JPS603488A - Distributed type solar energy power plant - Google Patents
Distributed type solar energy power plantInfo
- Publication number
- JPS603488A JPS603488A JP10933483A JP10933483A JPS603488A JP S603488 A JPS603488 A JP S603488A JP 10933483 A JP10933483 A JP 10933483A JP 10933483 A JP10933483 A JP 10933483A JP S603488 A JPS603488 A JP S603488A
- Authority
- JP
- Japan
- Prior art keywords
- boiling point
- point medium
- low boiling
- heat collector
- low
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/003—Devices for producing mechanical power from solar energy having a Rankine cycle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は分散型太陽熱発電ブ′ラントに係わり、特に固
定式太陽熱集熱装置を使用する分散型太陽熱発電プラン
トの熱媒体系統に係わるものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a distributed solar thermal power generation plant, and more particularly to a heat transfer medium system of a distributed solar thermal power generation plant using a fixed solar heat collector. .
新エネルギーの一つとして、太陽熱による発電技術の開
発が行われているが、太陽熱発′市はプラントの設備費
が高いうえに、その運転が天候に左右される度合が太き
いため、稼動率が低くなりがちであり、現時点では発′
屯原価が非;jib′に商いものになってしまい、経済
性の而で実用には至っていない。従って、当面最大の課
題はプラントの設備費の低減化である。As a new form of energy, solar thermal power generation technology is being developed, but solar thermal power plants have high equipment costs and their operation is highly dependent on the weather, resulting in low operating rates. tends to be low, and at present the
The cost of tonne has become prohibitive, and it has not been put into practical use due to economic considerations. Therefore, the biggest issue for the time being is reducing plant equipment costs.
プラントの設備費の中でも集熱装置の占める割合が大き
いため、集熱装置を安価なものとすることが経済性実現
のための重要な鍵となる。Since heat collection equipment accounts for a large proportion of plant equipment costs, making the heat collection equipment inexpensive is an important key to achieving economic efficiency.
ところで、これまでの太陽熱発電プラントの開発は、シ
ステムの効率な茜めるために、太陽光な鏡等で集光して
、250〜300’C(分散型の場合)の高温を得るよ
うに考えられていた。しかし、このような集光式の集熱
装置は、本陽を追尾する必要があるため可動部分があり
、高精度の太陽追尾装置が不可欠となるなど、価格が高
くなる要素を有する。さら(二、集光式の集熱装置は、
太陽からの直達光しか利用できないという欠点がある。By the way, in the development of solar thermal power generation plants to date, in order to make the system more efficient, solar power has been focused using mirrors, etc. to obtain a high temperature of 250 to 300'C (in the case of a distributed type). It was considered. However, such concentrating heat collecting devices have moving parts because they need to track the sun, and a high-precision solar tracking device is essential, making them expensive. Furthermore, (2) the condensing type heat collecting device is
The drawback is that only direct sunlight can be used.
しかるに我が国は快晴の日は意外に少なく、太陽が照っ
ていても連続して直達日射が得られる時間はけっして多
くはない。However, there are surprisingly few clear days in Japan, and even when the sun is shining, there are never many hours of continuous direct sunlight.
第1図は従来技術による分散型太陽熱発電プラントの1
方式の概念を示す系統図である。プラントの敷地内(二
は多数の集光式集熱装置1が設置されている。集光式集
熱装置1は、凹面鏡で集光するものやレンズで集光する
ものなどがある。集光さ訊た太陽エネルギーは、その焦
線または焦点を通る熱媒体2(=伝えられ、熱媒体2は
高温(二加熱される。高温(−なった熱媒体2は、蒸発
器3で水4に熱を伝え、自分は温度が低下して、熱媒体
ポンプ5で再び集光式集熱装置1(二送られ、循環して
使用される。一方蒸発器3で加熱された水4は蒸気とな
り、蒸気タービン6を回し、蒸気タービン6に結合され
た発電機7(二より発電が行われる。Figure 1 shows one example of a distributed solar power generation plant using conventional technology.
It is a system diagram showing the concept of the method. Within the premises of the plant (Secondly, a large number of condensing type heat collecting devices 1 are installed. Concentrating type heat collecting devices 1 include those that condense light with a concave mirror and those that condense light with a lens. The generated solar energy is transmitted to the heat medium 2 through its focal line or focal point, and the heat medium 2 is heated to a high temperature. The heat is transferred, the temperature of the water decreases, and the heat medium pump 5 sends it back to the condensing heat collector 1 (2), where it is circulated and used. On the other hand, water 4 heated by the evaporator 3 becomes steam. , rotates the steam turbine 6, and generates electricity from a generator 7 (secondary) connected to the steam turbine 6.
蒸気タービン6にエネルギーを与えて温度、圧力の低下
したタービン排気は復水器8内で冷却水9により冷やさ
れ、凝縮して復水となり、給水ポンプ10で再び蒸発器
3へ送られる。The turbine exhaust gas, whose temperature and pressure have been reduced by providing energy to the steam turbine 6, is cooled by cooling water 9 in a condenser 8, condensed into condensed water, and sent to the evaporator 3 again by a water pump 10.
第2図は従来技術による分散型太陽熱発電プラントの他
の方式の概念を示す系統図である。本方式も第1図の方
式と同行の多数の集光式集熱装置1を有するが、この方
式では・水4を太陽熱で直接加熱するようになっている
。そして、水4は蒸発部1aで蒸発し、過熱部1bで過
熱蒸気となって蒸気タービン6に入り、これを回転させ
る。FIG. 2 is a system diagram showing the concept of another type of distributed solar thermal power generation plant according to the prior art. This method also has a large number of concentrating heat collectors 1, similar to the method shown in FIG. 1, but in this method, water 4 is directly heated by solar heat. Then, the water 4 is evaporated in the evaporating section 1a, becomes superheated steam in the superheating section 1b, enters the steam turbine 6, and rotates it.
第1図、第2図の両方式を比較すると、第1図の方式で
は熱媒体2は系統内すべての場所で液体であるため、配
管内の圧力が低くて良く、配管の口径も小さくて良い。Comparing both the systems shown in Figures 1 and 2, we find that in the system shown in Figure 1, the heat medium 2 is liquid at all locations in the system, so the pressure inside the piping is low and the diameter of the piping is small. good.
しかし、熱媒体2の熱で水 14を蒸発させるための蒸
発器3を必要とするばかりでなく、蒸発器3で得られる
蒸気の温度は加熱側である熱媒体2の温度より低くなら
ざるを得ない。However, not only is the evaporator 3 required to evaporate the water 14 using the heat of the heat medium 2, but the temperature of the steam obtained in the evaporator 3 must be lower than the temperature of the heat medium 2, which is the heating side. I don't get it.
一方第2図の方式では、太陽熱で水4を直接に加熱する
から蒸発器3は不要であり、太陽熱で得られる温度が蒸
気タービン6の入口蒸気温度となる。しかしこの方式は
、蒸気タービン6を飽和蒸気で駆動するように考えるな
らば、集光式集熱装置lは蒸発部1aのみで構成される
けれども、蒸気榮件を良くするため(二過熱蒸気を適用
することになると、蒸発部1aの下流側(=過熱部1b
を設置する必要がある。そして、過熱部1bは気体(蒸
気)を加熱する集熱装置となるため、蒸発部1ai−比
べて伝熱性能の悪いものとなり、経済性を損う要因とな
る。さらに、過熱部1bから蒸気タービン6までの配管
が液体ではなく気体を通す配管となるのでその口径は大
きなものとなり、設備費が高くつくこと(二なる。On the other hand, in the method shown in FIG. 2, since the water 4 is directly heated by solar heat, the evaporator 3 is not necessary, and the temperature obtained by the solar heat becomes the inlet steam temperature of the steam turbine 6. However, in this method, if we consider that the steam turbine 6 is driven by saturated steam, the concentrating heat collecting device l is composed of only the evaporator part 1a, but in order to improve the steam condition (two superheated steam When applied, the downstream side of the evaporating section 1a (=superheating section 1b
need to be installed. Since the superheating section 1b serves as a heat collecting device that heats gas (steam), it has poor heat transfer performance compared to the evaporation section 1ai, which is a factor that impairs economic efficiency. Furthermore, since the piping from the superheating section 1b to the steam turbine 6 is a piping that passes gas rather than liquid, its diameter is large, resulting in high equipment costs (second reason).
以上のよう(二両方式にはそれぞれの短所がある他、直
達光しか利用できない集光式集熱装置1を使用している
ため、前述のごとく、太陽の追尾装置が必要なうえ(二
稼動時間が短いという短所をも有している。As mentioned above, both types have their own disadvantages, and since they use a concentrating heat collector 1 that can only use direct light, they require a solar tracking device as mentioned above (2 types) It also has the disadvantage of being short in time.
本発明は以上の問題点に1監み、直達光ばかりでなく散
乱光も利用可能で、可動部分がなく安価な集熱装置を用
いることにより、システム効率の低下は容認して、その
低下分を補ってなお余りある低価格かつ高稼動率の分散
型太陽熱発電プラントを提供することを目的とするもの
である。The present invention addresses the above-mentioned problems by using an inexpensive heat collection device that can utilize not only direct light but also scattered light and has no moving parts, thereby allowing the reduction in system efficiency to be compensated for. The purpose of this project is to provide a low-cost, high-operating-rate distributed solar thermal power generation plant that more than compensates for this.
第3図は本発明(−よる分散型太陽熱発電プラントの1
実施例を始す系統図である。本発明の第1の特徴は集熱
装置として固定式集熱装置11を使用することにある。Figure 3 shows one of the distributed solar power generation plants according to the present invention (-).
It is a system diagram starting an example. The first feature of the present invention is that a fixed heat collecting device 11 is used as the heat collecting device.
固定式集熱装置11としては、平板型、逆平板型、真空
管型、反射板付真空管型などがあるが、どのような型式
のものでも良い。The fixed heat collecting device 11 may be of a flat plate type, an inverted flat plate type, a vacuum tube type, a vacuum tube type with a reflector, etc., but any type may be used.
なるべく高温が得られるものが良いが、それがかえって
経済性阻害の要因となっては意味がないので、システム
全体の経済性等を配慮して最も適切なものを選定すれば
良い。また1種類(1限る必要はなく、低温部と高温部
あるいはそれ以上に温度領域を分割して、それぞれに最
適なものを適用することも考えられる。It is preferable to use one that can obtain as high a temperature as possible, but it would be meaningless if it becomes a factor that hinders economic efficiency, so the most appropriate one should be selected by considering the economic efficiency of the entire system. Further, it is also possible to divide the temperature range into one type (it is not necessary to limit it to one type, and to divide the temperature range into a low temperature part and a high temperature part or more) and apply the most suitable one to each.
本発明の第2の特徴は固定式集熱装置11に通して熱を
取り出して出る物質として低沸点媒体12を使い、その
蒸気で低沸点媒体タービン14を回転させることにある
。これは本発明の場合、固定式集熱装置11を使用して
いるため得られる温度が100〜150℃であり、水を
使用したのでは蒸気タービンを回すのに充分な圧力の蒸
気とはならないからである。The second feature of the present invention is that a low boiling point medium 12 is used as a material to extract heat through a fixed heat collecting device 11, and the low boiling point medium turbine 14 is rotated by the steam. This is because in the case of the present invention, the temperature obtained is 100 to 150°C because the fixed heat collector 11 is used, and if water is used, the steam will not have enough pressure to rotate the steam turbine. It is from.
本発明の第3の特徴は固定式集熱装置11内では低沸点
媒体12の蒸発を完了させず、加熱された液体の状態で
低沸点媒体タービン14の近傍まで尋き、低沸点媒体タ
ービン14の近傍で、かつ固定式集熱装置1工より高所
に設置した気液勺離器13(二人れて、この中で蒸発・
気液分離を行わせ、低沸点媒体12の蒸気を得ることに
ある。The third feature of the present invention is that the evaporation of the low-boiling point medium 12 is not completed in the fixed heat collecting device 11, but is evaporated to the vicinity of the low-boiling point medium turbine 14 in a heated liquid state. A gas-liquid separator 13 installed near the fixed heat collector 1 and higher than the 1st fixed heat collector
The purpose is to perform gas-liquid separation and obtain vapor of the low boiling point medium 12.
分散型の太陽熱発電プラントでは、集熱装置がプラント
敷地内(−分散されるため、集熱装置からタービンまで
の配管が長くならざるを得ない。分散型の中でも第1図
、第2図のような集光式集熱装置1を用いる場合には、
高温を得るため集熱装置が比較的直列にむすばれるので
、集熱装置全体の内めごく一部のもののみが加熱の最終
段階となる。だから各集熱装置を、加熱の過程に従って
タービンに近づけるようじ配置すれば、最終の集熱装置
群からタービンまでの配管はそれほど長くならないでも
すむ。−力木発明の方式では、固定式集熱装置11を使
用し、加熱温度も低いため、各集熱装置は並列に近い状
態で使用されることになる。ということは、加熱の最終
段階を受持つ集熱装置が極めて多数個存在するというこ
とであり、それらの集熱装置とタービンを結ぶ配管は必
然的に長くならざるを得ない。それ故、この配管を蒸気
配管としたのでは、口径は大きくなり、配管そのものの
費用3よびそれを覆う断熱材′)費用が高 )くなって
経済性を阻害してしまう。本発明はこの ゛配管を液体
用の小口径の配管ですませるようにしたものである。In a distributed type solar thermal power generation plant, the heat collector is distributed within the plant site (-), so the piping from the heat collector to the turbine must be long. When using such a condensing type heat collecting device 1,
Because the heat collectors are connected relatively in series to obtain high temperatures, only a small portion of the total heat collectors undergoes the final stage of heating. Therefore, if each heat collector is arranged so that it approaches the turbine according to the heating process, the piping from the final heat collector group to the turbine does not need to be so long. - In the method of Rikiki's invention, fixed heat collecting devices 11 are used and the heating temperature is low, so each heat collecting device is used in a state close to parallel. This means that there are an extremely large number of heat collectors that handle the final stage of heating, and the piping that connects these heat collectors and the turbine must necessarily become long. Therefore, if this piping is used as a steam piping, the diameter will be large, and the cost of the piping itself and the heat insulating material covering it will be high, impeding economic efficiency. The present invention allows this piping to be a small-diameter piping for liquid.
また、本発明では、固定式集熱装置11内で低沸点媒体
12を直接に加熱するので、第1図に示す従来技術で必
要な蒸発器3を必要としない。前述したよう(二、蒸発
器3では加熱側流体の間にかなりの温度差が生じるので
、集光式よりも低い温度で熱サイクルを構成する本発明
の場合には、タービン入口の蒸気温度を集熱装置で得ら
れる温度に極力近づけるためにも、蒸発器3を用いない
本発明が有利である。Furthermore, in the present invention, since the low boiling point medium 12 is directly heated within the fixed heat collecting device 11, the evaporator 3 required in the prior art shown in FIG. 1 is not required. As mentioned above (2. In the evaporator 3, there is a considerable temperature difference between the heated fluids, so in the case of the present invention, which configures the thermal cycle at a lower temperature than the condensing type, the steam temperature at the turbine inlet must be The present invention, which does not use the evaporator 3, is advantageous in order to bring the temperature as close as possible to that obtained by the heat collector.
さら(=、本発明では、固定式集熱装置11内で低沸点
媒体13の蒸発を完了させないので、太陽熱はすべて液
体の加熱となり、気体の加熱に比べて伝熱性能が良いた
め、集熱装置も経済的となる。Furthermore, in the present invention, since the evaporation of the low-boiling point medium 13 is not completed within the fixed heat collector 11, all solar heat is used to heat the liquid, which has better heat transfer performance than gas heating. The device is also economical.
特に本発明では低沸点媒体12を動作媒体としているの
で、その特性として低沸点媒体タービン14を回すため
(二は、一般(二飽和蒸気で充分であり、過熱蒸気とす
る必要はほとんどない。だから固定式集熱装置11内で
低沸点媒体12を蒸発させて気体(二までする必要はま
ったくなく、かえって蒸発により過熱蒸気となったりす
ると不都合である。In particular, in the present invention, since the low boiling point medium 12 is used as the operating medium, its characteristic is that in order to rotate the low boiling point medium turbine 14 (generally (two saturated steam is sufficient, there is almost no need to use superheated steam. There is no need to evaporate the low boiling point medium 12 into a gas within the fixed heat collecting device 11, and it would be inconvenient if it evaporated into superheated steam.
さら(=、本発明では気液分離器13を設置しているた
め、ここの液面レベルをレベル検出器T、C1二て監視
して低沸点媒体ポンプ16の出口の流量調整弁17を制
御することにより、固定式集熱装置11べ供給する低沸
点媒体12の流IYI、制御が極めて容易となる。Furthermore, in the present invention, since the gas-liquid separator 13 is installed, the liquid level here is monitored by the level detectors T and C1, and the flow rate adjustment valve 17 at the outlet of the low-boiling point medium pump 16 is controlled. By doing so, it becomes extremely easy to control the flow IYI of the low boiling point medium 12 supplied to the fixed heat collecting device 11.
次に本発明の詳細な説明する。Next, the present invention will be explained in detail.
固定式集熱装置11はそのプラントの建設地点において
年間を通して最も適切な方位に向けて設置されており、
太陽からの直達光は勿論のこと、たとえ太陽の日射が雲
等によりさえぎられても、天空からの散乱光を受けて、
内部を流れる低沸点媒体12を加熱する。加熱された低
沸点媒体12は、蒸発は完了せず、液体の状態を保った
まま各集熱装置より集められ、低沸点媒体タービン14
の近傍で、かつ固定式、集熱装置11より高所に設置さ
れた気液分離器J3に流入する。気液分離器13はドラ
ムボイラのドラムに相当するもので、その内部の適正な
位置に液面があるようにレベル制御されている。ここの
気相部分は近傍(=ある低沸点媒体タービン14に接続
されており、低沸点媒体12の蒸気が液相から分離して
低Wi点媒イ:(:タービン14に導かれ、低沸点媒体
タービン14を回転させ、それに結合した発電機7によ
り発電が行われる。低沸点媒体タービン14の排気は凝
縮器15に入り、冷却水9で?径やされ、心組し7て液
体に戻り、低沸点媒体ポンプ16により再び固定式集熱
装置11へ送られる。この流量は、気液分離÷jjr1
3のレベルをもとじ、流%、 ffl;’6 整弁17
で制御される。また、プラントの起動前は、気液分離器
13内の低沸点媒体12の温度が低くなっているので、
起動時にはこれを低沸点媒体循環ポンプ18により同定
式集熱装置11に送り1.q17環させて、低沸点媒体
タービン14の運転が可1ib:な蒸気が得られる温度
にまで加熱する。低沸点媒体循環ポンプ18の出口には
、同ポンプの停止時に低沸点媒体ポンプ16からの冷た
い低沸点媒体12が直接気液分Ml器13に流入するの
を防ぐため、逆止弁19が設けである。The fixed heat collector 11 is installed at the construction point of the plant in the most appropriate direction throughout the year,
Not only does it receive direct light from the sun, but even if the sunlight is blocked by clouds, it receives scattered light from the sky.
The low boiling point medium 12 flowing inside is heated. The heated low-boiling point medium 12 is not completely evaporated and is collected from each heat collecting device while maintaining a liquid state, and is sent to the low-boiling point medium turbine 14.
The heat flows into the gas-liquid separator J3, which is a fixed type and is installed at a higher location than the heat collecting device 11. The gas-liquid separator 13 corresponds to the drum of a drum boiler, and the level is controlled so that the liquid level is at an appropriate position inside the drum. The gas phase part here is connected to a low boiling point medium turbine 14 nearby (= a certain low boiling point medium turbine 14, and the vapor of the low boiling point medium 12 is separated from the liquid phase and guided to the low Wi point medium The medium turbine 14 is rotated, and the power generator 7 connected thereto generates electricity.The exhaust gas of the low boiling point medium turbine 14 enters the condenser 15, is diluted by the cooling water 9, and returns to a liquid after forming the core 7. , is sent to the fixed heat collecting device 11 again by the low boiling point medium pump 16.This flow rate is calculated as follows:
Based on the level of 3, flow%, ffl;'6 Valve adjustment 17
controlled by In addition, before starting the plant, the temperature of the low boiling point medium 12 in the gas-liquid separator 13 is low, so
At startup, this is sent to the identification type heat collector 11 by the low boiling point medium circulation pump 18.1. q17 is heated to a temperature at which steam can be obtained at which the low boiling point medium turbine 14 can be operated. A check valve 19 is provided at the outlet of the low boiling point medium circulation pump 18 in order to prevent the cold low boiling point medium 12 from the low boiling point medium pump 16 from directly flowing into the gas-liquid separation Ml device 13 when the pump is stopped. It is.
低沸点媒体循環ポンプ18は、プラントの起動時にのみ
運転するべきものではなく、プラント運転中であっても
、気液分離器13の温度制御等のために運転することか
できる。The low boiling point medium circulation pump 18 should not be operated only when starting up the plant, but can also be operated for temperature control of the gas-liquid separator 13, etc. even during plant operation.
低沸点媒体、12は、その一部が固定式集熱装置11の
内部で蒸発を始めても不都合はない。ただ、あまりに蒸
発が進むと、固定式集熱装置11がら気液分離器13に
至る配管の中の流れが典型的な2相流となるので、配管
抵抗が増したり、各集熱装置の流量が極端に不均衡(二
なるなどの問題が生じる場合もある。そこで、そのよう
な]吊合(=4+i#えて、低沸点媒体12の配管が気
液分:lf!I器13(−接続される直前(−図示はし
ないが減圧弁を設け、そこまでは圧力を上げて蒸発を防
ぎ、気液分離器13に入ったところで圧力が低下してフ
ラッシュい蒸気が発生するようにすることも考えられる
。There is no problem even if a portion of the low boiling point medium 12 begins to evaporate inside the fixed heat collector 11 . However, if evaporation progresses too much, the flow in the piping from the fixed heat collector 11 to the gas-liquid separator 13 will become a typical two-phase flow, which may increase piping resistance or increase the flow rate of each heat collector. In some cases, problems such as extremely unbalanced (two) may occur.In addition, the piping of the low boiling point medium 12 is connected to the gas-liquid component: lf! It is also possible to install a pressure reducing valve (not shown) to prevent evaporation by increasing the pressure just before the vapor enters the gas-liquid separator 13, and then to reduce the pressure and generate flash steam when the vapor enters the gas-liquid separator 13. Conceivable.
低沸点媒体12の流量制御(二ついては、第3図(=お
いては流量調、整弁17による制御を例(−あげて説明
しているが、流量調整弁17を使用する代 ゛りに低沸
点媒体ポンプ16の吐出量を変えて制御するなど、他の
方式も適用可能であることはぎうまでもない。Flow rate control of the low-boiling point medium 12 (two examples are shown in Fig. 3). It goes without saying that other methods, such as controlling by changing the discharge amount of the low boiling point medium pump 16, are also applicable.
以上のように本発明は、太陽追尾の不要な固定式の太陽
熱集熱装置で低沸点媒体を直接(−加熱し、気液分離器
を用いて蒸発・分離させた低沸点媒体蒸気でタービンを
回して発電するので、集熱装置が安価でかつ散乱光も利
用できるためプラントの稼動時間も長く、集熱装置とタ
ービンとの間の配管が小口径ですみ、制御も1ハ]単な
太陽熱発″屯プラントの実現を可能とするものであり、
分散型太陽熱発電プラントの設備費および発電単価の低
減1に大きな効果をもたらすものである。As described above, the present invention uses a fixed solar heat collector that does not require solar tracking to directly heat a low-boiling point medium, and then evaporate and separate the low-boiling point medium using a gas-liquid separator to drive a turbine. Because it generates electricity by rotating the heat collector, the heat collector is inexpensive, and scattered light can also be used, so the plant can operate for a long time.The piping between the heat collector and the turbine can be small in diameter, and control is easy. This will make it possible to realize the Hatsu-Tun plant.
This has a significant effect on reducing equipment costs and power generation unit costs for distributed solar power generation plants.
第1図は従来技術による分散型太陽熱発電プラントの1
方式の概念を示す系統図、第2図は従来技術による分散
型太陽熱発電プラントの他の方式の概念を示す系統図、
第3図は本発明による分散型太陽熱発電プラントの1実
施例を示す系統図である。
7・・・発電1幾9・・・冷却水
11・・・固定式集熱装置 12・・・低沸点媒体13
・・・気液分離器 14・・・低沸点媒体タービン15
・・・分縮器 16−・・低沸点媒体ポンプ17・・・
流量調整弁
18・・・低沸点媒体循環ポンプFigure 1 shows one example of a distributed solar power generation plant using conventional technology.
Figure 2 is a system diagram showing the concept of the method;
FIG. 3 is a system diagram showing one embodiment of a distributed solar power generation plant according to the present invention. 7...Power generation 1 9...Cooling water 11...Fixed heat collector 12...Low boiling point medium 13
... Gas-liquid separator 14 ... Low boiling point medium turbine 15
...Different condenser 16-...Low boiling point medium pump 17...
Flow rate adjustment valve 18...Low boiling point medium circulation pump
Claims (3)
て加熱し、前記低沸点媒体の蒸気で低沸点媒体ダービン
を回すことにより発電することを特徴とする分散型太陽
熱発電プラント。(1) A fixed type solar heat collector (a distributed solar thermal power generation plant characterized by generating electricity by heating through two low-boiling point media and rotating a low-boiling point medium durbin with the steam of the low-boiling point medium).
は蒸発を完了セす、加熱された液体の状態にて、前記低
沸点媒体タービン近傍でかつ肖す記固定式太陽熱集熱装
置よりも筒所に位置した気液分離器に導びかれ、この気
液分離器内で発生・分離された低沸点媒体蒸気を前記低
d;↓点媒体タービンに流入させることを特徴とする特
許請求の範囲第1項記載の分散型太陽熱発電プラント。(2) The low boiling point medium has completed evaporation in the fixed solar heat collector, and in a heated liquid state, the low boiling point medium is placed in the vicinity of the low boiling point medium turbine and exposed to the fixed solar heat collector. A patent claim characterized in that the low-boiling point medium vapor generated and separated in the gas-liquid separator is led to a gas-liquid separator located at the duct and flows into the low-d;↓ point medium turbine. The distributed solar thermal power generation plant according to item 1.
体の流量は、前、配気液分離器の液面レベルに八づき制
御されることを特徴とする特許i1をの範囲第1項およ
び第2項記載の分散型太陽熱発電プラント。(3) The first scope of Patent i1, characterized in that the flow rate of the low boiling point medium supplied to the fixed solar heat collector is controlled according to the liquid level of the air distribution liquid separator. 2. Distributed solar thermal power generation plant according to paragraphs 1 and 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10933483A JPS603488A (en) | 1983-06-20 | 1983-06-20 | Distributed type solar energy power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10933483A JPS603488A (en) | 1983-06-20 | 1983-06-20 | Distributed type solar energy power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS603488A true JPS603488A (en) | 1985-01-09 |
Family
ID=14507588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10933483A Pending JPS603488A (en) | 1983-06-20 | 1983-06-20 | Distributed type solar energy power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS603488A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007039658A3 (en) * | 2005-10-05 | 2007-05-24 | Social Capital S L | Energy generation system |
CN102477968A (en) * | 2011-04-11 | 2012-05-30 | 钟建华 | Low-temperature dielectric heat-collecting type solar power generating device |
KR200462803Y1 (en) * | 2009-05-29 | 2012-10-02 | 조중휴 | Heat source generator device of solar collector |
JP2013227923A (en) * | 2012-04-26 | 2013-11-07 | Homei Kyo | Power generation system using solar heat collector |
-
1983
- 1983-06-20 JP JP10933483A patent/JPS603488A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007039658A3 (en) * | 2005-10-05 | 2007-05-24 | Social Capital S L | Energy generation system |
ES2283197A1 (en) * | 2005-10-05 | 2007-10-16 | Social Capital, S.L. | Energy generation system |
KR200462803Y1 (en) * | 2009-05-29 | 2012-10-02 | 조중휴 | Heat source generator device of solar collector |
CN102477968A (en) * | 2011-04-11 | 2012-05-30 | 钟建华 | Low-temperature dielectric heat-collecting type solar power generating device |
JP2013227923A (en) * | 2012-04-26 | 2013-11-07 | Homei Kyo | Power generation system using solar heat collector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8039984B2 (en) | System for converting solar radiation into electricity | |
CN102062066B (en) | Apparatus relating to solar-thermal power generation | |
RU2126098C1 (en) | Geothermal high-pressure fluid-medium power plant and its module | |
KR101172578B1 (en) | Solar collector type of condensing solar light | |
KR101850002B1 (en) | District Heating System Including Heat Pump Using District Heat and Control Method thereof | |
US20100162700A1 (en) | Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant | |
JP6923667B2 (en) | Solar thermal power generation system | |
KR101580797B1 (en) | Solar hybrid absorption cooling system | |
US8479515B2 (en) | Solar power generator | |
CN106958963A (en) | Solar cold co-generation unit based on organic Rankine bottoming cycle and lithium bromide refrigerating | |
US4292809A (en) | Procedure for converting low-grade thermal energy into mechanical energy in a turbine for further utilization and plant for implementing the procedure | |
WO2012168251A1 (en) | Solar thermal power plant | |
US20130111902A1 (en) | Solar power system and method of operating a solar power system | |
CN103477150A (en) | Generation of steam for use in an industrial process | |
CA2736418A1 (en) | A low temperature solar power system | |
US4387574A (en) | Solar power plant including a solar heater on a tower | |
KR20170083672A (en) | Organic Rankine Cycle Turbogenerator included pre-heater which hold energy from the sun | |
WO2013065492A1 (en) | Solar heat turbine electricity generation device and control method therefor | |
KR101481010B1 (en) | Ocean thermal energy conversion system and operation method thereof | |
JPS603488A (en) | Distributed type solar energy power plant | |
US20140216032A1 (en) | Solar direct steam generation power plant combined with heat storage unit | |
Moustafa et al. | Design specifications and application of a100 kWc (700 kWth) cogeneration solar power plant | |
WO2017078134A1 (en) | Solar heat collection system and operation method thereof | |
JP2002031035A (en) | Solar power generator | |
CN106194615A (en) | Solar steam heat and power system |