JPS6034275B2 - charge transfer device - Google Patents

charge transfer device

Info

Publication number
JPS6034275B2
JPS6034275B2 JP58064444A JP6444483A JPS6034275B2 JP S6034275 B2 JPS6034275 B2 JP S6034275B2 JP 58064444 A JP58064444 A JP 58064444A JP 6444483 A JP6444483 A JP 6444483A JP S6034275 B2 JPS6034275 B2 JP S6034275B2
Authority
JP
Japan
Prior art keywords
input
gate
charge
charge transfer
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58064444A
Other languages
Japanese (ja)
Other versions
JPS59191376A (en
Inventor
令吉 角田
俊雄 菅野
栄久 星野
義博 宮本
宏 酒井
雄一郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOEICHO GIJUTSU KENKYU HONBUCHO
Original Assignee
BOEICHO GIJUTSU KENKYU HONBUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOEICHO GIJUTSU KENKYU HONBUCHO filed Critical BOEICHO GIJUTSU KENKYU HONBUCHO
Priority to JP58064444A priority Critical patent/JPS6034275B2/en
Publication of JPS59191376A publication Critical patent/JPS59191376A/en
Publication of JPS6034275B2 publication Critical patent/JPS6034275B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers
    • H01L27/14881Infrared CCD or CID imagers of the hybrid type

Description

【発明の詳細な説明】 ‘a’発明の技術分野 本発明は、パラレルィン・シリアルアウト形(以下PI
SOと略称する)の赤外検知型電荷転送装置に係り、特
にその電荷入力部の構造の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical field of the invention 'a' The present invention relates to a parallel serial out type
The present invention relates to an infrared detection type charge transfer device (abbreviated as SO), and particularly relates to an improvement in the structure of its charge input section.

{b’技術の背景 近年、赤外線の応用が盛んに行なわれるようになるにつ
れ、例えば多素子赤外線検知素子(以下受光素子と呼ぶ
)のマルチプレクサとしてCCDが用いられて来ている
が、最近ではPISO型赤外検知型電荷転送装置の入力
部、特に入力ゲート部分における流入電荷量の均一化を
はかることが要求されて来ている。
{b' Background of the technology In recent years, as the application of infrared rays has become popular, CCDs have been used as multiplexers for multi-element infrared sensing elements (hereinafter referred to as photodetecting elements), but recently PISO There is a growing demand for uniformity of the amount of charge flowing into the input section of an infrared detection type charge transfer device, particularly at the input gate section.

【cー 従来技術と問題点 現在のところでは、光電変換素子としての高感度受光素
子には、例えばインジウムアンチモン(lnSb)、毎
日スズテルル(P氏nTe)水銀カドミウムテルル(H
gCdTe)などの多元半導体を用い、マルチプレクサ
としてのCCDを主とする信号処理部はシリコン(Si
)を基板として構成する、いわゆるハイブリッド方式が
探られている。
[c - Prior art and problems At present, high-sensitivity light-receiving elements used as photoelectric conversion elements include, for example, indium antimony (lnSb), daily tin tellurium (PnTe), mercury cadmium tellurium (H
The signal processing section, which mainly consists of a CCD as a multiplexer, is made of silicon (Si).
) is used as a substrate, a so-called hybrid method is being explored.

第1図は従来の赤外検知型の電荷転送装置の構造を示す
要部平面図であって、鎖線オから左側が受光部であり右
側が信号処理部である。
FIG. 1 is a plan view of main parts showing the structure of a conventional infrared detection type charge transfer device, in which the left side of the chain line O is a light receiving section, and the right side is a signal processing section.

この図において、Dは受光素子、IDは入力ダイオード
を示し、iおよびi+1はそれぞれi番目ならびにi+
1番目を示す副号である。また、1は帯状の入力ゲート
、2は蓄積ゲート、3は帯状の移送ゲートであり、これ
らは入力ダィオード‘こ隣接して順次配設されていて電
荷入力部を構成している。この電荷入力部に隣接して転
送電極4を有するCCDが配設されている。受光素子D
i,Di+1で光電変換されて生じた電荷は矢印イの方
向に流れて入力ダイオードmf,IDi十1にそれぞれ
流入し、入力ゲート1の直下を通って蓄積ゲート2直下
にあらかじめ作られていた電位の井戸(以下単に井戸と
称する)中に蓄積される。
In this figure, D represents a photodetector, ID represents an input diode, and i and i+1 represent the i-th and i+
This is a subtitle indicating the first. Further, 1 is a strip-shaped input gate, 2 is an accumulation gate, and 3 is a strip-shaped transfer gate, which are successively arranged adjacent to the input diode and constitute a charge input section. A CCD having a transfer electrode 4 is arranged adjacent to this charge input section. Light receiving element D
The charges generated by photoelectric conversion at i and Di+1 flow in the direction of arrow A and flow into input diodes mf and IDi, respectively, passing directly under input gate 1 and reaching the potential created in advance immediately below storage gate 2. (hereinafter simply referred to as wells).

この蓄積された電荷のうち観測対象物に基づく上ずみ電
荷は移送ゲート3を介して矢印口方向に流れてCCDの
転送電極4直下の井戸に流入し、残りの背景に基づく下
すみ電荷は排出ドレィン(図示を省略する)から排出さ
れるようになっている。
Among these accumulated charges, upward charges based on the observation object flow in the direction of the arrow through the transfer gate 3 and flow into the well directly below the transfer electrode 4 of the CCD, and the remaining downward charges due to the background are discharged. It is designed to be discharged from a drain (not shown).

そして、各電荷入力部からCCDの転送電極4直下に並
列に導入された電荷は、今度は例えば矢印二方向に転送
され、図示しない出力ダイオードから時系列信号として
読み出される。
The charges introduced in parallel from each charge input section directly below the transfer electrode 4 of the CCD are then transferred, for example, in the two directions of the arrows, and read out as time-series signals from output diodes (not shown).

そして、こうした電荷がすべて読み出されると引き続い
てまた同じシーケンスが繰返される。ところで、従来の
赤外検知型の電荷転送装置では入力ゲートーを充分低抵
抗のものにし、その一端から電圧を印加して、すべての
入力ダイオードから蓄積ゲート2直下の井戸中へ電荷を
流入させるのが通常の方法であった。しかし、この入力
ゲート1はその直下の絶縁物ならびに半導体基板でいわ
ゆるMIS構成体を作っているのであるが、このMIS
構成体が呈するいわゆる実効しきい値電圧VTは場所に
よって必ずしも一定でなく、ある程度のバラッキを波を
打つようにして有しているのが現状である。加えるに受
光部における受光素子もその光電変換特性にバラッキを
有しているので、このアレイをなして配列されている受
光素子のバラッキと前記入力ゲート1が呈するしきし、
値電圧のバラッキとを合計して見れば、その結果は、入
力ゲート1の長手方向に沿って折れ線近似で表わされる
ような電荷流入量のバラッキとなって観測されることに
なる。
Once all of these charges have been read out, the same sequence is repeated again. By the way, in conventional infrared detection type charge transfer devices, the input gate is made of sufficiently low resistance, and a voltage is applied from one end of the input gate to cause charges to flow from all input diodes into the well directly below the storage gate 2. was the usual method. However, this input gate 1 forms a so-called MIS structure with an insulator and a semiconductor substrate directly below it, and this MIS
At present, the so-called effective threshold voltage VT exhibited by the structure is not necessarily constant depending on the location, and has some degree of variation in waves. In addition, since the light-receiving elements in the light-receiving section also have variations in their photoelectric conversion characteristics, the variation in the light-receiving elements arranged in an array and the interference exhibited by the input gate 1,
If the variation in value voltage and the variation in value voltage are totaled, the result will be observed as variation in the amount of charge inflow as expressed by a polygonal line approximation along the longitudinal direction of the input gate 1.

このために蓄積ゲート2直下したがってCCDの転送電
極直下に流入する電荷量にはバラツキが生じてしまい、
こうした電荷転送装置で撮嫁されたビデオ信号を再生し
て見れば画質の劣ったものとなるという欠点を有する。
‘d’発明の目的 本発明は、上記従来の欠点に鑑みてなされたもので、電
荷入力部の構成に改造を加えて入力ダイオードから流入
する電荷量が、入力ゲートのどの部分においても均一と
なる電荷転送装置の提供を目的とする。
For this reason, variations occur in the amount of charge flowing directly under the storage gate 2 and therefore directly under the transfer electrode of the CCD.
When a video signal captured by such a charge transfer device is reproduced, the image quality is poor.
'd' Purpose of the Invention The present invention has been made in view of the above-mentioned drawbacks of the conventional art.The present invention has been made by modifying the configuration of the charge input section so that the amount of charge flowing from the input diode is uniform in all parts of the input gate. The purpose is to provide a charge transfer device.

‘e} 発明の構成 そして本発明によれば、その目的は、受光素子で光電変
換されて生じた電荷を導入する入力ダイオードと、それ
に隣接して順次配設された帯状の入力ゲートおよび蓄積
ゲートを主体とする電荷入力部と、それに隣接して該電
荷入力部から移送された電荷を時系列信号として出力す
る電荷転送部とを備えた構成において、前記帯状の入力
ゲートを高抵停材質で形成すると共に、当該入力ゲート
には前記電荷転送部の所定段数ごとの距離を隔てて入力
ゲート各部の電位調整用としての電圧印加電極を設ける
ことによって達成される。
'e} Structure of the Invention According to the present invention, the object is to provide an input diode that introduces charges generated by photoelectric conversion in a light receiving element, and a strip-shaped input gate and an accumulation gate that are sequentially arranged adjacent to the input diode. In the configuration including a charge input section mainly consisting of a charge input section and a charge transfer section adjacent thereto that outputs charges transferred from the charge input section as a time-series signal, the strip-shaped input gate is made of a high-resistance material. This is achieved by forming a voltage applying electrode for adjusting the potential of each part of the input gate at a distance corresponding to a predetermined number of stages of the charge transfer part on the input gate.

‘f} 発明の実施例 以下、本発明に係る電荷転送装置の実施例を図面によっ
て詳述する。
'f} Embodiments of the Invention Hereinafter, embodiments of the charge transfer device according to the present invention will be described in detail with reference to the drawings.

第2図は本発明による電荷転送装置の特に電荷入力部を
中心とした一実施例を示す構成図(平面図)であって、
前記第1図と同等部位には同一符号を付して示してある
FIG. 2 is a configuration diagram (plan view) showing an embodiment of the charge transfer device according to the present invention, particularly focusing on the charge input section,
Components equivalent to those in FIG. 1 are designated by the same reference numerals.

本発明が前記第1図に示した従来のもののと異なるとこ
ろは、入力ゲート1を長手方向の電位に勾配が生じる如
く高低抵抗材質で形成し、CCDの段数にして例・えば
5段あるいは10段ごとに、この入力ゲートーに電圧印
加電極Wを設けたことである。
The difference between the present invention and the conventional one shown in FIG. 1 is that the input gate 1 is formed of a material with high and low resistance so that the potential in the longitudinal direction has a gradient, and the number of CCD stages is, for example, 5 or 10. This is because a voltage applying electrode W is provided to this input gate for each stage.

ちなみに、この電圧印加電極Wのそれぞれには電圧印加
引出し端子10が設けられており、それぞれ少しずつ異
なった補正電圧V。が印加されるようになっている。こ
うして策を講じる理由は、上記したように入力ゲートー
とその下の絶縁膜ならびびにその直下の半導体基板で形
成されるものは、その長手方向に帯状のMIS構成体を
構成するものであるが、その部分におけるいわゆるしき
し、値電圧VTは一定でなく、長手方向にゆるやかな波
を打って変化しているためである。
Incidentally, each of the voltage application electrodes W is provided with a voltage application lead-out terminal 10, and each has a slightly different correction voltage V. is applied. The reason for taking this measure is that, as mentioned above, the input gate, the insulating film underneath it, and the semiconductor substrate directly below it constitute a strip-shaped MIS structure in the longitudinal direction. This is because the so-called threshold voltage VT in the portion is not constant, but changes in a gentle wave in the longitudinal direction.

そのために前記したように電荷流入量にばらつきを生じ
るのであるが、各引出し端子101こ印加する電圧をV
Gとして表わすならば、実質的にIVG−VTIの量を
入力ゲートの各部分でほとんど同じ‘こしてやれば受光
素子のばらつきをも含めて上記問題は解決することにな
る。
For this reason, as mentioned above, variations occur in the amount of charge flowing in, but the voltage applied to each extraction terminal 101 is
If expressed as G, the above problem, including variations in the light receiving elements, can be solved by making the amount of IVG-VTI substantially the same at each part of the input gate.

したがって今、上記IVG−VTIの値を各部分で一定
にするように補正電圧Voの値を少しずつ変えて、各端
子1川こ印加してやる。こうすれま、上記のように波を
打つような形で変化している実効しきい値電圧は補正さ
れ、入力ゲートーの長手方向に沿って、いわば折れ線近
似で、入力特性が補正され、したがって、前記受光部か
ら信号処号部への電荷の供給量はほぼ均一化され、素子
特性は大いに向上することになり、よって再生画像の画
質は著しく改善される。(g)発明の効果 以上、詳細に説明したように、本発明の電荷転送装置で
は、その電荷入力部の構造において、入力ゲートの各部
分直下の実質的なIVc/VTIの値は大体均一化され
るために素子特性に顕著な改善効果が認められ、実用上
多大の効果が期待できる。
Therefore, now, the value of the correction voltage Vo is changed little by little so that the value of IVG-VTI is constant in each part, and one voltage is applied to each terminal. In this way, the effective threshold voltage, which is changing in a wavy manner as described above, is corrected, and the input characteristics are corrected along the longitudinal direction of the input gate, so to speak, using a polygonal line approximation. The amount of charge supplied from the light receiving section to the signal processing section is approximately equalized, the device characteristics are greatly improved, and the quality of the reproduced image is therefore significantly improved. (g) Effects of the Invention As explained in detail above, in the charge transfer device of the present invention, in the structure of the charge input section, the substantial IVc/VTI values directly under each portion of the input gate are approximately equalized. As a result, a remarkable improvement effect on device characteristics is observed, and great practical effects can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従釆の電荷転送装置の構造を示す要部平面図、
第2図は本発明に係る電荷転送装置の一実施例を示す要
部平面図である。 D……受光素子、ID・・…・入力ダイオード、1・・
・・・・入力ゲート、2・・・・・・蓄積ゲート、3・
・・・・・移送ゲート、4・・・・・・転送電極。 第1図 第2図
Figure 1 is a plan view of the main part showing the structure of the secondary charge transfer device;
FIG. 2 is a plan view of essential parts showing an embodiment of the charge transfer device according to the present invention. D...Photodetector, ID...Input diode, 1...
...Input gate, 2...Storage gate, 3.
...Transfer gate, 4...Transfer electrode. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 受光素子で光電変換されて生じた電荷を導入する複
数の入力ダイオードと、該入力ダイオードに隣接して順
次配設された帯状の入力ゲートおよび蓄積ゲートを主体
とする電荷入力部と、該電荷入力部に隣接して当該電荷
入力部から移送された電荷を時系列信号として出力する
電荷転送部とを備えた構成において、前記帯状の入力ゲ
ートを高抵抗材質で形成すると共に、当該入力ゲートに
は前記電荷転送部の所定段数ごとの距離を隔てて入力ゲ
ート各部の電圧調整用としての電圧印加電極を設けてな
ることを電荷転送装置。
1. A plurality of input diodes that introduce charges generated by photoelectric conversion in a light-receiving element, a charge input section mainly consisting of a band-shaped input gate and an accumulation gate sequentially arranged adjacent to the input diodes, and In the configuration including a charge transfer section adjacent to the input section and outputting the charges transferred from the charge input section as a time-series signal, the strip-shaped input gate is formed of a high-resistance material, and the input gate is made of a high-resistance material. In the charge transfer device, voltage application electrodes for voltage adjustment of each part of the input gate are provided at distances for each predetermined number of stages of the charge transfer part.
JP58064444A 1983-04-14 1983-04-14 charge transfer device Expired JPS6034275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58064444A JPS6034275B2 (en) 1983-04-14 1983-04-14 charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58064444A JPS6034275B2 (en) 1983-04-14 1983-04-14 charge transfer device

Publications (2)

Publication Number Publication Date
JPS59191376A JPS59191376A (en) 1984-10-30
JPS6034275B2 true JPS6034275B2 (en) 1985-08-07

Family

ID=13258443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58064444A Expired JPS6034275B2 (en) 1983-04-14 1983-04-14 charge transfer device

Country Status (1)

Country Link
JP (1) JPS6034275B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365782B2 (en) * 1986-02-08 1991-10-15
JPH0562059B2 (en) * 1986-08-26 1993-09-07 Sanyo Shiki Kk
US10987793B2 (en) 2006-02-03 2021-04-27 Black & Decker Inc. Power tool with tool housing and output spindle housing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365782B2 (en) * 1986-02-08 1991-10-15
JPH0562059B2 (en) * 1986-08-26 1993-09-07 Sanyo Shiki Kk
US10987793B2 (en) 2006-02-03 2021-04-27 Black & Decker Inc. Power tool with tool housing and output spindle housing

Also Published As

Publication number Publication date
JPS59191376A (en) 1984-10-30

Similar Documents

Publication Publication Date Title
US6101232A (en) Active pixel sensor with intra-pixel charge transfer
JPS60254498A (en) Multilinear charge transmission array
JPH09181976A (en) Solid-state image pickup element
CA2355307C (en) Fabricating a hybrid imaging device
JPH04172085A (en) Solid image pickup device
JPS59108457A (en) Solid-state image pickup element
JPS6156912B2 (en)
EP0045608B1 (en) Apparatus for sequential readout
JPS5831669A (en) Solid-state image pickup device
US5748232A (en) Image sensor and driving method for the same
KR0127300B1 (en) Solid-state image sensor
JPS6034275B2 (en) charge transfer device
US7054041B2 (en) Image sensor method and apparatus having addressable pixels and non-destructive readout
JPH06101815B2 (en) Imaging device
JPS6161589B2 (en)
JP2509592B2 (en) Stacked solid-state imaging device
JPS61188965A (en) Solid-state image sensor
JPS58195373A (en) Solid-state photoelectric converter
JP3271069B2 (en) Adjustment method for CCD solid-state imaging device
JPS58210662A (en) Charge transfer device
JPS60244064A (en) Solid-state image pickup device
JPS5870685A (en) Solid-state image pickup device
JPH084128B2 (en) Image reader
JPH065728B2 (en) Light detection method
JPH0294565A (en) Solid-state image sensing device