JPS6034333B2 - Three-phase reactive power regulator - Google Patents

Three-phase reactive power regulator

Info

Publication number
JPS6034333B2
JPS6034333B2 JP54032952A JP3295279A JPS6034333B2 JP S6034333 B2 JPS6034333 B2 JP S6034333B2 JP 54032952 A JP54032952 A JP 54032952A JP 3295279 A JP3295279 A JP 3295279A JP S6034333 B2 JPS6034333 B2 JP S6034333B2
Authority
JP
Japan
Prior art keywords
phase
reactive power
current
voltage
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54032952A
Other languages
Japanese (ja)
Other versions
JPS55125035A (en
Inventor
吉章 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54032952A priority Critical patent/JPS6034333B2/en
Publication of JPS55125035A publication Critical patent/JPS55125035A/en
Publication of JPS6034333B2 publication Critical patent/JPS6034333B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はブリッジィンバ−夕を多重化して高調波の発生
を抑え、応答遅れを少なくすると共に回路構成を容易に
した三相無効電力調整装置の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement of a three-phase reactive power adjustment device that multiplexes bridge interference to suppress the generation of harmonics, reduce response delay, and simplify the circuit configuration.

電力系統においては、系統の力率を改善するため、負荷
と並列に無効電力を供給できるようにするのが通例であ
る。
In electric power systems, it is customary to supply reactive power in parallel with loads in order to improve the power factor of the system.

例えば、第1図は三相電力系統1において、負荷2に並
列に進相用の電力コンデンサ3と、遅相用の池励ィンバ
ータ4(A的1±90o)を接続し、ィンバータ4の2
次側に設けた平滑IJァクトル5に流れる直流電流を調
整している。また、第2図は負荷6に並列に進み力率を
とる自励ィンバータ7(A的1主−900)を接続し、
その2次側に設けた平滑IJァクトル8に流れる直流電
流を調整することによって系統の無効電力を調整してい
る。これらの例においてィンバータ装置4,7が系統か
ら受取る無効電力は平滑リアクトル5,8に流れる直流
電流IDcに比例するので、ィンバー夕装置の位相を制
御することにより所望の無効電力を得ることができるが
、そのためには全軍流範囲で電流が断続しないような平
滑リアクトルが必要であり、しかもこれらのリアクトル
は有効電力の消費が僅かなものでなければならないので
、その構造や寸法はかなりのものとなる。
For example, in a three-phase power system 1, FIG.
The DC current flowing through the smoothing IJ factor 5 provided on the next side is adjusted. In addition, in Fig. 2, a self-excited inverter 7 (A type 1 main-900) is connected in parallel to the load 6 and takes the power factor.
The reactive power of the system is adjusted by adjusting the DC current flowing through the smoothing IJ vector 8 provided on the secondary side. In these examples, the reactive power that the inverter devices 4 and 7 receive from the grid is proportional to the DC current IDc flowing through the smoothing reactors 5 and 8, so the desired reactive power can be obtained by controlling the phase of the inverter device. However, in order to do this, smooth reactors are required that do not cause intermittent current over the entire power flow range, and these reactors must consume only a small amount of active power, so their structure and dimensions are quite large. becomes.

また、第2図に示す例において、負荷6のとる電流を1
L、目励ィンバータ7のとる電流をlcとすると、系統
のとる電流1は1=IL+lcとなり、負荷の無効電流
を自励ィンバータのとる無効電流で打消すように制御し
た場合の電流、電圧波形は第3図に示す(3相中の1相
分のみを示す)ようになる。この場合、系統からとる電
流1は、基本波無効電力は零となるが、補償電流lcが
方形波であるためかなりの高調波成分を含むこととなり
、これを吸収するために大掛りなフィルタ装置が必要と
なる。上述のような不都合は、第4図に示すようにィン
バータを多重化することにより解決することができる。
In addition, in the example shown in FIG. 2, the current taken by the load 6 is 1
L, if the current taken by the self-excited inverter 7 is lc, then the current 1 taken by the system is 1 = IL + lc, and the current and voltage waveforms are when the reactive current of the load is controlled to be canceled by the reactive current taken by the self-excited inverter. is as shown in FIG. 3 (only one of the three phases is shown). In this case, the fundamental wave reactive power of the current 1 taken from the grid is zero, but since the compensation current lc is a square wave, it contains considerable harmonic components, and a large-scale filter device is required to absorb this. Is required. The above-mentioned disadvantages can be solved by multiplexing the inverters as shown in FIG.

同図において、平滑リアクトル9に直列接続したN個に
ブリッジィンバータ10a,10b・・・・・・10n
の各交流側は、夫々1次側巻線に対して2次側巻線を順
次60oノ(N−1)ずつひねつて巻かれたN個の変圧
器11a,11b…・・・11nを介して電源系統12
に連係されている。第5図は第4図の例においてN=8
とした場合の電流、電圧波形を示すが、これと第3図を
比較すれば明らかなように、多重化によって補償電流l
cはかなり正弦波に近くなり、また、電源系統12から
とる電流1も電源電圧と同相で、波形も正弦波に近くな
っており、従ってフィル夕も高次高調波を吸収するもの
でよいから4・形軽量化できる。また、このような多重
化を行なう場合、直流電圧のリップル分も多重化しない
場合に比較して1/Nとなるので平滑リアクトルのイン
ダクタンスをそれぞれ小さくできる上、ィンバータ直流
電流指令が変化した場合の直流電流の応答性も、転流回
数がN倍となっているので追従性が非常によくなる。と
ころで、単相の無効電力は電圧より位相が900ずれた
波形と電流の積を一定周期に亘つて積分し、それを平均
化したものである。
In the figure, N bridge inverters 10a, 10b...10n are connected in series to the smoothing reactor 9.
Each AC side is connected through N transformers 11a, 11b, . power supply system 12
is linked to. Figure 5 shows N=8 in the example of Figure 4.
The current and voltage waveforms are shown for the case where the compensation current l is
c is quite close to a sine wave, and the current 1 taken from the power supply system 12 is also in phase with the power supply voltage, and the waveform is close to a sine wave. Therefore, the filter should also absorb high-order harmonics. 4. Can be made lighter in size. In addition, when performing multiplexing in this way, the ripple component of the DC voltage is also reduced to 1/N compared to when multiplexing is not performed, so the inductance of each smoothing reactor can be reduced, and the inductance of the inverter DC current changes when the inverter DC current command changes. The responsiveness of the DC current is also very good, since the number of commutations is N times greater. By the way, single-phase reactive power is obtained by integrating the product of a current and a waveform whose phase is shifted by 900 degrees from the voltage over a certain period, and averaging the results.

即ち、電圧e、電流i、電圧eから900ずれた電圧e
′を夫々、電圧ee=ノ2 V sinwt i=ノ2 1 sin(wt−A血7) e′:ノ2 V coswt とし、周期をTとすれば、無効電力Qは Q=手′苔e′jdt=−VISinの となる(Qが正は進相無効電力を、負は遅相無効電力を
示す)。
That is, voltage e, current i, voltage e that is 900 deviated from voltage e.
If the voltage ee = 2 V sinwt i = 2 1 sin (wt-A blood 7) e': 2 V coswt and the period T, then the reactive power Q is Q = 2 V coswt. 'jdt=-VISin (positive Q indicates leading phase reactive power, and negative Q indicates lagging reactive power).

三相の場合には、上記と同様の演算を各相別に行ない、
それらの和をとることによって無効電力を求めることが
できるが、実回路において無効電力の検出を上述の定義
通りに行なおうとすると、積分値をサンプルホールドす
ることが必要となり、回路構成が複雑化する上、1〜1
/2サイクルの遅れが生じ、検出値も不連続化するため
、負荷の無効電力が急激に変化する場合にはこれに追従
できないという不都合を生ずる。
In the case of three phases, perform the same calculation as above for each phase,
Reactive power can be found by summing them, but if you try to detect reactive power in an actual circuit according to the above definition, it will be necessary to sample and hold the integral value, which will complicate the circuit configuration. On top of that, 1-1
A delay of /2 cycles occurs, and the detected values also become discontinuous, resulting in the inconvenience that it is not possible to follow sudden changes in the reactive power of the load.

本発明は従来装置における上述の如き不都合を除去すべ
くなされたもので、電源電圧より900ずれた各相電圧
と相電流の積を三相分加算したものを、直接、瞬時基本
波無効電力として検出し、これに比例したィンバータ直
流電流を流すことによって無効電力の急激な変化にも遅
滞なく追従できるようにした三相無効電力調整装置を提
供しようとするものである。
The present invention has been made in order to eliminate the above-mentioned disadvantages in conventional devices, and the product of each phase voltage and phase current that is deviated by 900 from the power supply voltage is added for three phases, and is directly converted into instantaneous fundamental wave reactive power. It is an object of the present invention to provide a three-phase reactive power adjustment device that can detect rapid changes in reactive power without delay by detecting the detection and flowing an inverter DC current proportional to the detected current.

以下、第6図以以降に示す実施例につき本発明の詳細を
説明する。
Hereinafter, details of the present invention will be explained with reference to the embodiments shown in FIG. 6 and subsequent figures.

第6図において、三相電源13に援続した負荷14の近
傍には、それに並列に無効電力Qcを吸収するための無
効電力源15が接続されている。
In FIG. 6, a reactive power source 15 for absorbing reactive power Qc is connected in parallel near a load 14 connected to a three-phase power supply 13.

この無効電力源は、第4図におけると同様に、直流側を
直列接続したN個のブリッジィンバータ16a〜16n
と、それらの各交流端子と電源13の間に分挿したN個
の変圧器17a〜17nとから成る自励式の多重化ブリ
ッジィンバータ18、およびその直流側に接続した平滑
リアクトル19で構成されている。また、電源回路13
には高調波電流QFを吸収するためのフィル夕20と、
電源側の無効電力Qsを検出するための無効電力検出装
置21が接続されている。無効電力Qsは電源側の無効
電力指令値QR(入力力率を1にしようとする場合には
零)と比較され、その偏差値はブロック22で無効電力
制御伝達関数Goを乗算されて直流電流指令loRとな
る。この直流電流指令loRは平滑リアクトル19の直
流電流値1。と比較され、その偏差値はブロック23で
直流電流制御伝達関数C,を乗算された後、各ィンバー
タ16a〜16nの制御様子にインプットされ、それら
の点弧位相を制御(A6CIニー90o )する。上記
において、無効電力検出装置21は第7図に示すように
構成されている。
This reactive power source consists of N bridge inverters 16a to 16n connected in series on the DC side, as in FIG.
, a self-excited multiplex bridge inverter 18 consisting of N transformers 17a to 17n inserted between each of these AC terminals and the power supply 13, and a smoothing reactor 19 connected to the DC side thereof. ing. In addition, the power supply circuit 13
includes a filter 20 for absorbing harmonic current QF,
A reactive power detection device 21 for detecting reactive power Qs on the power source side is connected. The reactive power Qs is compared with the reactive power command value QR on the power supply side (zero if the input power factor is set to 1), and the deviation value is multiplied by the reactive power control transfer function Go in block 22 to obtain a direct current. The command becomes loR. This DC current command loR is the DC current value 1 of the smoothing reactor 19. The deviation value is multiplied by the DC current control transfer function C in block 23, and then input into the control mode of each inverter 16a to 16n to control their firing phase (A6CI knee 90o). In the above, the reactive power detection device 21 is configured as shown in FIG.

同図において、三相電源系統R,S,Tの系統電圧VR
,Vs,VTは変圧器24によって検出され、それらの
一部は演算増中器25R,25s,25Tによって反転
され、一VR,一Vs,一VTとなる。これらの反転出
力は原信号VR、,Vs,VTと共に、相互に逆まわり
となるよう2個づつ組合されて隣接の演算増中器26R
,26s,26Tにインプットされ、原信号より90o
位相が遅れ、かつ極性が反転された−VR′,一Vs′
,一VT′を算出する。これらの信号と原信号との関係
を数式で示せば次の通りであり、VR′=(Vs−VT
)/ノ3Vs′=(VT−VR)/ノ3 V?′=(VR−Vs)ノノ3 また、図示(1相分のみ)すれば第8図の通りである。
In the same figure, the system voltage VR of the three-phase power supply system R, S, T
, Vs, and VT are detected by the transformer 24, and some of them are inverted by the operational multipliers 25R, 25s, and 25T, resulting in one VR, one Vs, and one VT. These inverted outputs, along with the original signals VR, , Vs, and VT, are combined two by two so that they rotate in opposite directions to each other and are sent to the adjacent operational amplifier 26R.
, 26s, 26T, 90o from the original signal
−VR′, −Vs′ with delayed phase and reversed polarity
, -VT' is calculated. The relationship between these signals and the original signal can be expressed mathematically as follows: VR' = (Vs - VT
)/ノ3Vs'=(VT-VR)/ノ3V? '=(VR-Vs)Nono3 Also, if shown (only for one phase), it is as shown in FIG.

一方、電源系統R,S,Tに接続した変流器27によっ
て電流iR,ls,iTを検出し、これらと前記信号−
VR′,一Vs′−VT′とを同一添記のもの同志を組
合せて夫々乗算器28R,28s,28Tに導いて−V
R′IR,一Vs′ls,一VT′ITを計算し、これ
らの計算値を演算増中器29に通せば加算されると共に
符号が反転し、VR′iR+Vs′is+VT′iTが
求められる。このようにして無効電力検出装置21によ
って検出された瞬時基本波無効電力Qsは第6図におい
て述べたように電源側の無効電力指令値QRと比較され
、以降、必要な処理を施されて多重化ブリッジィンバ−
夕18の制御端子にインプットされ、それらの点弧位相
を制御する。このように第6図および第7図に示す本発
明の実施例によれば遅れのない無効電力を連続して出力
することができ、無効電力の急変にも遅滞なく対応する
ことができる。
On the other hand, the currents iR, ls, and iT are detected by the current transformers 27 connected to the power supply systems R, S, and T, and these and the above-mentioned signals -
VR', -Vs'-VT' are combined with the same appendixes and guided to multipliers 28R, 28s, 28T, respectively, to obtain -V
R'IR, -Vs'ls, and -VT'IT are calculated, and these calculated values are passed through an arithmetic intensifier 29, where they are added together and the sign is inverted to obtain VR'iR+Vs'is+VT'iT. The instantaneous fundamental wave reactive power Qs detected by the reactive power detection device 21 in this way is compared with the reactive power command value QR on the power supply side as described in FIG. bridge invar
18 to control their firing phase. As described above, according to the embodiments of the present invention shown in FIGS. 6 and 7, it is possible to continuously output reactive power without delay, and it is possible to respond to sudden changes in reactive power without delay.

ところで、第6図の制御系は第9図のように書きあらわ
すことができる。
By the way, the control system shown in FIG. 6 can be expressed as shown in FIG.

ここでG,cは直流電流指令loRから直流電流loへ
の伝達関数、Kは直流電流から無効電力への変換定数で
ある(その他の記号は前出の通り)。ここで、多重化ブ
リッジィンバータ直流電流loとその入力基本波無効電
力QCはQci−KI。
Here, G and c are transfer functions from DC current command loR to DC current lo, and K is a conversion constant from DC current to reactive power (other symbols are as described above). Here, the multiplexed bridge inverter DC current lo and its input fundamental wave reactive power QC are Qci-KI.

の関係にある。There is a relationship between

このブロック図から分るように第6図の制御系では負荷
の無効電力QLは外乱として働き、制御系に大きな影響
を与えるので、QR−Qsの偏差信号A的5は無効電力
QLの変化により大きく変り、過渡特性を悪くしている
。また、直流電流制御伝達関数G,cは一般に、1/(
1十ToS)で近似される一次遅れを伴うため、応答時
間が長くなっている。しかしながら、これらの不都合は
第10図に示すように回路構成を一部変更することによ
って回避することができる。
As can be seen from this block diagram, in the control system of Fig. 6, the reactive power QL of the load acts as a disturbance and has a large influence on the control system, so the deviation signal A of QR-Qs is caused by changes in the reactive power QL. It changes greatly, worsening the transient characteristics. In addition, the DC current control transfer function G,c is generally 1/(
10ToS), the response time is long. However, these inconveniences can be avoided by partially changing the circuit configuration as shown in FIG.

即ち、第10図に示す本発明の変形例においては、負荷
30の入力側に無効電力検出装置31を増設し、これで
負荷の瞬時基本波無効電力QLを検出し、これをブロッ
ク32を通して1/Kを秦算し、得られたloRLをィ
ンバータ直流電流指令値1。Rsに加算することによっ
て直流電流指令1。Rを求めている。これによって制御
系は負荷変動による外乱の影響を受けなくなる。また、
第10図の回路では制御系に微分回路33を付加し、直
流電流指令loRとその微分値の和を直流電流指令。R
′としている。この微分回路33の微分係数を、直流電
流制御系の一次遅れ1/(1十T。S)のToにほぼ一
致させることにより直流電流制御ループの遅れを補償し
、応答性能を高めることができる。なお、第10図中、
第6図における同一構成部分は同一記号で示してある。
また、第10図における制御系のブロック図は第11図
に示す通りである。このように本発明においては、90
0ずれた電圧と電流の積を三相加算したものを直接、瞬
時基本波無効電力として検出し、これに比例したィンバ
−夕直流電流を流すようにしたから回路はさほど複雑化
せず、負荷の急変に応答することができる上、負荷変動
を検出して外乱補償をし、あるいは電流応答の遅れを微
分補償するときは、過渡特性、応答特性を更に向上させ
ることができる。
That is, in the modified example of the present invention shown in FIG. /K, and the obtained loRL is the inverter DC current command value 1. DC current command 1 by adding it to Rs. I'm looking for R. This makes the control system unaffected by disturbances caused by load fluctuations. Also,
In the circuit of FIG. 10, a differentiation circuit 33 is added to the control system, and the sum of the DC current command loR and its differential value is used as the DC current command. R
'. By making the differential coefficient of the differentiating circuit 33 approximately equal to To of the first-order delay 1/(10T.S) of the DC current control system, it is possible to compensate for the delay of the DC current control loop and improve response performance. . In addition, in Figure 10,
Identical components in FIG. 6 are indicated by the same symbols.
Further, a block diagram of the control system in FIG. 10 is as shown in FIG. 11. In this way, in the present invention, 90
The three-phase sum of the products of voltage and current that are shifted to 0 is directly detected as instantaneous fundamental wave reactive power, and an inverter direct current proportional to this is passed, so the circuit does not become too complicated and the load In addition, when detecting load fluctuations and performing disturbance compensation or differentially compensating delays in current response, transient characteristics and response characteristics can be further improved.

なお、以上の説明では、目励式の多重化ブリッジィンバ
−夕を用いた例につき本発明の詳細を説明したが、本発
明はこれに限定されず、他励式多重化ブリッジィンバ−
夕とコンデンサを組合せた三相無効電力調整装置におい
ても同様に適用することができる。
In the above description, the details of the present invention have been explained with reference to an example using a separately excited multiplexing bridge inverter.
The present invention can be similarly applied to a three-phase reactive power adjustment device that combines a coil and a capacitor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は夫々従来の無効電力調整装置を例示す
る回路図、第3図は第2図の回路における各部の電流電
圧波形図、第4図は多重化ィンバータの基本構成を例示
する回路図、第5図は第4図の回路における各部の電流
電圧波形図、第6図は本発明装置の一例を示す回路図、
第7図は本発明装置で使用される無効電力検出装置の構
成例を示す回路図、第8図は第7図の回路における電圧
関係を示すベクトル図、第9図は第6図の回路における
制御系を示すブロック図、第10図は本発明の実施態様
例を示す回路図、第11図は第10図の回路における制
御系を示すブロック図である。 〜1,12,13・・・三相電力
系統、2,6,14,30・・・負荷、3・・・電力コ
ンヂンサ、4・・・他励ィンバータ、5,8,9,19
…平滑リアクトル、7・・・自励イソバータ、10a〜
I0n,16a〜16n…ブリッジインバータ、11a
〜11n,17a〜17n,24…変圧器、15・・・
無効電力源、20・・・フィル夕、21,31・・・無
効電力検出装置、25R,25s,25T・・・演算増
中器、26R,26s,26丁・・・演算増中器、27
...変流器、28R,28s,28T・・・乗算器、
29・・・演算増中器。弟J図第3図 弟4図 第8図 第3図 弟Z図 努5図 第6図 弟ク図 弟JO図 弟JJ図
Figures 1 and 2 are circuit diagrams illustrating conventional reactive power adjustment devices, Figure 3 is a current and voltage waveform diagram of each part in the circuit of Figure 2, and Figure 4 illustrates the basic configuration of a multiplexed inverter. 5 is a current and voltage waveform diagram of each part in the circuit of FIG. 4, FIG. 6 is a circuit diagram showing an example of the device of the present invention,
FIG. 7 is a circuit diagram showing a configuration example of a reactive power detection device used in the device of the present invention, FIG. 8 is a vector diagram showing the voltage relationship in the circuit of FIG. 7, and FIG. 9 is a circuit diagram showing the voltage relationship in the circuit of FIG. FIG. 10 is a block diagram showing an embodiment of the present invention, and FIG. 11 is a block diagram showing a control system in the circuit of FIG. 10. ~1, 12, 13... Three-phase power system, 2, 6, 14, 30... Load, 3... Power condenser, 4... Separately excited inverter, 5, 8, 9, 19
...Smoothing reactor, 7...Self-excited isoverter, 10a~
I0n, 16a to 16n...Bridge inverter, 11a
〜11n, 17a〜17n, 24...Transformer, 15...
Reactive power source, 20... Filter, 21, 31... Reactive power detection device, 25R, 25s, 25T... Arithmetic intensifier, 26R, 26s, 26... Arithmetic intensifier, 27
.. .. .. Current transformer, 28R, 28s, 28T...multiplier,
29... Arithmetic multiplier. Younger brother J figure 3 younger brother 4 figure 8 figure 3 younger brother Z figure Tsutomu 5 figure 6 younger brother K figure younger brother JO figure younger brother JJ figure

Claims (1)

【特許請求の範囲】[Claims] 1 二次が60°/(N−1)づつ順次位相のずれてい
るN個の変圧器の各々三相ブリツジ回路を接続し、それ
らの各直流側を直列に結線した多重化ブリツジインバー
タの直流側に平滑リアクトルを接続した系統に接続して
なる装置において、前記三相電源系統の各相系統電圧を
検出する手段と、この電圧検出手段の出力を経て前記各
相系統よりそれぞれ90°づつずれた相電圧を表す三相
信号を形成する手段と、前記三相負荷に流れる相電流瞬
時値を検出しこの相電流瞬時値を表す三相信号を形成す
る手段と、前記電圧および電流の三相信号との各相毎の
積を求めた上で加算して瞬時基本波無効電力値を求める
手段と、この瞬時基本波無効電力値に基き前記多重化ブ
リツジインバータの直流電流を制御する手段とをそなえ
たことを特徴とする三相無効電力調整装置。
1 A multiplexed bridge inverter is constructed by connecting three-phase bridge circuits of each of N transformers whose secondary phases are sequentially shifted by 60°/(N-1), and connecting their respective DC sides in series. In a device connected to a system in which a smoothing reactor is connected to the DC side, there is a means for detecting the voltage of each phase of the three-phase power supply system, and a voltage of 90° from each phase system through the output of the voltage detection means. means for forming a three-phase signal representing shifted phase voltages; means for detecting instantaneous values of phase currents flowing through the three-phase load and forming three-phase signals representing the instantaneous values of the phase currents; Means for obtaining an instantaneous fundamental wave reactive power value by calculating and adding the products for each phase with the phase signal, and means for controlling the DC current of the multiplexed bridge inverter based on this instantaneous fundamental wave reactive power value. A three-phase reactive power adjustment device characterized by comprising:
JP54032952A 1979-03-20 1979-03-20 Three-phase reactive power regulator Expired JPS6034333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54032952A JPS6034333B2 (en) 1979-03-20 1979-03-20 Three-phase reactive power regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54032952A JPS6034333B2 (en) 1979-03-20 1979-03-20 Three-phase reactive power regulator

Publications (2)

Publication Number Publication Date
JPS55125035A JPS55125035A (en) 1980-09-26
JPS6034333B2 true JPS6034333B2 (en) 1985-08-08

Family

ID=12373272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54032952A Expired JPS6034333B2 (en) 1979-03-20 1979-03-20 Three-phase reactive power regulator

Country Status (1)

Country Link
JP (1) JPS6034333B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196747B (en) * 1986-09-26 1990-12-19 Hitachi Ltd An electric system including apparatus for compensating reactive power by current-source type converter

Also Published As

Publication number Publication date
JPS55125035A (en) 1980-09-26

Similar Documents

Publication Publication Date Title
Espelage et al. High-frequency link power conversion
US7796411B2 (en) Universal three phase controllers for power converters
JPH0746917B2 (en) Control device for three-phase converter
CN104578884A (en) Multi-inverter parallel voltage unbalance control method of low-voltage microgrid
US4529925A (en) Reactive power compensating cycloconverter
CN110350534A (en) A kind of active power filter system and its compensation method based on seven level converters
JPH07163153A (en) Control method for single-phase three-wire inverter
CN105356512B (en) A kind of cascade connection type photovoltaic DC-to-AC converter and its grid-connected control method and controller
JPS6034333B2 (en) Three-phase reactive power regulator
Lin A single-phase three-level pulsewidth modulation AC/DC converter with the function of power factor corrector and active power filter
JPS6399770A (en) Method for controlling circulating current type cycloconverter
Shi et al. A general closed-loop power-decoupling control for reduced-switch converter-fed IM drives
JPH0628517B2 (en) Power converter
JPH05111164A (en) Power converter
JPH07322623A (en) Power converter
JPS638714B2 (en)
JPS63274374A (en) Converter control circuit
Tsai et al. Effects of voltage unbalance and harmonics on three-phase PWM ac-to-dc converters with instantaneous power feedback
Kim et al. 3-Phase Back to Back Active Power Filter for a Multi-Generator Power System with Reduced dc-link Capacitor
Jiao et al. Research on Second Harmonic Ripple Suppression of Two Stage DC-AC Inverter
JPH073803Y2 (en) Compensation current detection circuit for power compensator
Cozac et al. Comparative Analysis of Conventional and Hybrid Solid State Transformer
JPH0477550B2 (en)
JP2843220B2 (en) Cycloconverter device
Montagner et al. Analysis of an iUPQC Operating as Interface for Microgrids with Power Angle Control