JPS603516A - Optical rotary encoder - Google Patents

Optical rotary encoder

Info

Publication number
JPS603516A
JPS603516A JP11052083A JP11052083A JPS603516A JP S603516 A JPS603516 A JP S603516A JP 11052083 A JP11052083 A JP 11052083A JP 11052083 A JP11052083 A JP 11052083A JP S603516 A JPS603516 A JP S603516A
Authority
JP
Japan
Prior art keywords
slit plate
slit
electroforming
plate
executed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11052083A
Other languages
Japanese (ja)
Inventor
Hiroshige Fujimori
藤森 宏茂
Toshiaki Atomachi
敏明 後町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANRITSU KOGYO KK
Original Assignee
SANRITSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANRITSU KOGYO KK filed Critical SANRITSU KOGYO KK
Priority to JP11052083A priority Critical patent/JPS603516A/en
Publication of JPS603516A publication Critical patent/JPS603516A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation

Abstract

PURPOSE:To generate a signal quantity exceeding three times that of a conventional article by the number of signals per one rotation, in case of an optical rotary encoder having the same outside diameter by realizing a high division of a slit plate by using that which has manufactured a rotary slit plate and a fixed slit plate by an electroforming method. CONSTITUTION:A resist mask treatment shown in 7 is executed on a metallic substrate 8, and an exposure and a development are executed. Thereafter, in order that an electroforming part and the substrate are peeled off easily, it is immersed in a dichromate solution, and thereafter, electroforming is executed. When a slit plate 3 grown by nickel electroforming is peeled off from the substrate, a slit plate which is scarcely deformed, sharp and has high accuracy is obtained. In case of this working, photoengraving of only a grown portion of plating is corrected. As for the quality of material of the slit plate 3, not only nickel but also various metals can be used, but a hard metal is desirable in order to make a thickness of the slit plate small. Also, a photosensitive resin or a photodetecting ink, etc. can be used instead of a resist 7. Also, as for the slit plate, a rotary slit and a fixed slit can be worked at the same time by the same method.

Description

【発明の詳細な説明】 本発明は光学式ロータリーエンコーダーの小型軽量化に
係り、特にスリット板の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to reducing the size and weight of an optical rotary encoder, and particularly relates to improving a slit plate.

従来、光学式エンコーダーは第1図に示す様に発光素子
1と受光素子2の間に、回転スリット板3と固定スリッ
ト板4を置き、各光学素子間の透過光量を検出しデジタ
ル信号に変換する。こうした光学式エンコーダーは、一
定の外径内において一回転光りいかに多数信号を取り出
すかによって性能並びに商品価値が決定される。これを
実現させるためにスリット板の高分割化が必要となる。
Conventionally, an optical encoder places a rotating slit plate 3 and a fixed slit plate 4 between a light emitting element 1 and a light receiving element 2, as shown in Fig. 1, and detects the amount of light transmitted between each optical element and converts it into a digital signal. do. The performance and commercial value of such optical encoders are determined by how many signals can be extracted per revolution within a certain outer diameter. In order to realize this, it is necessary to make the slit plate highly divided.

従来、スリット板は主としてガラス板にスリット部を写
真プリントする方法と、金属板にケミカルエツチング法
でスリット穴を抜く方法の二種類が主流を占めている。
Conventionally, there have been two main methods for producing slit plates: one is to photoprint slits on a glass plate, and the other is to make slit holes in a metal plate using a chemical etching method.

このうち第2図に示すガラス板の写真プリント法は比較
的高分割のものが可能であるが、ガラス板3の加工精度
の悪い点、必要ガラス厚みから来る自重が大きく、回転
慣性トルクが大きくなりすぎる点、さらに加工コストの
高い点から、最近ではこの方式のものは減少している。
Among these methods, the photographic printing method of the glass plate shown in Fig. 2 allows relatively high resolution, but it has the disadvantages of poor processing precision of the glass plate 3, a large self-weight due to the required glass thickness, and a large rotational inertia torque. Recently, the use of this method has been decreasing due to the fact that it is too thin and the processing cost is high.

一方、第31テに示す金属板のフォトエツチング法は、
低コストで高精度のものが得られるが、あまり高分割な
ものはスリット巾が小さくなるに従い。第3図に示す様
にスリット穴の形状が扇形とならず、乙の様に両端がふ
くらんだ形状となる。第4図にスリット部の断面図を示
す。このためスリット穴の巾は0.1rIanが限度で
、これより小さくすることは不可能であるという欠点が
あった。
On the other hand, the metal plate photoetching method shown in Te 31 is as follows:
High precision can be obtained at low cost, but if the slit width is too high, the slit width will become smaller. As shown in Fig. 3, the shape of the slit hole is not fan-shaped, but has a bulged shape at both ends as shown in Figure B. FIG. 4 shows a sectional view of the slit portion. Therefore, the width of the slit hole is limited to 0.1 rIan, and there is a drawback that it is impossible to make the width smaller than this.

本発明は上記問題点及び欠点を除去する為に、回転スリ
ット板並びVC固定スリット板を電鋳法で製造したもの
を用いてスリット板の高分割を実現することにより、同
一外径の光学式ロータリーエンコーダーの場合、−回転
当りの信号数が従来品の6倍を越える信号量を発生する
光学式ロータリーエンコーダーを提供することを目的と
する。
In order to eliminate the above-mentioned problems and drawbacks, the present invention uses rotary slit plates and VC fixed slit plates manufactured by electroforming to achieve high division of the slit plates. In the case of a rotary encoder, an object of the present invention is to provide an optical rotary encoder that generates a signal amount per revolution that is more than six times that of a conventional product.

以下、第5図、第6図と共に本発明の特徴である電鋳ス
リット板について製造方法も含めて説明する。
Hereinafter, the electroformed slit plate, which is a feature of the present invention, will be explained along with FIGS. 5 and 6, including its manufacturing method.

第5図は電鋳法で回転スリット板を加工中の図で、8は
金属基板、この上に7に示すレジストマスク処理を行な
い露光現像する。その後電鋳部と基板を剥れ易くするた
め、重クロム酸塩溶液中に浸漬後電鋳を行なう。3はニ
ッケル電鋳によって成長したスリット板である。これを
基板から剥離すれば第6図に示す様な非常に変形の少な
いシャープで高精歴のスリット板ができ上る。尚、これ
の加工の際メッキの成長外だけの写真製版の補正を行な
う。
FIG. 5 shows a rotary slit plate being processed by electroforming, with reference numeral 8 a metal substrate, on which a resist mask process shown in 7 is performed, followed by exposure and development. Thereafter, in order to make it easier to separate the electroformed part from the substrate, electroforming is performed after immersion in a dichromate solution. 3 is a slit plate grown by nickel electroforming. If this is peeled off from the substrate, a sharp and highly precise slit plate with very little deformation as shown in FIG. 6 is completed. In addition, during this processing, photolithographic corrections are made only for areas other than the growth of the plating.

尚、前記第5図3の材質はニッケル以外に種々の金属が
使用できるが、スリット板の厚みを小さくするため硬い
金属の方が好ましい。また7のレジストの代りに感光性
樹脂又は受光性インク等も使用できる。
Although various metals other than nickel can be used as the material shown in FIG. 5, a hard metal is preferable in order to reduce the thickness of the slit plate. Further, instead of the resist in 7, a photosensitive resin or a light-receiving ink can be used.

さらにスリット板は回転スリット、固定スリット共に同
時に同様の方法で加工することができる上述の如く本発
明により、スリット板のスリット巾は従来の1/3の0
.03rrrrn程度まで小さくできるため、分解能が
飛躍的に向上し同径の光学式エンコーダーの1回転当り
の信号数も3倍以上を確保することができた。従って同
一分解能の光学式−ン・−ダーを従来品と比較して、1
/3以下の小 1型軽量化が実現できた。
Furthermore, the slit plate can be machined with both rotary slits and fixed slits using the same method.As described above, with the present invention, the slit width of the slit plate can be reduced to 1/3 of that of the conventional one.
.. Since it can be made as small as 0.03rrrrrn, the resolution is dramatically improved and the number of signals per revolution of an optical encoder with the same diameter can be increased by more than three times. Therefore, when comparing an optical scanner with the same resolution to a conventional product,
We were able to achieve a compact 1-inch lightweight design of less than /3.

また、本発明のスリット板は加工上歩留が良くコストダ
ウン効果も有する。
Further, the slit plate of the present invention has a high processing yield and also has a cost reduction effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光学式エンコーダーの組立図、第2図はガラス
スリット板の略図、第6図は金属のフォトエツチング法
によるスリット板平面図、第4図は第3図のスリット部
断面図、第5図は電鋳法によるスリット板の加工途中の
図、第6図は電鋳法によるスリット板の平面図を示す。 以 上 出願人 株式会社 浜澤工業 代理人 弁理士 最上 務 第10 冨2記 第6図 −91−
Figure 1 is an assembly diagram of the optical encoder, Figure 2 is a schematic diagram of a glass slit plate, Figure 6 is a plan view of the slit plate made by metal photo-etching, Figure 4 is a sectional view of the slit part in Figure 3, FIG. 5 shows a slit plate in the middle of processing by electroforming, and FIG. 6 shows a plan view of the slit plate by electroforming. Applicant Hamazawa Industrial Agent Co., Ltd. Patent Attorney Mogami Tsutomu No. 10 Tomi 2 Figure 6-91-

Claims (1)

【特許請求の範囲】[Claims] 測定子の移動量に対応して回転する軸上に取り付けられ
た複数のスリット穴を、等間隔に配列された回転スリッ
ト板と、これに隣接した位置に固定されその面に先に同
じく複数のスリット穴を持つ固定スリットにより、光学
的透過光量の変化量を検出する構造のロータリーエンコ
ーダーにおいて、前記の回転スリット板並びに固定スリ
ット板に、電鋳品を用いたことを特徴とする光学式ロー
タリーエンコーダー。
A plurality of slit holes installed on a shaft that rotates in accordance with the amount of movement of the probe are arranged on a rotating slit plate arranged at equal intervals, and a rotating slit plate fixed at a position adjacent to this plate with a plurality of slit holes attached on the same surface. An optical rotary encoder configured to detect a change in the amount of optically transmitted light using a fixed slit having a slit hole, characterized in that the rotating slit plate and the fixed slit plate are made of electroformed products. .
JP11052083A 1983-06-20 1983-06-20 Optical rotary encoder Pending JPS603516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11052083A JPS603516A (en) 1983-06-20 1983-06-20 Optical rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11052083A JPS603516A (en) 1983-06-20 1983-06-20 Optical rotary encoder

Publications (1)

Publication Number Publication Date
JPS603516A true JPS603516A (en) 1985-01-09

Family

ID=14537875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11052083A Pending JPS603516A (en) 1983-06-20 1983-06-20 Optical rotary encoder

Country Status (1)

Country Link
JP (1) JPS603516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625126A (en) * 1985-07-02 1987-01-12 Asahi Chem Ind Co Ltd Disk for rotary encoder and manufacture thereof
JP2015040840A (en) * 2013-08-23 2015-03-02 オムロン株式会社 Douser for optical encoder, manufacturing method of the same, and optical encoder using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS625126A (en) * 1985-07-02 1987-01-12 Asahi Chem Ind Co Ltd Disk for rotary encoder and manufacture thereof
JP2015040840A (en) * 2013-08-23 2015-03-02 オムロン株式会社 Douser for optical encoder, manufacturing method of the same, and optical encoder using the same

Similar Documents

Publication Publication Date Title
JPS63114996A (en) Die and its production
EP2187177A1 (en) Reflector plate for optical encoder, method for producing the same, and optical encoder
JPS603516A (en) Optical rotary encoder
CA1095311A (en) Fabrication of diffractive subtractive filter embossing master
EP0497742A1 (en) A graduated element for optical reading by reflection and a method for its manufacture
CN105467811A (en) Mechanical component, mechanical component manufacturing method, movement, and timepiece
US3905817A (en) Method of manufacturing a thin encoder disc
JP3604581B2 (en) Parts for reflective optical encoder and its manufacturing method
US4376161A (en) Encoder disc and method of manufacture
JPH06100482B2 (en) Rotary Encoder
DE3537054A1 (en) TURNTABLE FOR AN OPTICAL ROTARY ENCODER AND METHOD FOR THEIR PRODUCTION
JPH09300573A (en) Electrocast thin metal plate and manufacture thereof
US3259059A (en) High speed printer type drum
DE2431311B2 (en) Method for structuring a photoresist layer
EP0160535A2 (en) Obturator disc for an optical transducer
JPS589414B2 (en) How to make masks for photofabrication
JPS625126A (en) Disk for rotary encoder and manufacture thereof
JPS6271884A (en) Cover glass for timepiece with diffraction grating
JP2003228160A (en) Photomask, mold for manufacturing minute optical element using the same, the minute optical element, optical system having the minute optical element, optical instrument, exposure device and method for manufacturing device
US20090068358A1 (en) Plastic code wheel/strip fabrication method
EP0596110A1 (en) Method of processing rod
JPS603517A (en) Optical rotary encoder
US5306525A (en) Method of processing rod
Trausch New photolithographic pattern generation process for producing precision flat parts by the electroforming method
DE2342285C3 (en) Process for the production of a disk-shaped data carrier