected to the output terminal of the differential amplifier 17 via the power supply 12. A voltmeter 18 is connected to the output terminal of the differential amplifier 17.

この構成によれば検出用抵抗器13を通じる負帰還作用
により増幅器17の反転入力端子ははV接地電位となる
。差動増幅器17の入力インピーダンスは充分高いから
被測定物11に流れる電流11は検出用抵抗器13に流
れ、この電流11と検出用抵抗器]3の抵抗値Rsとの
積R511を電圧計18で測定することによシミ流11
をめることができる。
With this configuration, the negative feedback effect through the detection resistor 13 causes the inverting input terminal of the amplifier 17 to be at the V ground potential. Since the input impedance of the differential amplifier 17 is sufficiently high, the current 11 flowing through the device under test 11 flows to the detection resistor 13, and the product R511 of this current 11 and the resistance value Rs of the detection resistor]3 is measured by the voltmeter 18. By measuring the stain flow at 11
can be used.

このように差動増幅器17の入力端子(反転入力端子)
は常にはy接地電位にあり、かつ被測定物11及び差動
増幅器17間を接続するケーブル16から増幅器17側
を見たインピーダンスは検出用抵抗器13の抵抗値Rs
を増幅器17の利得G1で割った値Rs/G1となり、
G1は充分大きいだめ、このRs /Q 1とケーブル
16の浮遊容量との時定数が小さくなり、従ってケーブ
ル16の長さが長くなり、従ってケーブル16の接地に
対する浮遊容量が大きなものと々つでも、この浮遊容量
を充電する電流は極く僅かで済み、かつ短時間で充電さ
れるため、微小電流測定のため抵抗値Rsを著しく大に
しても被測定物11に対し電圧を印加した後、直ちに測
定出力は安定するため測定動作を高速に行うことができ
る。また電源12に雑音が含丑れたり、被測定物11に
商用電源電圧などの誘導雑音が入力されても、これらの
雑音は電源12、被測定物11、ケーブル16を含む増
幅器17の負帰還回路内に挿入され、雑音に対する利得
は1になり(雑音に対しては増幅作用がなく)、雑音に
影響されることなく測定することができる。
In this way, the input terminal (inverting input terminal) of the differential amplifier 17
is always at the y ground potential, and the impedance seen from the cable 16 connecting the device under test 11 and the differential amplifier 17 to the amplifier 17 side is the resistance value Rs of the detection resistor 13.
is divided by the gain G1 of the amplifier 17, resulting in the value Rs/G1,
If G1 is sufficiently large, the time constant between this Rs /Q 1 and the stray capacitance of the cable 16 will become small, and therefore the length of the cable 16 will become long, so even if the stray capacitance of the cable 16 to ground is large. , Since the current required to charge this stray capacitance is extremely small and is charged in a short time, even if the resistance value Rs is significantly increased to measure a minute current, after applying a voltage to the object to be measured 11, Since the measurement output becomes stable immediately, measurement operations can be performed at high speed. Furthermore, even if noise is included in the power supply 12 or inductive noise such as commercial power supply voltage is input to the device under test 11, these noises will be absorbed by the negative feedback of the amplifier 17, which includes the power supply 12, the device under test 11, and the cable 16. It is inserted into the circuit, has a gain of 1 against noise (no amplification effect on noise), and can be measured without being affected by noise.

第3図はこの発明をブリッジ回路として構成した例を示
す。第3図において第2図と対応する部分に同一符号を
付けてあり、この第2図に示した構成に更に被測定物1
1と検出用抵抗器13との直列回路の両端間に、比較用
抵抗器19.21の直列回路が接続される。比較用抵抗
器19.21の接続点が検出用比較増幅器22の入力側
に接続され、その増幅器22の出力側に電圧計18が接
続される。
FIG. 3 shows an example of the present invention configured as a bridge circuit. In FIG. 3, parts corresponding to those in FIG. 2 are given the same reference numerals, and in addition to the configuration shown in FIG.
A series circuit of comparison resistors 19 and 21 is connected between both ends of the series circuit of comparison resistors 19 and 13. The connection point of the comparison resistor 19.21 is connected to the input side of the detection comparison amplifier 22, and the voltmeter 18 is connected to the output side of the amplifier 22.

この構成において被測定物11、抵抗器13゜19.2
1はそれぞれブリッジ回路の各アームを構成し、第2図
の場合と同様に差動増幅器17及び検出用抵抗器13の
作用により増幅器17の反転入力端子ははソ接地電位と
なる。検出用比較増幅器22の一方の入力側は接地され
ており、従って検出用比較増幅器22は等測的にブリッ
ジ回路の一対の対角点間に接続されたことになり、ブリ
ッジ回路の不平衡分が増幅器22で増幅される。
In this configuration, the object to be measured 11 and the resistor 13°19.2
1 constitute each arm of the bridge circuit, and as in the case of FIG. 2, the inverting input terminal of the amplifier 17 is brought to the ground potential by the action of the differential amplifier 17 and the detection resistor 13. One input side of the detection comparison amplifier 22 is grounded, and therefore the detection comparison amplifier 22 is isometrically connected between a pair of diagonal points of the bridge circuit, and the unbalanced component of the bridge circuit is is amplified by the amplifier 22.

この場合も第2図に示した場合と同様の作用効果が得ら
れることは容易に理解されよう。
It will be easily understood that the same effects as in the case shown in FIG. 2 can be obtained in this case as well.

第2図、第3図の構成で測定に当っては、電源を印加し
た状態で被測定物11を交換すると雑音を発生する。従
って被測定物11を交換する場合には電源の印加を停止
するように電源を制御できるように構成することが好ま
しい。また部用電源出力から直流電圧源12を作る場合
に直流電圧源12の一端が変動した時に、他端も同様に
変動して直流電圧源12の両端間の電圧は常に一定値に
保持される必要がある。これらの点から電源12として
は例えば第4図に示すものが好ましい。即ち電源12の
両端23.24間に、その端子電圧Va、Vbを入力と
してその差電圧V b −V aに比例した電圧を得る
回路25が設けられる。その差電圧vb−vaに比例し
た電圧と、所望の端子23.24間電圧■1と対応した
入力電圧■o とを加算増幅器26で加算し、その出力
を端子24へ供給する。回路25において例えば端子2
3に利得が1/nの反転増幅器27が接続される。即ち
端子23は抵抗値がnRの抵抗器28を通じて演算増幅
器29の反転入力端子に接続され、演算増幅器29の非
反転入力端子は接地され、出力端子及び反転入力端子間
に抵抗値がRの帰還抵抗器31が接続される。この反転
増幅器27の出力と、端子24の電圧とが、利得1/n
の差動増幅器32へ供給される。即ち反転増幅器27の
出力側は抵抗値Rの抵抗器33を通じて演算増幅器34
の非反転入力端子に接続され、この非反転入力端子は抵
抗値nRの抵抗器35を通じて端子24に接続され、演
算増幅器34の出力端子及び反転入力端子間に抵抗値R
の帰還抵抗器36が接続され、この反転入力端子は抵抗
値nRの抵抗器37を通じて端子23に接続される。こ
の差動増幅器32の出力は(V b −2V a ) 
/ nとなる。
When measuring with the configurations shown in FIGS. 2 and 3, noise will be generated if the object to be measured 11 is replaced while the power is applied. Therefore, when replacing the object to be measured 11, it is preferable to configure the device so that the power supply can be controlled so as to stop applying the power. In addition, when creating the DC voltage source 12 from the output of the DC voltage source 12, when one end of the DC voltage source 12 fluctuates, the other end fluctuates in the same way, and the voltage between both ends of the DC voltage source 12 is always maintained at a constant value. There is a need. From these points of view, it is preferable to use the power source 12 as shown in FIG. 4, for example. That is, a circuit 25 is provided between both ends 23 and 24 of the power supply 12 to obtain a voltage proportional to the difference voltage V b -V a by inputting the terminal voltages Va and Vb. A summing amplifier 26 adds a voltage proportional to the differential voltage vb-va and an input voltage ``o'' corresponding to the desired voltage ``1'' between the terminals 23 and 24, and supplies the output to the terminal 24. In the circuit 25, for example, terminal 2
3 is connected to an inverting amplifier 27 having a gain of 1/n. That is, the terminal 23 is connected to the inverting input terminal of an operational amplifier 29 through a resistor 28 with a resistance value of nR, the non-inverting input terminal of the operational amplifier 29 is grounded, and a feedback terminal with a resistance value of R is connected between the output terminal and the inverting input terminal. A resistor 31 is connected. The output of this inverting amplifier 27 and the voltage at the terminal 24 have a gain of 1/n.
is supplied to the differential amplifier 32. That is, the output side of the inverting amplifier 27 is connected to the operational amplifier 34 through a resistor 33 having a resistance value R.
This non-inverting input terminal is connected to the terminal 24 through a resistor 35 having a resistance value nR, and a resistance value R is connected between the output terminal and the inverting input terminal of the operational amplifier 34.
A feedback resistor 36 is connected, and this inverting input terminal is connected to the terminal 23 through a resistor 37 having a resistance value nR. The output of this differential amplifier 32 is (V b −2V a )
/n.

演算増幅器34の出力端子は抵抗値Rの抵抗器38を通
じて加算増幅器26の反転入力端子に接続され、この反
転入力端子は抵抗値がI〕Rの抵抗器39を通じて端子
24に接続されると共に抵抗値がR/2の抵抗器41を
通じて制御入力端子42に接続され、加鋳:増幅器26
の出力端子は端子24に接続される。加算増幅器26の
非反転入力端子は接地される。増幅器26の利得をA1
制御入力端子42の入力電圧をVoとそれぞれすると、
加算増幅器26の入出力間には次式が成立つ。
The output terminal of the operational amplifier 34 is connected to the inverting input terminal of the summing amplifier 26 through a resistor 38 having a resistance value R, and this inverting input terminal is connected to the terminal 24 through a resistor 39 having a resistance value I]R. It is connected to the control input terminal 42 through a resistor 41 with a value of R/2, and is connected to the amplifier 26.
The output terminal of is connected to terminal 24. The non-inverting input terminal of summing amplifier 26 is grounded. The gain of the amplifier 26 is A1
Letting the input voltage of the control input terminal 42 be Vo, respectively,
The following equation holds between the input and output of the summing amplifier 26.

出力vbは ■ となる。A ) ) nに設定すると、V b −V 
a = n V o = V 1となり、端子23.2
4間の電圧■1は制御入力電圧■0のn倍のものとなり
、制御入力電圧VOをゼロにすれば端子23.24間の
電圧v1−0となシ、端子42をVoとOとに制御する
ことにより、端子23.24間の電圧を0NXOFFす
ることができる。しかも回路25の出力と、端子42の
入力とを加算したものがゼロになるように帰還制御され
るため、端子23.24間の電圧は常にnVoに保持さ
れる。なおnは差動増幅器32の飽和を防ぐだめの減衰
係数である。端子23は第3図において抵抗器13.2
1の接続点に接続され、端子24は被測定物11及び抵
抗器19の接続点に接続される。回路25としては(V
b−Va)に比例した出力を得るものなら他の形式のも
のでもよい。
The output vb becomes ■. A ) ) When set to n, V b −V
a = n Vo = V 1, and terminal 23.2
The voltage between terminals 23 and 24 (■1) is n times the control input voltage (■0), and if the control input voltage VO is set to zero, the voltage between terminals 23 and 24 becomes v1-0, and the terminals 42 are connected to Vo and O. By controlling the voltage between the terminals 23 and 24, it is possible to turn the voltage between the terminals 23 and 24 OFF. Moreover, since feedback control is performed so that the sum of the output of the circuit 25 and the input of the terminal 42 becomes zero, the voltage between the terminals 23 and 24 is always held at nVo. Note that n is an attenuation coefficient for preventing saturation of the differential amplifier 32. Terminal 23 is connected to resistor 13.2 in FIG.
1, and the terminal 24 is connected to the connection point between the object to be measured 11 and the resistor 19. As the circuit 25, (V
Other types may be used as long as they provide an output proportional to b-Va).

第3図において電源12のON、OFF制御を例えば@
5図Aに示すよう制御すると、検出用比較増幅器22か
ら、被測定物11の抵抗値に応じて、例えば第5図Bに
示すように電源12がONの時に出力が生じる。第5図
Bではブリッジ回路の出力が、しきい値Vtよυ犬であ
るか、小であるかを出力している。しかし、被測定物1
1に対する遮蔽が不充分であったりすると、商用電源電
力が誘導され、例えば第5図Cに示すように大きな雑音
が入力されることがある。この場合はブリッジ回路の出
力は第5図りに示すように第5図BとCとが重量された
ものとなり、これをしきい値Vtと比較すると、第5図
Eに示すように、正しくはしきい値Vtより小さいもの
がしきい値より大と判定されたplその逆の判定がなさ
れることもあシ、正しい判定出力が得られなくなる。こ
のような場合は例えば第6図に示すようにすればよい。
In FIG. 3, for example, the ON/OFF control of the power supply 12 is @
When controlled as shown in FIG. 5A, the detection comparison amplifier 22 generates an output depending on the resistance value of the object to be measured 11, for example, when the power supply 12 is turned on, as shown in FIG. 5B. In FIG. 5B, the output of the bridge circuit indicates whether it is greater than or smaller than the threshold value Vt. However, the object to be measured 1
If the shielding for 1 is insufficient, commercial power supply power may be induced, and large noise may be input as shown in FIG. 5C, for example. In this case, the output of the bridge circuit is the sum of B and C in Fig. 5, as shown in Fig. 5, and when this is compared with the threshold value Vt, as shown in Fig. 5E, it is correct. If pl is smaller than the threshold value Vt, it may be judged to be larger than the threshold value, and vice versa, making it impossible to obtain a correct judgment output. In such a case, for example, the method shown in FIG. 6 may be used.

第6図において第3図と対応する部分には同一符号を付
けである。電源12と直列にスイッチ43が挿入され、
電源12及びスイッチ43と並列にスイッチ44が接続
され、スイッチ43.44は端子42の制御信号により
互に逆にON、OFF制御される。電源12の電圧が被
測定物11に印加されない時のブリッジ回路の出力が記
憶回路45に記憶される。即ち抵抗器19.21の接続
点はバッファ回路46を通じ、更にスイッチ47を通じ
てコンデンサ48の一端に接続され、コンデンサ48の
他端は接地され、スイッチ47及びコンデンサ48の接
続点はバッファ回路49の入力側に接続される。電源1
2の電圧を被測定物11に印加した時のブリッジ回路の
出力と、記憶回路45の記憶値とが比較器51で比較さ
れる。即ち抵抗器19.21の接続点は比較器51の非
反転入力端子に接続され、バッファ回路49の出力端子
が比較器510反転入力端子に接続される。スイッチ4
7は端子42の制御信号によシ制御され、スイッチ44
がオフの時にスイッチ47もオフにされる。
In FIG. 6, parts corresponding to those in FIG. 3 are given the same reference numerals. A switch 43 is inserted in series with the power supply 12,
A switch 44 is connected in parallel with the power supply 12 and the switch 43, and the switches 43 and 44 are controlled to be turned on and off in reverse by a control signal from the terminal 42. The output of the bridge circuit when the voltage of the power supply 12 is not applied to the object to be measured 11 is stored in the memory circuit 45. That is, the connection point between the resistors 19 and 21 is connected to one end of the capacitor 48 through the buffer circuit 46 and further through the switch 47, the other end of the capacitor 48 is grounded, and the connection point between the switch 47 and the capacitor 48 is connected to the input of the buffer circuit 49. connected to the side. Power supply 1
The comparator 51 compares the output of the bridge circuit when voltage No. 2 is applied to the object under test 11 and the value stored in the storage circuit 45 . That is, the connection point of resistor 19.21 is connected to the non-inverting input terminal of comparator 51, and the output terminal of buffer circuit 49 is connected to the inverting input terminal of comparator 510. switch 4
7 is controlled by the control signal at the terminal 42, and the switch 44
When the switch 47 is off, the switch 47 is also turned off.

このようにすれば、被測定物11に電圧が印加される前
、つまりスイッチ43がオフ、スイッチ4、4 、47
がオンの時に、ブリッジ回路の出力に得られている雑音
がコンデンサ48に充電され、被測定物11に電圧が印
加されると、スイッチ47はオフとなシ、その直前にコ
ンデンサ48に記憶された雑音値と、ブリッジ回路の測
定出力とが比較器51で比較され、測定出力に重畳して
いる雑音は互に打消され、正しい判定出力が得られる。
In this way, before the voltage is applied to the object to be measured 11, that is, the switch 43 is off, the switches 4, 4, 47
When the switch 47 is turned on, the noise obtained at the output of the bridge circuit is charged in the capacitor 48, and when a voltage is applied to the object under test 11, the switch 47 is turned off, and the noise is stored in the capacitor 48 just before that. The measured noise value and the measured output of the bridge circuit are compared by a comparator 51, and the noises superimposed on the measured output are canceled by each other, and a correct judgment output is obtained.

記憶回路45の記憶値は第5図Cの雑音に対し、第5図
Fに示すようになり、この時の比較器51の出力は第5
図℃に示すようになり、雑音がない時の判定結果(第5
図B)と同一結果が得られる。
The stored value of the memory circuit 45 becomes as shown in FIG. 5F for the noise shown in FIG. 5C, and the output of the comparator 51 at this time is
The judgment result when there is no noise (5th
The same result as in Figure B) is obtained.

抵抗器19.21の各抵抗値をRa 、Rbとし、被測
定物11の抵抗値をRxとすると、ブリッジ回路の出力
(抵抗器19.21の接続点の電圧)Vdは となる。■1=vb−va 被測定物11及び抵抗器13の接続点に誘導雑音電流1
n=Fsinωtが入力されたとすると、雑音電圧Vn
は V n、 = F’5ln(IJ t−Rs (2)と
なる。接地電位をしきい値として測定出力を判定する場
合は Vd+Vn=0 (31 が判定条件と々る。この(3)式をRxについて表わす
と、 となる。被測定物11に電圧を印加した時の雑音の位相
をto、その直前の記憶回路45に雑音を記憶した時の
雑音の位相をtlとし、これら位相t。
When the resistance values of the resistors 19.21 are Ra and Rb, and the resistance value of the object to be measured 11 is Rx, the output of the bridge circuit (voltage at the connection point of the resistors 19.21) Vd is as follows. ■1=vb-va Inductive noise current 1 at the connection point between the object to be measured 11 and the resistor 13
If n=Fsinωt is input, the noise voltage Vn
is V n, = F'5ln (IJ t-Rs (2). When determining the measured output using the ground potential as a threshold, Vd + Vn = 0 (31) is the determination condition. This equation (3) When expressed in terms of Rx, it becomes as follows.The phase of the noise when a voltage is applied to the object under test 11 is to, and the phase of the noise when the noise is stored in the memory circuit 45 immediately before that is tl, and these phases t.

、txにおける雑音VnO値をVn O+ Vn ”と
すると、第6図における判定条件は V d+Vn 1=Vn o (5) となる。これよりRxについて表わすと、となる。この
第6図においてtlとtoとを接近させることによシ l sin ωt 1−sin ωt o I << 
1とすることができる。この時の雑音低減率にはとなる
。l5lnωtlは最大で1であるからに=I廁ωt 
1−sinωt o I (81となる。ω−2π×5
0、tlとtoとの間隔を1msとすると、雑音低減率
にの最大値はに=Sm2πX50X10 :r−0,3
1となplにの最小値はS石ωt 1=sinωtOと
なる値であって、 K=0 となる。従って測定電圧の印加が1msの場合け501
4zの雑音に対して最大0.31倍以下にすることがで
きる。
, tx, the noise VnO value is Vn O+Vn'', the judgment condition in FIG. By bringing to closer to each other, syl sin ωt 1-sin ωt o I <<
It can be set to 1. The noise reduction rate at this time is: Since l5lnωtl is 1 at most, = I ωt
1-sinωt o I (becomes 81.ω-2π×5
If the interval between 0, tl and to is 1ms, the maximum value of the noise reduction rate is = Sm2πX50X10 :r-0,3
The minimum value of pl that is 1 is the value that satisfies S stone ωt 1 = sin ωtO, and K = 0. Therefore, if the measurement voltage is applied for 1 ms, 501
4z noise can be reduced to a maximum of 0.31 times or less.

なお第6図においてスイッチ43.44を省略し、電源
12として第4図に示したものを用い、その端子42に
電圧VOを印加した時にスイッチ47をオフにするよう
にしてもよい。またこの第6図に示した考えはブリッジ
回路の測定のみならず、一般に電源電圧が印加された時
に測定出力が出力端子に得られ、電源電圧の非印加時に
は出力端子に?l1ll定出力が生じないが、雑音は電
源電圧の印加、非印加に拘らず出力端子に出力されるよ
うな測定器に適用できる。
Note that the switches 43 and 44 in FIG. 6 may be omitted, and the power source 12 shown in FIG. 4 may be used, and the switch 47 may be turned off when the voltage VO is applied to the terminal 42. Also, the idea shown in Fig. 6 is not only applicable to bridge circuit measurements, but also in general, when the power supply voltage is applied, the measurement output is obtained at the output terminal, and when the power supply voltage is not applied, the measurement output is obtained at the output terminal. This can be applied to measuring instruments that do not produce a constant output, but in which noise is output to the output terminal regardless of whether or not a power supply voltage is applied.

〈効 果〉 以上述べたようにこの発明によれば微小電流を比較的長
いケーブルを用いても測定することができ、しかも高速
度に測定することができ、寸だ雑音に影響されず正しく
測定することができる。
<Effects> As described above, according to the present invention, minute currents can be measured even with a relatively long cable, and can be measured at high speed, allowing accurate measurement without being affected by noise. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電流測定回路を示す回路図、第2図はこ
の発明による電流測定回路の一例を示す接続図、第3図
はブリッジ回路にこの発明を適用した例を示す接続図、
第4図は電源12の一例を示す接伏図、第5図は雑音の
影響を示す波形図、第6図は雑音の影響を除去したこの
発明の例を示す接続図である。 11:被測定物、12:電源、13:検出用抵抗器、1
7:差動増幅器。 特許出願人 東亜電波工業株式会社 代理人 草野 卓 オ 1 図 172 図 左3 図 「− 岸4図 25 オ 5 図
FIG. 1 is a circuit diagram showing a conventional current measurement circuit, FIG. 2 is a connection diagram showing an example of a current measurement circuit according to the present invention, and FIG. 3 is a connection diagram showing an example of applying the present invention to a bridge circuit.
FIG. 4 is a contact diagram showing an example of the power supply 12, FIG. 5 is a waveform diagram showing the influence of noise, and FIG. 6 is a connection diagram showing an example of the present invention in which the influence of noise is removed. 11: Object to be measured, 12: Power supply, 13: Detection resistor, 1
7: Differential amplifier. Patent Applicant Toa Denpa Kogyo Co., Ltd. Agent Takuo Kusano 1 Figure 172 Figure Left 3 Figure - Shore 4 Figure 25 Figure 5

Claims (1)

【特許請求の範囲】[Claims] (il 差−増幅器の非反転入力端子が接地され、反転
入力端子と出力端子との間に検出抵抗器が接続され、上
記差動増幅器の反転入力端子に被測定物の一端が接続さ
れ、その被測定物の他端は電源を通じて上記差動増幅器
の出力端子に接続されている電流測定回路。
(il) The non-inverting input terminal of the difference amplifier is grounded, a detection resistor is connected between the inverting input terminal and the output terminal, one end of the object to be measured is connected to the inverting input terminal of the differential amplifier, and the The other end of the object to be measured is a current measuring circuit connected to the output terminal of the differential amplifier through a power supply.
JP14410583A 1983-08-05 1983-08-05 Current measuring circuit Pending JPS6035274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14410583A JPS6035274A (en) 1983-08-05 1983-08-05 Current measuring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14410583A JPS6035274A (en) 1983-08-05 1983-08-05 Current measuring circuit

Publications (1)

Publication Number Publication Date
JPS6035274A true JPS6035274A (en) 1985-02-23

Family

ID=15354298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14410583A Pending JPS6035274A (en) 1983-08-05 1983-08-05 Current measuring circuit

Country Status (1)

Country Link
JP (1) JPS6035274A (en)

Similar Documents

Publication Publication Date Title
JPS60104263A (en) Detector measuring parameter
JPS6325300B2 (en)
US20080079435A1 (en) Electrostatic Voltmeter With Spacing-Independent Speed of Response
JPS6035274A (en) Current measuring circuit
JP2019200203A (en) Ammeter and method of measuring current
JPH03209176A (en) Circuit and device for measuring ratio
US3714570A (en) Apparatus for measuring the effective value of electrical waveforms
US4322679A (en) Alternating current comparator bridge for resistance measurement
JP2542311Y2 (en) Voltage detector
JP3356029B2 (en) Electric quantity detection circuit
JPH07109966B2 (en) Amplifier circuit
KR850000359B1 (en) In-phase voltage elimination circuit for hall element
JP2577800B2 (en) Automotive DC power supply current detector
SU1178207A1 (en) Device for measuring magnetic field
JP3389528B2 (en) Impedance / voltage converter
Selvam et al. A simple square rooting circuit based on operational amplifiers (OPAMPs)
JPH056670B2 (en)
JPH0688839A (en) Power supply current measuring device
JP2002071772A (en) Sensor device
JPH0851328A (en) Small signal amplifier circuit
SU1684762A2 (en) Instrument for measuring instantaneous values of magnetic fields using hall effect transducers
Bentley et al. A simple laboratory potentiostat
JPH0195498A (en) Detection circuit for floating potential in probe characteristic
JP2576235Y2 (en) Voltage or current measuring device
SU30326A1 (en) Apparatus for measuring the highest and average amplitude values of a modulated high frequency voltage or current