JPS6035103A - Steam turbine rotor cooling equipment - Google Patents

Steam turbine rotor cooling equipment

Info

Publication number
JPS6035103A
JPS6035103A JP14298483A JP14298483A JPS6035103A JP S6035103 A JPS6035103 A JP S6035103A JP 14298483 A JP14298483 A JP 14298483A JP 14298483 A JP14298483 A JP 14298483A JP S6035103 A JPS6035103 A JP S6035103A
Authority
JP
Japan
Prior art keywords
steam
nozzle
cooling
blade
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14298483A
Other languages
Japanese (ja)
Inventor
Tadashi Tanuma
唯士 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14298483A priority Critical patent/JPS6035103A/en
Publication of JPS6035103A publication Critical patent/JPS6035103A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To efficiently cool a turbine blade implanting part by providing a blade in the first stage and both a nozzle and a blade in the second stage and thereafter with a partition that separates each steam passage in the radial direction and supplying cooling steam through the inner flow passage while supplying principal steam through the outer passage respectively. CONSTITUTION:Principal steam of high temperature FH flows into an upper part nozzle box 3a via a principal steam feeding pipe 11, flows in a flow passage on the tip side (outward in the radial directin) with respect to a partition 15a in a flow passage of a blade 6 in the first stage via a principal steam nozzle 4a, and then flows into a nozzle 13 in the second stage, while giving turning effort to a rotor 2. On the other hand, cooling steam FC flows into a lower part nozzle box 3b via a cooling steam feeding pipe 12 and flows out into a flow passage on the root side with respect to the partition 15a in the flow passage of the blade 6 in the first stage via a cooling steam nozzle 4b. With this contrivance, both the implanting part of the blade 6 and the rotor 2 are brought into contact with the cooling steam FC that is lower in temperature than the principal steam FH so that they can be cooled efficiently.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、タービンの性能を損なうことなく羽根植込部
やロータ等の冷却を効果的に行ない得るようにした、蒸
気タービンロータ部冷却装寛に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention provides a steam turbine rotor cooling system that can effectively cool the blade implants, rotor, etc. without impairing the performance of the turbine. Regarding.

〔発明の技術的背景およびその問題点〕最近、蒸気ター
ビンは大容量・化されるとともに。
[Technical background of the invention and its problems] Recently, steam turbines have become larger in capacity.

高温高圧の蒸気条件で使用されることが一般的になりつ
つあり、特に蒸気タービンの流入蒸気を高温高圧化する
ことがタービン発電プラント全体に大きく貢献すること
から、高い信頼性を維持し々がらタービンをさらに高温
高圧化させようとする要求は、今後増々強くなる傾向に
ある。
It is becoming common for steam turbines to be used under high-temperature, high-pressure steam conditions, and in particular, increasing the temperature and pressure of the incoming steam to a steam turbine greatly contributes to the overall turbine power plant, so it is necessary to maintain high reliability while maintaining high reliability. The demand for higher temperatures and higher pressures in turbines is likely to grow stronger in the future.

通常、大容量蒸気タービンにおいては、高圧タービンで
仕事を行なった蒸気を取り出し再びボイラに戻して再熱
器で再熱し、この再熱蒸気をさらに中圧タービンに供給
して仕事を行なわせるP1熱サイクルが採用されている
。しかして、タービンの流入蒸気を高温にするためには
、高圧段や中圧段に用いfっれるロータやケーシングの
高温下での材料強度上の諸問題を解決しなければならな
い。
Normally, in a large-capacity steam turbine, the steam that has performed work in the high-pressure turbine is extracted, returned to the boiler, and reheated in a reheater, and this reheated steam is further supplied to the intermediate-pressure turbine to perform work. cycle is used. Therefore, in order to raise the temperature of the steam flowing into the turbine, it is necessary to solve various problems regarding the material strength of the rotor and casing used in the high-pressure stage and intermediate-pressure stage at high temperatures.

特に、ロータについては高温下での回転中にクリープに
よる曲がりが発生して、ロータ振動の原因となることが
ある。
In particular, the rotor may bend due to creep during rotation at high temperatures, which may cause rotor vibration.

I〜たがって、この上うなロータの曲がり現象を防+1
−するために、近年120r鋼のロータが開発されてお
り、この12Cr銅ロータは従来のロータに比べてクリ
ープ強度が優れていることから、その自効性が認めらj
′1ている。
I ~ Therefore, this prevents the rotor bending phenomenon by +1
- In order to achieve
'1.

ところで、この棹の120r銅ロータにおいても。By the way, even with this 120r copper rotor.

流入蒸気温度を現在広く採用されている566Cよりも
高くする場合には、外部から何らかの方法によってロー
タを強制的に冷却してやる必要がある。
In order to make the inflow steam temperature higher than 566C, which is currently widely adopted, it is necessary to forcibly cool the rotor from the outside by some method.

また5羽根植込部は局所的に大きな応力が生じる部分で
あり、しかも高幅蒸気によって常時加熱されているため
に冷却が難しく、現在の高い信頼性を維持しなから主蒸
坊幅度をさらに上けるには、効果的な羽根植込部の冷却
を行なうことが必要である。
In addition, the 5-blade implanted area is a part where large stress is locally generated, and it is difficult to cool it because it is constantly heated by wide steam. To achieve this, it is necessary to effectively cool the blade implant.

すなわち、第1図は一般的な蒸気タービンにおける第1
段落部分を示す縦断部分図であり、ボイラから制御弁を
介して供給された蒸気は、内部ケーシング1とその軸心
位置のロータ2との中間に配設されているノズルボック
ス8に流入し、そのノズルボックス8の出口に形成され
たノズル4から流出し、ロータ2と一体のホイール5に
植設された羽根6の通路部を通過して、そのi4i仕事
を行ないロータ2を回動させ、その後羽根6から流出し
て次段のノズルに流入する。
In other words, Figure 1 shows the first stage in a typical steam turbine.
It is a longitudinal partial view showing a paragraph part, and steam supplied from the boiler via a control valve flows into a nozzle box 8 disposed between the internal casing 1 and the rotor 2 at its axial center position, It flows out from the nozzle 4 formed at the outlet of the nozzle box 8, passes through the passage of the blade 6 installed in the wheel 5 integrated with the rotor 2, performs the i4i work, and rotates the rotor 2. Thereafter, it flows out from the blade 6 and flows into the next stage nozzle.

ところが、上記ノズル4から流出した高醜高圧の蒸気の
一部は、第1図に矢印Fで示すように。
However, a part of the high-ugliness, high-pressure steam that flowed out from the nozzle 4 is as shown by arrow F in FIG.

ノズル4とホイール5との間隙から漏洩し、ロータ2と
ノズルボックス8との間で澱んだ状態となり、ノズルボ
ックス8やロータ2を加熱する原因トナル。またノズル
4から羽根6に流入した高温蒸気は、羽根6をホイール
5に植設する植込部全加熱し、この熱が熱伝導によりロ
ータ2に伝わりロータ2が加熱され、ロータの回転中に
クリープが生じ、曲がりが発生してロータ振動の原因と
なる。
Tonal leaks from the gap between the nozzle 4 and the wheel 5, stagnates between the rotor 2 and the nozzle box 8, and heats the nozzle box 8 and the rotor 2. In addition, the high-temperature steam flowing into the blades 6 from the nozzle 4 completely heats the implanted part where the blades 6 are installed in the wheel 5, and this heat is transmitted to the rotor 2 by thermal conduction, heating the rotor 2, and while the rotor is rotating. Creep occurs and bending occurs, causing rotor vibration.

したがって、現在の賜い信頼性を維持しながら蒸気温度
をさらに上昇させてプラント性能を向上させるためには
、効果的に羽根植込部やロータを冷却することが必要と
なる。
Therefore, in order to further increase the steam temperature and improve plant performance while maintaining current reliability, it is necessary to effectively cool the blade implants and rotor.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、タービン効率を飲下さぞ
ることなく羽根植込部およびロータを有効に冷却し、も
って信頼性を維持しながら高い蒸気温度でタービンをi
転し得るようにした。Nスタービンロータ部冷却装置を
得ることを目的とする。
In view of these points, the present invention effectively cools the blade implants and rotor without compromising turbine efficiency, thereby operating the turbine at high steam temperatures while maintaining reliability.
I made it possible to turn it around. The purpose is to obtain an N turbine rotor cooling device.

〔発明の概要〕[Summary of the invention]

本発明は、蒸気タービンの第1段ノズルを、主蒸気が流
出する主蒸気用ノズル部と、それよシ湛度が低い冷却蒸
気を流出する冷却蒸気用ノズル部とによって形成すると
ともに、第1段落の羽根および第2段落以降のノズル並
びに羽根に、それぞれに路を半径方向に少なくとも2つ
に分割する隔壁を設け、半径方向最内方流路に冷却蒸気
を流通せしめ、他の流路に主蒸気を流通せしめるように
し、上記冷却蒸気によってa−夕部を効果的に冷却し、
当該部のWA度上昇を低減するようにしたものである。
The present invention forms a first stage nozzle of a steam turbine by a main steam nozzle section through which main steam flows out, and a cooling steam nozzle section through which cooling steam having a lower filling rate flows out. The blades of the stage and the nozzles and blades of the second and subsequent stages are each provided with a partition wall that divides the passage into at least two in the radial direction, and the cooling steam is allowed to flow through the innermost passage in the radial direction, and into the other passages. The main steam is made to flow, and the a-evening part is effectively cooled by the cooling steam,
This is designed to reduce the increase in WA degree in that part.

〔発明の実施例〕[Embodiments of the invention]

以下、第2図乃至第5図を参照して本発明の実施例につ
いて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 2 to 5.

第2図は、蒸気タービンの高圧段部を示す縦断面図1あ
って、内部ケーシング1とその軸心部に配設されたa−
夕2との間にはノズルボックス8が設けられている。上
記ノズルボックス3は、第3図に示すように水平面で上
下に2分割され、上部ノズルボックス8aおよび下部ノ
ズルボックス8bによって構成されており1両ノズルボ
ックス8a、Bb間には支持部材10が介装され、両者
間に断熱のために必要かつ十分な例えば5〜3(l w
I+程度の空間が形成されて互いに連結固着されている
FIG. 2 is a vertical cross-sectional view 1 showing the high-pressure stage section of a steam turbine, in which the inner casing 1 and the a-
A nozzle box 8 is provided between the holder 2 and the holder 2. As shown in FIG. 3, the nozzle box 3 is divided into upper and lower halves on a horizontal plane, and is composed of an upper nozzle box 8a and a lower nozzle box 8b, with a support member 10 interposed between the two nozzle boxes 8a and Bb. For example, 5 to 3 (l w
A space of about I+ is formed and they are connected and fixed to each other.

上部ノズルボックス3aには主蒸気供給管11が接続さ
れ、また第1段落の羽根6との対向部に。
A main steam supply pipe 11 is connected to the upper nozzle box 3a, and also to the part facing the blades 6 of the first stage.

その羽根6のチップ側に偏って主蒸気FHが流出するよ
うに、主蒸気用ノズル4aが半円状に設けられている。
The main steam nozzle 4a is provided in a semicircular shape so that the main steam FH flows out toward the tip side of the blade 6.

一方、下部ノズルボックス3bには。On the other hand, in the lower nozzle box 3b.

上記主蒸気の湛屁より低温の冷却蒸気FQを供給する冷
却蒸気供給管12が接続されており、第1段落の羽根6
との対向部に、その羽根6のルート側に偏って冷却蒸気
が流出するように冷却蒸気用ノズル4bが半円状に設け
られている。
A cooling steam supply pipe 12 that supplies cooling steam FQ at a temperature lower than that of the main steam is connected to the blade 6 of the first stage.
A cooling steam nozzle 4b is provided in a semicircular shape in a portion facing the blade 6 so that the cooling steam flows out toward the root side of the blade 6.

また、ロータ2と一体構造のホイール5の先端に装着さ
れた第1段落の羽根6と、第2段落以降のノズル13と
羽根14には、蒸気流路を半径方向内側流路と外側流路
に分割する、筒状の隔壁15a。
In addition, the first stage blade 6 attached to the tip of the wheel 5 that is integrally structured with the rotor 2, and the nozzle 13 and blade 14 in the second and subsequent stages have a steam flow path with a radially inner flow path and an outer flow path. A cylindrical partition wall 15a that divides into two.

15b、15cが設けられている。上記隔壁15a、1
5わ、15Cは、例えば中空部材を用いることにより断
熱効果を上げると同時に軽量化し1%に羽根に設けられ
た隔壁においては遠心力を低減し十分高い信頼性をもつ
14々造としである。
15b and 15c are provided. The partition walls 15a, 1
5W and 15C, for example, are made of a 14-piece structure that increases the heat insulation effect by using a hollow member, reduces weight at the same time, and reduces centrifugal force in the partition walls provided on the blades to 1% and has sufficiently high reliability.

ところで、主蒸気用ノズル4aのルートとチップの半径
方向位置け、第1段落の羽根6の隔壁15aとチップの
半径方向位置にはソ等しくなるように設定してあり5高
渦の主蒸気が隔壁15a、15b。
By the way, the root of the main steam nozzle 4a and the radial position of the tip are set to be equal to the partition wall 15a of the first stage blade 6 and the radial position of the tip. Partition walls 15a, 15b.

15cの外側の流路を流れるようにしである。1だ。15c so as to flow through the outer flow path. It's 1.

冷却蒸気中ノズル4bのルートとチップの半径方向位置
は、第1段落の羽根6のルートと隔壁15&の半径方向
位置には!等しくなるように設定して(7) あり、冷却蒸気が隔壁15a、 15b、 15cより
内側の流路を流れるようにしである。
The root of the cooling steam nozzle 4b and the radial position of the tip are the root of the first stage vane 6 and the radial position of the partition wall 15&! They are set to be equal (7) so that the cooling steam flows through the channels inside the partition walls 15a, 15b, and 15c.

しかして、高温の主蒸気PHは主蒸気供給管11を通っ
て上部ノズルボックス8a内に流入し、主蒸気用ノズル
4aを経て第1段落の羽根6の流路中の隔壁15aで仕
切られたチップ側(半径方向外側)の流路中に流出し、
ロータ2に回転力を与えながら第2段落ノズル13に流
入する。そして、第2段落以降においても主蒸気はノズ
ルおよび羽根にそれぞれ設けられた隔壁よシ外側の流路
を流れながら仕事を行なう。
Therefore, the high temperature main steam PH flows into the upper nozzle box 8a through the main steam supply pipe 11, passes through the main steam nozzle 4a, and is partitioned by a partition wall 15a in the flow path of the first stage blade 6. flows into the flow path on the chip side (radially outward),
It flows into the second stage nozzle 13 while applying rotational force to the rotor 2 . In the second and subsequent stages as well, the main steam performs work while flowing through the flow path outside the partition wall provided in the nozzle and the blade, respectively.

一方、主蒸気より約10〜300温度が低く、主蒸気と
tヨy等1−い圧力の蒸気1例えばボイラの過熱器の途
中より抽出された蒸気が、冷却蒸気11Qとして冷却蒸
気供給管12を通って下部ノズルボックス8b内に流入
し、冷却蒸気用ノズル4bを経て第1段落の羽根6の流
路中の隔壁15aで仕切られたルート側の流路に流出1
2.そこで仕事を行ない。
On the other hand, steam 1, which has a temperature approximately 10 to 300 degrees lower than the main steam and has a pressure 1-100 degrees lower than the main steam, for example, steam extracted from the middle of a superheater of a boiler, is used as cooling steam 11Q in the cooling steam supply pipe 12. The steam flows into the lower nozzle box 8b through the cooling steam nozzle 4b, and flows out into the route side flow path partitioned by the partition wall 15a in the flow path of the first stage vane 6.
2. Do your work there.

以後次段落のノズルおよび羽根を餅通する。したがって
1羽根植込部およびロータは主蒸気より低(8) 藺の冷却蒸気と接し、ロータ部は冷却蒸気によって有効
に冷却される。しかもこの場合、上記冷却蒸気流と高温
の主蒸気が隔壁によって区割されて、主蒸気がロータ部
側に流れることが阻止されるので、主蒸気によるロータ
等の加熱効果が低減され、一層上記ロータ部の冷却効果
が確保される。
After that, pass the nozzle and blade in the next paragraph through the rice cake. Therefore, the blade implant and the rotor are in contact with cooling steam at a temperature lower than the main steam, and the rotor is effectively cooled by the cooling steam. Moreover, in this case, the cooling steam flow and the high-temperature main steam are separated by the partition wall, and the main steam is prevented from flowing toward the rotor, so the heating effect of the main steam on the rotor, etc. is reduced, and the above-mentioned The cooling effect of the rotor section is ensured.

また、この実施例においては、ノズルボックスが主蒸気
用のノズルボックスを構成する上部ノズルボックスと、
冷却蒸気用のノズルボックスを構成する下部ノズルポッ
ク7とに分割され1間に空間が設けられているため、冷
却蒸気がノズルボックス内を通過する間に主蒸気によっ
て加熱されて冷却効果が小さくなることがないとともに
、ノズルボックスの熱応力も小さく抑えられる。
Further, in this embodiment, the nozzle box includes an upper nozzle box that constitutes a nozzle box for main steam;
Since the nozzle pock 7 is divided into the lower nozzle pock 7 that constitutes the nozzle box for cooling steam, and a space is provided in between, the cooling steam is heated by the main steam while passing through the nozzle box, reducing the cooling effect. In addition, thermal stress on the nozzle box can be kept to a minimum.

第4図および第5図は本発明の他の実施例を示す図であ
って、下部ノズルボックス8bには第1段落の羽根6の
ルート側とチップ側の両方に偏って冷却蒸気を流出させ
る冷却蒸気中ノズル16a。
FIGS. 4 and 5 are views showing other embodiments of the present invention, in which cooling steam flows out into the lower nozzle box 8b biased toward both the root side and the tip side of the blade 6 of the first stage. Cooling steam nozzle 16a.

16bが同心円状に2列設けられており、また上部ノズ
ルボックス8aにld、第1段落の羽根6の流路の半径
方向中央部に集中して主蒸気が流出するように主蒸気用
ノズル4aが設けられている。
16b are provided in two concentric rows, and the main steam nozzle 4a is arranged in the upper nozzle box 8a so that the main steam is concentrated in the radial center of the flow path of the first stage blade 6. is provided.

一方、第1段落の羽根6.および俯2段落以降のノズル
13と羽根14にはそれぞれ、上記冷却蒸気用ノズル1
6a、16bに対応して節状の隔117a。
On the other hand, the feather 6 in the first paragraph. The cooling steam nozzle 1 is installed in the nozzle 13 and the blade 14 after the second stage of the downward direction, respectively.
A node-shaped space 117a corresponds to 6a and 16b.

17b、18a、 18b、 19a、 19bが設け
られて、蒸気通路が半径方向に8つ通路に分割され、最
内側通路および最外側通路を冷却蒸気が流通し、中間通
路を主蒸気が流通するようにしである。
17b, 18a, 18b, 19a, and 19b are provided to divide the steam passage into eight passages in the radial direction, with cooling steam flowing through the innermost passage and outermost passage, and main steam flowing through the intermediate passage. It's Nishide.

しかして、この場合上記冷却蒸気によって羽根植込部お
よびチップのシュラウド部の両方を主蒸気湯度より低い
温度に冷却維持させることができる。
In this case, both the blade implantation part and the shroud part of the tip can be cooled and maintained at a temperature lower than the main steam temperature by the cooling steam.

なお、上記各実施例においてはノズルボックスを上・下
に分割したものを示したが、必ずしも上下に分割する必
観はなく、左右等に分割lてもよいことは勿論である。
In each of the above embodiments, the nozzle box is shown divided into upper and lower sections, but it is not necessary to divide the nozzle box into upper and lower sections, and it is of course possible to divide the nozzle box into left and right sections.

′ 〔発明の効果〕 以上説明したように1本発明は1第1段ノズルを主蒸気
が流出する主蒸気用ノズル部と、それより湯度が低い冷
却蒸気を流出する冷却蒸気用ノズル部とによって形成す
るとともに、第1段落の羽根および第2段落月降のノズ
ル並びに羽根に、それぞれ蒸気流路を半径方向に少なく
とも2つに分割する隔壁を設け、半径方向最内方流路に
冷却蒸気を流in+せしめ、他の流路に主蒸気を流通せ
しめるようにしたので1羽根植込部およびロータに沿う
部分には常に主蒸気より温度が低い冷却蒸気が流れ。
[Effects of the Invention] As explained above, the present invention comprises a first-stage nozzle, a main steam nozzle section through which main steam flows out, and a cooling steam nozzle section through which cooling steam having a lower hot water temperature flows out. At the same time, a partition wall is provided in the first stage vane and the second stage nozzle and vane, respectively, to divide the steam flow path into at least two in the radial direction, and the cooling steam is formed in the radially innermost flow path. Since the main steam is made to flow through other flow paths, cooling steam whose temperature is lower than that of the main steam always flows through the portion where one blade is installed and the portion along the rotor.

高い温度の主蒸気でタービンを運転するにか\わらず上
記ロータ部の?ilf上昇を低く抑えることができ、ロ
ータのクリープの発生を防止できて、その振動の発生を
防止することができる。しかも、上記冷却蒸気自体も仕
事を行なうので効率の低下は低く′、また、ノズルボッ
クスは主蒸気用ノズルを有する部分と冷却蒸気用ノズル
を有する部分に分割されているので、ノズルポック7に
大きな熱応力が発生することも回避することができる。
Regardless of whether the turbine is operated with high temperature main steam, The increase in ilf can be suppressed to a low level, the occurrence of rotor creep can be prevented, and the occurrence of vibration can be prevented. Moreover, since the cooling steam itself also performs work, the drop in efficiency is low.Furthermore, since the nozzle box is divided into a part with the main steam nozzle and a part with the cooling steam nozzle, the nozzle pock 7 receives a large amount of heat. The generation of stress can also be avoided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な蒸気タービンの第1段落部を示す縦断
面図、第2図は本発明のロータ部冷却装置iを示す縦断
面図、第8図は第2図のml −III線に沿った部分
の断面図、第4図は本発明の他の実施例を示す縦断面図
、第5図は第4図のv−v3に沿った部分の断面図であ
る。 1・・・内部ケーシング、2・・・ロータ、8・・・ノ
ズルボックス、8a・・・上部ノズルポックx、8o・
・・下部ノズルボックス、4・・・ノズル、4a川主蒸
気用ノズル、4a、 +6a、 161)…冷却蒸気用
ノズル、6・・・第1段落の羽根* 15a、 15t
+、 15c、 17a。 17b、 18a、 18b、 19a、 19b川隔
壁。 出願人代理人 猪 股 清 63目 第4目
FIG. 1 is a longitudinal sectional view showing the first stage part of a general steam turbine, FIG. 2 is a longitudinal sectional view showing the rotor cooling device i of the present invention, and FIG. 8 is the ml-III line in FIG. 2. 4 is a longitudinal sectional view showing another embodiment of the present invention, and FIG. 5 is a sectional view of a portion taken along line v-v3 in FIG. 4. 1... Internal casing, 2... Rotor, 8... Nozzle box, 8a... Upper nozzle pock x, 8o.
...Lower nozzle box, 4...Nozzle, 4a River main steam nozzle, 4a, +6a, 161)...Cooling steam nozzle, 6...1st paragraph vane* 15a, 15t
+, 15c, 17a. 17b, 18a, 18b, 19a, 19b river bulkhead. Applicant's agent Kiyoshi Inomata, 63rd, 4th

Claims (1)

【特許請求の範囲】 1、 m 11’fノズルを、主蒸気が流出する主蒸気
用ノズル部と、それ上り侶度が低い冷却蒸気を流出する
冷却蒸気用ノズル部とによって形成するとともに、第1
段落の羽根および第2段落以降のノズル並びに羽根に、
それぞれ蒸気流路を半径方向に少なくとも2つに分割す
る隔壁を設け。 半径方向最内方流路に冷却蒸気を流通せしめ。 他の流路に主蒸気を流通せしめるようにしたこと金特畝
とする蒸気タービンロータ部冷却装置−&第1段ノズル
ボックスを周方向に少なくとも2つの部分に区割し、そ
の一方に冷却蒸気用ノズルを設け、他方に主蒸気用ノズ
ルを設けたことを特徴とする特許請求の範囲第1項記載
の蒸気タービンロータ部冷却装置。 8、第1段落の羽根および第2段落以降のノズル並びに
羽根に、流路を半径方向に8つに分割する隔壁をそれぞ
れ設け、最°内方流路および最外方流路に冷却蒸気を流
通せしめ、中央流路に主蒸気全流通せしめるようにした
ことを特徴とする特許請求の範囲第1項B己ψの蒸ス、
タービンロータ部冷却装置。 化第1段ノズルボツクヌの冷却蒸気用ノズルを設けた部
分と主蒸気用ノズルを設けた部分との間には、間隙を設
けたことを特徴とする特許請求の範囲第2項記載の蒸気
タービンロータ部冷却装置。
[Scope of Claims] 1. The m11'f nozzle is formed by a main steam nozzle part through which main steam flows out, and a cooling steam nozzle part through which cooling steam having a low temperature rises. 1
For the blade of the paragraph and the nozzles and blades of the second and subsequent paragraphs,
A partition wall is provided which divides the steam flow path into at least two parts in the radial direction. Cooling steam is allowed to flow through the innermost flow path in the radial direction. A special feature of the steam turbine rotor cooling system is that the main steam is allowed to flow through other flow paths. 2. The steam turbine rotor cooling device according to claim 1, further comprising a main steam nozzle and a main steam nozzle. 8. The first stage vane and the second and subsequent stage nozzles and vanes are each provided with a partition wall that divides the flow path into eight in the radial direction, and cooling steam is supplied to the innermost flow path and the outermost flow path. Claim 1 (B) Steam having a diameter of ψ, characterized in that the main steam is made to flow completely through the central flow path.
Turbine rotor cooling system. A steam turbine rotor according to claim 2, characterized in that a gap is provided between a portion of the first stage nozzle nozzle provided with a cooling steam nozzle and a portion provided with a main steam nozzle. Part cooling device.
JP14298483A 1983-08-04 1983-08-04 Steam turbine rotor cooling equipment Pending JPS6035103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14298483A JPS6035103A (en) 1983-08-04 1983-08-04 Steam turbine rotor cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14298483A JPS6035103A (en) 1983-08-04 1983-08-04 Steam turbine rotor cooling equipment

Publications (1)

Publication Number Publication Date
JPS6035103A true JPS6035103A (en) 1985-02-22

Family

ID=15328220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14298483A Pending JPS6035103A (en) 1983-08-04 1983-08-04 Steam turbine rotor cooling equipment

Country Status (1)

Country Link
JP (1) JPS6035103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378630A1 (en) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Steam turbine
WO2010082615A1 (en) * 2009-01-16 2010-07-22 株式会社東芝 Steam turbine
US8257015B2 (en) * 2008-02-14 2012-09-04 General Electric Company Apparatus for cooling rotary components within a steam turbine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1378630A1 (en) * 2002-07-01 2004-01-07 ALSTOM (Switzerland) Ltd Steam turbine
WO2004003346A1 (en) * 2002-07-01 2004-01-08 Alstom Technology Ltd Steam turbine
JP2005538284A (en) * 2002-07-01 2005-12-15 アルストム テクノロジー リミテッド Steam turbine
JP2010138916A (en) * 2002-07-01 2010-06-24 Alstom Technology Ltd Steam turbine
US8257015B2 (en) * 2008-02-14 2012-09-04 General Electric Company Apparatus for cooling rotary components within a steam turbine
WO2010082615A1 (en) * 2009-01-16 2010-07-22 株式会社東芝 Steam turbine
JP2010185450A (en) * 2009-01-16 2010-08-26 Toshiba Corp Steam turbine
CN102282338A (en) * 2009-01-16 2011-12-14 株式会社东芝 Steam turbine
US8979480B2 (en) 2009-01-16 2015-03-17 Kabushiki Kaisha Toshiba Steam turbine

Similar Documents

Publication Publication Date Title
US7003956B2 (en) Steam turbine, steam turbine plant and method of operating a steam turbine in a steam turbine plant
RU2351766C2 (en) Steam turbine and method of its operation
US6227799B1 (en) Turbine shaft of a steam turbine having internal cooling, and also a method of cooling a turbine shaft
US4550562A (en) Method of steam cooling a gas generator
US4571935A (en) Process for steam cooling a power turbine
EP2151547B1 (en) Steam turbine and steam turbine plant system
CA1204292A (en) Cooling device of steam turbine
JP2014114816A (en) Turbine component having cooling passages with varying diameter
US20010025481A1 (en) Gas turbine and combined cycle plant
US6010302A (en) Turbine shaft of a steam turbine with internal cooling and method for cooling a turbine shaft of a steam turbine
EP1479873B1 (en) Steam turbine
Retzlaff et al. Steam turbines for ultrasupercritical power plants
JPS6035103A (en) Steam turbine rotor cooling equipment
JP2005315122A (en) Steam turbine
US7086828B2 (en) Steam turbine and method for operating a steam turbine
JP5784417B2 (en) Steam turbine
JP4488787B2 (en) Steam turbine plant and method for cooling intermediate pressure turbine thereof
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JPH11229818A (en) Steam turbine
JP2986426B2 (en) Hydrogen combustion turbine plant
JPS60159311A (en) Starting method for steam turbine
JP6511519B2 (en) Controlled cooling of a turbine shaft
JP4174499B2 (en) Steam turbine
WO2000001928A1 (en) Gas turbine blade
JPS58143102A (en) Cooling method of steam turbine