JPS6034034B2 - Air conditioning equipment - Google Patents

Air conditioning equipment

Info

Publication number
JPS6034034B2
JPS6034034B2 JP1089779A JP1089779A JPS6034034B2 JP S6034034 B2 JPS6034034 B2 JP S6034034B2 JP 1089779 A JP1089779 A JP 1089779A JP 1089779 A JP1089779 A JP 1089779A JP S6034034 B2 JPS6034034 B2 JP S6034034B2
Authority
JP
Japan
Prior art keywords
heating
compressor
suction
switching valve
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1089779A
Other languages
Japanese (ja)
Other versions
JPS55102865A (en
Inventor
秀夫 平野
二郎 柚田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1089779A priority Critical patent/JPS6034034B2/en
Publication of JPS55102865A publication Critical patent/JPS55102865A/en
Publication of JPS6034034B2 publication Critical patent/JPS6034034B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は冷暖房装置に関するもので、その目的とすると
ころは、除霜から暖房への復帰時に四方弁切替えにより
生ずる圧縮機の液圧縮の防止をすることにより、吐出弁
の破損や軸と軸受との焼付きを解消させ寿命の長い圧縮
機とし、信頼性の向上した冷暖房装置を得ようとするも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an air conditioning system, and its purpose is to prevent liquid compression in a compressor caused by switching the four-way valve when returning from defrosting to heating. The aim is to eliminate damage to the shaft and seizure of the shaft and bearings, create a compressor with a long life, and obtain an air-conditioning system with improved reliability.

従来の冷暖房装置の1例は第3図に示すように圧縮機1
、四方弁2、室外側熱交換器3、キャピラリチューブ4
、室内側熱交換器5を連絡配管し冷暖房冷媒回路を構成
している。上記四方弁2は基盤17に金具18によって
固定され、圧縮機1は基盤17に支持台19によって弾
性的に支持されると共に、圧縮機1の吐出管13、吸入
管12は、それぞれ十分に弾性を有する様に曲り部20
,21を設けた吐出・吸入接続管22,23によって上
記四方弁2に接続されている。この結果、吐出・吸入接
続管22,23は長くしなければならず、特に吸入管1
0と接続し低圧冷煤ガスが流通する吸入接続管23の径
は太く、その冷煤通路容積は大きくなる欠点があった。
一方、暖房運転時、室外熱交換器3の着霜により除霜運
転に入るが、除霜中は未蒸発の液を含む冷煤が室内側熱
交換器5、四方弁2、吸入接続管23を経て、気液分離
器11に至り、液とガスとに分離され、ガスのみが圧縮
機1に吸入される。
An example of a conventional air conditioning system is a compressor 1 as shown in FIG.
, four-way valve 2, outdoor heat exchanger 3, capillary tube 4
, the indoor heat exchanger 5 is connected to the piping to form an air conditioning/heating refrigerant circuit. The four-way valve 2 is fixed to the base 17 with a metal fitting 18, the compressor 1 is elastically supported on the base 17 by a support 19, and the discharge pipe 13 and suction pipe 12 of the compressor 1 have sufficient elasticity. The bent portion 20 has
, 21 are connected to the four-way valve 2 through discharge/suction connecting pipes 22 and 23 provided with the four-way valve 2. As a result, the discharge/suction connecting pipes 22, 23 must be made longer, especially the suction pipe 1.
The diameter of the suction connecting pipe 23 connected to 0 and through which the low-pressure cold soot gas flows is large, and the volume of the cold soot passage becomes large.
On the other hand, during heating operation, defrosting operation begins due to frost formation on the outdoor heat exchanger 3, but during defrosting, cold soot containing unevaporated liquid is transferred to the indoor heat exchanger 5, the four-way valve 2, and the suction connection pipe 23. The liquid then reaches a gas-liquid separator 11 where it is separated into liquid and gas, and only the gas is sucked into the compressor 1.

しかし、暖房に復帰する時、四方弁2の切替えにより除
霜中高圧側であった室外側熱交換器3と吸入接続管23
とが達通されるので吸入接続管23内圧力が急上昇し、
このため復帰直前に冷煤通路容積の大きい吸入接続管2
3内に残留した液冷媒は瞬時にミスト化され、かつガス
体積は減少されるので、冷煤の流れは液量の多いミスト
流れとなる。この袷煤が、気液分離器11に入るが、液
がミスト化されているため分離されず、そのまま圧縮機
1に吸入される。一方、圧縮機内部温度は除霜により十
分低下しているため、圧縮機内部の加熱によりミスト化
された液袷媒をガス化できない。
However, when returning to heating, the four-way valve 2 is switched between the outdoor heat exchanger 3, which was on the high pressure side during defrosting, and the suction connecting pipe 23.
As the pressure inside the suction connecting pipe 23 increases rapidly,
Therefore, just before returning, the suction connecting pipe 2 with a large cold soot passage volume is
Since the liquid refrigerant remaining in the inside 3 is instantaneously turned into mist and the gas volume is reduced, the flow of cold soot becomes a mist flow with a large amount of liquid. This soot enters the gas-liquid separator 11, but since the liquid is a mist, it is not separated and is sucked into the compressor 1 as it is. On the other hand, since the internal temperature of the compressor has been sufficiently lowered by defrosting, the liquid medium that has been turned into a mist due to the heating inside the compressor cannot be gasified.

その結果、液圧縮となり、圧縮機シリンダ内圧力の急上
昇が発生した。この液圧縮は、冷煤通路容積の大きい吸
入接続管に残留した液冷媒と圧力の急激な上昇によるも
のであり、暖房運転時はさげることができず、圧縮機シ
リンダ内圧力が急激に増大するため、吐出弁の破損、軸
と軸受との焼付きなどをきたし、圧縮機の寿命を低下さ
せる等の欠点となっていた。本発明は上記のような欠点
を解消したもので、以下実施例として示した図面に基づ
いてその構成を説明する。
As a result, liquid compression occurred and the pressure inside the compressor cylinder rose sharply. This liquid compression is due to the liquid refrigerant remaining in the suction connection pipe, which has a large cold soot passage volume, and a sudden increase in pressure.It cannot be reduced during heating operation, and the pressure inside the compressor cylinder increases rapidly. This has caused problems such as damage to the discharge valve and seizure of the shaft and bearing, which shortens the life of the compressor. The present invention eliminates the above-mentioned drawbacks, and the structure thereof will be explained below based on the drawings shown as examples.

1は圧縮機、2は袷腰切替弁としての四方弁、3は室外
側熱交換器、4は減圧装置としてのキャピラリチューブ
、5は室内側熱交換器である。
1 is a compressor, 2 is a four-way valve as a waist switching valve, 3 is an outdoor heat exchanger, 4 is a capillary tube as a pressure reducing device, and 5 is an indoor heat exchanger.

6は流路切替弁で、四方弁2にできるだけ近く接続管7
により接続され、流路切替弁6と気液分離器入口10と
は2本の吸入接続管8,9により接続され、気液分離器
11と圧縮機1とは吸入管12により接続されている。
6 is a flow path switching valve, which connects the connecting pipe 7 as close as possible to the four-way valve 2.
The flow path switching valve 6 and the gas-liquid separator inlet 10 are connected by two suction connecting pipes 8 and 9, and the gas-liquid separator 11 and the compressor 1 are connected by a suction pipe 12. .

一方、圧縮機1の吐出側は、圧縮機1と四方弁2とが吐
出管13、吐出接続管14により接続されている。また
、室外側熱交換器3に取り付けられた負特性感温素子1
5は、制御回路16を介して、四方弁2、流路切替弁6
に電気的接続れている。暖房運転時は、図中の実線矢印
で示すように、圧縮機1より吐出された高温、高圧の冷
煤は、吐出管13、吐出接続管14、四方弁2を経て、
室内側熱交換器5に至り凝縮され、液化した冷媒は、キ
ャピラリチューブ4により減圧され、室外側熱交換器3
でガス化された後、四方弁2、流路切替弁6、吸入接続
管8、気液分離器11、吸入管12を経て圧縮機1に吸
入される。
On the other hand, on the discharge side of the compressor 1, the compressor 1 and the four-way valve 2 are connected by a discharge pipe 13 and a discharge connecting pipe 14. In addition, the negative temperature sensing element 1 attached to the outdoor heat exchanger 3
5 connects the four-way valve 2 and the flow path switching valve 6 via the control circuit 16.
There is an electrical connection. During heating operation, as shown by the solid arrow in the figure, the high temperature and high pressure cold soot discharged from the compressor 1 passes through the discharge pipe 13, the discharge connection pipe 14, and the four-way valve 2.
The condensed and liquefied refrigerant reaches the indoor heat exchanger 5, is depressurized by the capillary tube 4, and is transferred to the outdoor heat exchanger 3.
After being gasified, it is sucked into the compressor 1 through the four-way valve 2, the flow path switching valve 6, the suction connection pipe 8, the gas-liquid separator 11, and the suction pipe 12.

室外側熱交換器3に着霜が始まり、負特性感温素子15
の温度が除霜開始温度以下になると、制御回路16によ
り四方弁2が切替えられ、破線矢印で示す除霜サイクル
となるが、流路切替弁6は第2図に示したように切替わ
らない。除霜が終了して、負特性感温素子15の温度が
復帰温度に達したとき、制御回路16により、四方弁2
と流路切替弁6が同時に切替えられ、袷腰サイクルとな
ると同時に、吸入冷煤の流れは吸入接続管8から9に変
えられる。次に、暖房、除霜を経て切替え信号の1つ(
除霜から暖房への復帰信号)により暖房に復帰するとき
は吸入接続管8に戻る。
Frost begins to form on the outdoor heat exchanger 3, and the negative temperature sensing element 15
When the temperature falls below the defrosting start temperature, the four-way valve 2 is switched by the control circuit 16, resulting in a defrosting cycle indicated by the broken line arrow, but the flow path switching valve 6 is not switched as shown in FIG. . When defrosting is completed and the temperature of the negative temperature sensing element 15 reaches the return temperature, the control circuit 16 causes the four-way valve 2 to
and the flow path switching valve 6 are switched at the same time, and at the same time the suction cycle is started, the flow of the suction cold soot is changed from the suction connection pipe 8 to the suction connection pipe 9. Next, one of the switching signals (
When returning to heating by a return signal from defrosting to heating, the air returns to the suction connection pipe 8.

以後、第2図に示すようにこれを繰返す。除霜から暖房
への復帰時に、液冷煤の残留している吸入接続管8から
、液冷媒の存在しない吸入接続管9に切替えられるため
、四方弁2と気液分離器11とを接続する管内はガス冷
媒だけとなり、復帰時の液圧縮を防止できる。また気温
が低くて吸入接続管8に残留した液も、暖房運転中にガ
ス化してしまい、次の流路切替弁作動中には液のない状
態となっている。その結果、従来液圧縮の危険性が高か
った低外気温時でも、本発明ではこれを確実に防ぐこと
ができるようになった。同機の作用は、四方弁切替時に
流路切替弁が切替わっても得られる。尚、上記は吸入接
続管を2本使用した例で説明したが、2本以上の場合も
液冷煤の残留していない吸入接続管へ、除霜から暖房へ
の復帰時に切替えられるようにすれば同様の作用が得ら
れる。本発明は上記のような構成としたので、除霜から
暖房への復帰時の液圧縮が防止できるので、液圧縮によ
る吐出弁の破損や軸と軸受の焼付きを解消することがで
き、圧縮機の寿命が伸び、冷暖房装置としての信頼性が
向上する等の効果がある。
Thereafter, this process is repeated as shown in FIG. When returning from defrosting to heating, the four-way valve 2 and the gas-liquid separator 11 are connected because the suction connection pipe 8 in which liquid-cooled soot remains is switched to the suction connection pipe 9 in which no liquid refrigerant exists. Only gas refrigerant is inside the pipe, which prevents liquid compression during return. Further, the liquid remaining in the suction connecting pipe 8 due to the low temperature is also gasified during the heating operation, and there is no liquid during the next operation of the flow path switching valve. As a result, the present invention can reliably prevent liquid compression even at low outside temperatures, where the risk of liquid compression was conventionally high. The same effect can be obtained even if the flow path switching valve is switched when the four-way valve is switched. The above explanation was based on an example using two suction connecting pipes, but even if there are two or more suction connecting pipes, it is possible to switch to the suction connecting pipe without residual liquid cooling soot when returning from defrosting to heating. A similar effect can be obtained. Since the present invention has the above-described configuration, it is possible to prevent liquid compression when returning from defrosting to heating, and it is possible to eliminate damage to the discharge valve and seizure of the shaft and bearing due to liquid compression. This has the effect of extending the life of the machine and improving its reliability as a heating and cooling system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例としての冷暖房サイクル図で
、実線矢印は暖房サイクルを、破線矢印は除霜サイクル
を示す。 第2図は流路切替弁、四方弁の動作図、第3図は従来例
を示す冷暖房サイクル図。1・・・圧縮機、2・・・冷
暖切替弁、3・・・室外側熱交換器、4・・・減圧装置
、5・・・室内側熱交換器、6・・・流路切替弁、8,
9・・・吸入接続管、11・・・気液分離器、16・・
・制御回路。 第2図 第1図 第3図
FIG. 1 is a heating and cooling cycle diagram as an embodiment of the present invention, where solid arrows indicate heating cycles and broken arrows indicate defrosting cycles. FIG. 2 is an operational diagram of a flow path switching valve and a four-way valve, and FIG. 3 is a heating and cooling cycle diagram showing a conventional example. 1...Compressor, 2...Cooling/heating switching valve, 3...Outdoor heat exchanger, 4...Pressure reducing device, 5...Indoor heat exchanger, 6...Flow path switching valve ,8,
9... Suction connection pipe, 11... Gas-liquid separator, 16...
・Control circuit. Figure 2 Figure 1 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 室外側熱交換器、減圧装置、室内側熱交換器、冷暖
切替弁、圧縮機を有し、上記冷暖切替弁と上記圧縮機と
を接続する吸入管として、流路切替弁と一端を上記流路
切替弁に接続した複数の吸入接続管とを設け、吸入接続
管の切替えを冷暖切替弁の切替え信号の少なくとも一方
に応動して行うよう制御回路を設けたことを特徴とする
冷暖房装置。
1 It has an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, a heating/cooling switching valve, and a compressor, and is used as a suction pipe connecting the cooling/heating switching valve and the compressor, with one end connected to the flow path switching valve as described above. A heating and cooling device comprising: a plurality of suction connecting pipes connected to a flow path switching valve; and a control circuit so as to switch the suction connecting pipes in response to at least one of switching signals from the cooling/heating switching valve.
JP1089779A 1979-01-31 1979-01-31 Air conditioning equipment Expired JPS6034034B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1089779A JPS6034034B2 (en) 1979-01-31 1979-01-31 Air conditioning equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1089779A JPS6034034B2 (en) 1979-01-31 1979-01-31 Air conditioning equipment

Publications (2)

Publication Number Publication Date
JPS55102865A JPS55102865A (en) 1980-08-06
JPS6034034B2 true JPS6034034B2 (en) 1985-08-06

Family

ID=11763083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1089779A Expired JPS6034034B2 (en) 1979-01-31 1979-01-31 Air conditioning equipment

Country Status (1)

Country Link
JP (1) JPS6034034B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176747A (en) * 1990-11-12 1992-06-24 Kensaku Aoki Front and rear end collision prevention device for vehicle and the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176747A (en) * 1990-11-12 1992-06-24 Kensaku Aoki Front and rear end collision prevention device for vehicle and the like

Also Published As

Publication number Publication date
JPS55102865A (en) 1980-08-06

Similar Documents

Publication Publication Date Title
US2512758A (en) Combined refrigerant purifier and control apparatus
JPS6034034B2 (en) Air conditioning equipment
JPH07190515A (en) Freezer
JPH078999Y2 (en) Air source heat pump
JP3365027B2 (en) Air conditioner
JP4004356B2 (en) Oil level detection method and apparatus for compressor
JP3481274B2 (en) Separate type air conditioner
CN1019894C (en) Refrigerating device using temperature difference type expansion valve as throttle control
JPS6155020B2 (en)
JPH03164661A (en) Air conditioner
JPS5865Y2 (en) Refrigeration equipment
KR100261713B1 (en) Expansion apparatus of airconditioner
JPS5862389A (en) Refrigerating cycle
JPS6015081Y2 (en) Refrigeration equipment
CN100532975C (en) Multi-split air conditioner system
KR100300579B1 (en) Accumulator
CN118208869A (en) Refrigerating system, control method of refrigerating system and cold chain equipment
CN114151874A (en) Multi-split low-temperature starting device and control method
JPH06137693A (en) Controlling method for starting time operation of annual cooling refrigerating cycle
JPH05264131A (en) Accumulator
JPH1089781A (en) Refrigerator unit, refrigerator and operating method for the refrigerator
JPH0579722A (en) Air conditioner
JPS58168851A (en) Method of defrosting air heat source heat pump
JPH0578739B2 (en)
JPS6355630B2 (en)