JPS6033882A - Welding method of aluminum or aluminum alloy member and aluminum alloy member - Google Patents

Welding method of aluminum or aluminum alloy member and aluminum alloy member

Info

Publication number
JPS6033882A
JPS6033882A JP14236183A JP14236183A JPS6033882A JP S6033882 A JPS6033882 A JP S6033882A JP 14236183 A JP14236183 A JP 14236183A JP 14236183 A JP14236183 A JP 14236183A JP S6033882 A JPS6033882 A JP S6033882A
Authority
JP
Japan
Prior art keywords
welding
aluminum alloy
passages
medium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14236183A
Other languages
Japanese (ja)
Inventor
Tsuneo Kinoshita
木下 統雄
Yoichiro Yoneda
陽一郎 米田
Junichiro Kawakami
川上 順一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kobe Steel Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kobe Steel Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kobe Steel Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP14236183A priority Critical patent/JPS6033882A/en
Publication of JPS6033882A publication Critical patent/JPS6033882A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded

Abstract

PURPOSE:To cool the periphery of the weld zone of aluminum or aluminum alloy members and to prevent microcracking owing to weld strain by providing passages near the weld line of said members and passing a cooling medium in said passages. CONSTITUTION:Members 4 for introducing a medium and members 4a for discharging the medium are inserted into the openings of the passages 2 provided to aluminum alloy plates 1 and the passages 2 are hermetically sealed in the stage of welding the plates 1. A refrigerant is then introduced from the parts 4 into the passages and is removed from the part 4a form the refrigerant flow in the passages 2 and thereafter the welding of a groove W is started. The heat transmitting to the heat-affected zone is thus transmitted through the walls of the aluminum plate materials to the medium in the passages 2 and is carried to the outside of the system, by which the transfer of the heat to the entire part of the materials 1 is prevented without excessive heating-up near the weld line.

Description

【発明の詳細な説明】 本発明はアルミニウム又はアルミニウム合金部材を溶接
欠陥の無い状態で溶接する方法に関し、詳細には溶接歪
み、ミクロ割れ及び溶接軟化域の発生等を可及的に防1
トすることのできる溶接方法およびアルミニウム合金部
材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for welding aluminum or aluminum alloy members without welding defects, and more specifically, to a method for welding aluminum or aluminum alloy members without welding defects.
The present invention relates to a welding method and an aluminum alloy member that can be used.

アルミニウム又はアルミニウム合金(以下代表的にアル
ミニウム合金と言う)は軽量性、良熱伝導性、耐誘性等
の特長を有している為広範囲に利用されているが、最近
では大型構造物の一部にも利用されつつある。その−例
として鉄道車両の構体や船舶の船殻、上部構造を挙げる
ことができるが、これらの大型構造物に用いるアルミニ
ウム合金板は勢い大きいものとなり、溶接線も長くなっ
てくる。一方アルミニウムはその特性上薄板として利用
されることが多く、薄板の長尺溶接を行なう場面が多い
。その為溶接歪の発生が溶接作業上の第1番目の欠点と
して挙げられ、従来は拘束溶接や周辺冷却溶接が行なわ
れているが、拘束溶接の場合は装置が大がかりとなるに
もかかわらず歪防止効果は弱い。一方周辺冷却溶接とし
ては綿布や吸水性不燃綿状体を介して水を接触させると
いう方法が採用されている程度であり、冷却効果が不十
分であると共に溶接熱によって発生する蒸気が溶接雰囲
気に充満してブローホールを発生させる原因になる場合
もある。
Aluminum or aluminum alloys (hereinafter typically referred to as aluminum alloys) are widely used because they have features such as light weight, good thermal conductivity, and resistance to induction. It is also being used by departments. Examples of this include the structures of railway vehicles, the hulls and superstructures of ships, and the aluminum alloy plates used in these large structures are bulky and the weld lines are long. On the other hand, due to its characteristics, aluminum is often used as a thin plate, and long thin plates are often welded together. Therefore, the generation of welding distortion is cited as the first drawback in welding work, and conventionally restraint welding and peripheral cooling welding are performed, but in the case of restraint welding, even though the equipment is large-scale, distortion The prevention effect is weak. On the other hand, for peripheral cooling welding, the only method that has been adopted is to bring water into contact with cotton cloth or a water-absorbing noncombustible cotton-like material, but the cooling effect is insufficient and the steam generated by welding heat enters the welding atmosphere. It can also become full and cause a blowhole.

溶接歪に次ぐ溶接欠陥としてはアルミニウム合金中の金
属間化合物の低融点性に基づくミクロ割れと、溶接熱の
保有に基づく軟化域の発生が挙げられるが、前記拘束溶
接法では当然ながらこれらの欠陥が解消できず、後者の
周辺冷却溶接法でも冷却不十分の為これらの欠陥を解消
する能力は持たない。
Next to welding distortion, welding defects include micro-cracks due to the low melting point of intermetallic compounds in aluminum alloys and the occurrence of softened regions due to retention of welding heat, but the above-mentioned restraint welding method naturally eliminates these defects. cannot be eliminated, and even the latter peripheral cooling welding method does not have the ability to eliminate these defects due to insufficient cooling.

この様なところから冷却効率が高く、しかも発生ノへ気
による溶接雰囲気の汚染という問題を生じない様に新た
な周辺冷却溶接法を確立することが必要であり、その結
果本発明によってこれらを解決することに成功した。
From this point of view, it is necessary to establish a new peripheral cooling welding method that has high cooling efficiency and does not cause the problem of contamination of the welding atmosphere due to generated air, and as a result, the present invention solves these problems. succeeded in doing so.

即ち本発明の目的は効率的で且つ安全な周辺冷却溶接法
を確立することによって、溶接歪の発生を防止すると共
にミクロ割れのない溶接継手を得、更に溶接軟化域の発
生を極力防止しようとする方法と、このためもつとも効
果的な被溶接部材を得るものであり、上記目的の達成の
ための本発明の溶接方法とはアルミニウム合金部材同士
を溶接するに当り溶接線の近傍に冷却媒体を通過させる
方法と、これに必要な冷却媒体の通路を被溶接部材に設
ける点に要旨を有するものである。
That is, the purpose of the present invention is to establish an efficient and safe peripheral cooling welding method to prevent the occurrence of weld distortion and obtain a welded joint free of microcracks, and further to prevent the occurrence of weld softening regions as much as possible. The welding method of the present invention to achieve the above object is to provide a method for welding aluminum alloy members together, and for this purpose to obtain a most effective member to be welded. The gist lies in the method of passing the cooling medium and the provision of a path for the cooling medium necessary for this in the welded member.

本発明の適用対象であるアルミ竺つム合金部材の溶接継
手は、突合わせ、すみ肉、重ね、へり等の如何を問わず
、又母材形状、開先形状、溶接姿勢、溶接手法すなわち
MIG溶接、TIG#接等の別、溶接条件等において特
別な制限を設けないが、前記趣旨から理解される様に、
溶接入熱は過大になることを避けることが望ましく、又
溶接線の近傍に冷却媒体を自然的もしくは強制的に通過
させる為の空間的余裕が存在しなければならない。溶接
入熱を過大しないことについては、例えば第1図に示す
様に、(母材肉厚)×(溶接入熱)≦K(但しKは定数
)という条件を満足する様に配慮する程度でよい。勿論
この関係は、後に詳述する冷却条件によって多少の改変
を加えなければならない場合もあるが、要は母村内への
蓄熱亀、換言すれば放熱表面積に対する母材断面積の大
小によって定まる保有熱量が多くなるにつれて溶接入熱
を抑制すべきであることを意味し、その都度設定すれば
よい。
The welded joints of aluminum threaded alloy members to which the present invention is applied are applicable regardless of whether they are butted, filleted, overlapped, edged, etc., and the shape of the base metal, the shape of the groove, the welding posture, the welding method, i.e., MIG There are no special restrictions on welding, TIG# welding, etc., welding conditions, etc., but as understood from the above purpose,
It is desirable to avoid excessive welding heat input, and there must be space in the vicinity of the weld line to allow a cooling medium to pass naturally or forcedly. In order to avoid excessive welding heat input, for example, as shown in Figure 1, consideration should be given to satisfying the following condition: (base metal thickness) x (welding heat input) ≦K (where K is a constant). good. Of course, this relationship may have to be modified slightly depending on the cooling conditions, which will be explained in detail later, but the point is that the amount of heat stored in the base material is determined by the size of the cross-sectional area of the base material relative to the heat radiation surface area. It means that the welding heat input should be suppressed as the value increases, and it can be set each time.

さて溶接線の近傍を通過する冷却媒体は母材熱影響部か
らの放熱を促進するものであるが、アーク発生面側、即
ち、溶接実施側面へ通過させるときには、該媒体がアー
ク中へ混入することを避ける必要があるので、溶接線に
沿って冷却媒体通路(以下単に通路ということがある)
を形成し、媒体及び媒体からの発生蒸気をアーク雰囲気
から完全に遮断することが必要であり、他方アーク発生
面と反対側へ該媒体と通過させるときには、上記耐応を
若干緩和させてもよいが、アーク発生面側にならって冷
却媒体通路を形成する方法がもつとも効率的であり、且
つ冷却効果も確実である。尚冷却媒体として気体を使用
する場合は冷却能力が多少劣るので溶接入熱を少なめに
抑制するとか、送風量を多くする等の配慮が望まれ、冷
却管理上やや困難もあるが、液体又はミスト、例えば液
体窒素、冷水、温水等を用いた場合は冷却能力が優れ冷
却管理も容易になるので、一般的には液体又はミストの
使用が推奨される。
Now, the cooling medium that passes near the weld line promotes heat radiation from the heat affected zone of the base metal, but when it passes to the arc generation side, that is, the welding side, the medium mixes into the arc. It is necessary to avoid this by creating a cooling medium passage (hereinafter simply referred to as a passage) along the weld line.
It is necessary to completely block the medium and the vapor generated from the medium from the arc atmosphere by forming a However, the method of forming the cooling medium passage along the arc generating surface side is more efficient and has a reliable cooling effect. When using gas as a cooling medium, the cooling capacity is somewhat inferior, so it is desirable to suppress welding heat input or increase the amount of air flow, which may be somewhat difficult in terms of cooling management, but liquid or mist For example, when using liquid nitrogen, cold water, hot water, etc., the cooling ability is excellent and cooling management becomes easy, so it is generally recommended to use liquid or mist.

冷却媒体通路の形態等については後述の実施例で明らか
にしていくが、構造物中への取付位置によっては冷却媒
体通路をそのまま残しておいても良い場合があるので、
その様な部位に用いる板材であれば、アルミニウム合金
部材の押出成形と同時に該通路を一体的に形成すること
ができ、溶接準備作業が軽減される。一方溶接後該通路
を取除いた方が良い場合は、角パイプ状或は溝状の通路
を準備し、これを溶接線近傍に圧接又は貼接等の手段で
取付けるが、この場合は、用済後肢通路を他の溶接母材
にも転用できるので材料コスト面において有利である。
The form of the cooling medium passage will be clarified in the examples described later, but depending on the installation position in the structure, it may be possible to leave the cooling medium passage as it is.
If a plate material is used for such a portion, the passage can be integrally formed at the same time as the extrusion molding of the aluminum alloy member, reducing the welding preparation work. On the other hand, if it is better to remove the passage after welding, prepare a square pipe-shaped or groove-shaped passage and attach it near the weld line by pressure welding or gluing. This is advantageous in terms of material costs because the hind limb passageway can be used for other welding base materials.

尚該通路内であって溶接母材側に放熱フィンを形成し冷
却能力を高める様に工夫することもできる。又上記通路
は溶接線を挟んで左右に形成するのが一般的であるが左
右又は裏表で適当に組合わせたり、或は溶接線と直交す
る方向に梁材で結合することにより機械的な歪防止構造
とすることもできる。また溶接母材の片側が溶接歪の発
生しにくい構造であったり、ミクロ割れ、溶接軟化域の
発生しにくい材質である場合には、溶接歪、ミクロ割れ
、溶接軟化域の発生しやすい溶接母材側にのみ該通路を
形成する構造にすることもできる。
It is also possible to form radiation fins on the welding base metal side within the passage to increase the cooling capacity. In addition, although the above-mentioned passages are generally formed on the left and right sides with the weld line in between, mechanical distortion can be avoided by appropriately combining them on the left and right sides or front and back sides, or by connecting them with beams in the direction orthogonal to the weld line. It can also be a prevention structure. In addition, if one side of the weld base metal has a structure that does not easily cause weld distortion, or is made of a material that does not easily cause microcracks or weld softening areas, It is also possible to adopt a structure in which the passage is formed only on the material side.

以下実施例図面に沿って本発明を説明する。The present invention will be explained below with reference to the drawings.

第2図はアルミニウム合金板材lの溶接アーク発生面と
反対側面に断面形状が矩形の通路2を溶接線Wに沿う方
向に一体的に押出成形してなるアルミニウム合金板材1
を突合せ溶接する場合の説明図で、突合せ部には■形開
先を形成している。
Figure 2 shows an aluminum alloy plate 1 formed by integrally extruding a passage 2 with a rectangular cross-section in the direction along the welding line W on the opposite side of the welding arc generating surface of the aluminum alloy plate L.
This is an explanatory diagram of butt welding, and a ■-shaped groove is formed at the butt part.

又4は通路2に装入して通路2内に冷却媒体(以下単に
媒体という)を流通させる為の媒体導入部材であり、一
方4aは媒体排出部材である。該媒体導入部材4及び媒
体排出部材4aは同一の構造をしているが、前者を媒体
導入に適した形状に、又後者を媒体の排出に適した形状
に改変することは自由である。第3(a)図は該媒体導
入部材4の構造を示すm−m線断面矢視図で、該媒体導
入部材4はノズル5の先端側周囲をゴム等の弾性材から
なるシュー6で被覆している。該シュー6の形状及び大
きさは、前記通路2の開口部を密封あるいは密着し得る
様に形成される。更にノくイブ5には媒体管7を接続す
る。
Further, 4 is a medium introduction member for inserting into the passage 2 and circulating a cooling medium (hereinafter simply referred to as medium) within the passage 2, while 4a is a medium discharging member. Although the medium introducing member 4 and the medium discharging member 4a have the same structure, the former can be freely modified into a shape suitable for introducing a medium, and the latter can be freely modified into a shape suitable for discharging a medium. FIG. 3(a) is a cross-sectional view taken along line mm showing the structure of the medium introduction member 4, in which the medium introduction member 4 covers the tip side of the nozzle 5 with a shoe 6 made of an elastic material such as rubber. are doing. The shape and size of the shoe 6 are such that it can seal or close the opening of the passage 2. Furthermore, a medium pipe 7 is connected to the knob 5.

そしてアルミニウム合金板材lの溶接に際しては、第3
(b)図(挿入状態を示す第2図相当図)に示す様に媒
体導入部材4及び媒体排出部材4aをアルミニウム合金
板材lの通路2開口部に挿入して通路2を密封すると共
に媒体導入部材4から冷媒を導入し冷媒排出部材4aか
ら抜き出すことによって通路2内に冷媒流を形成してお
く。
When welding aluminum alloy plate l, the third
(b) As shown in Figure 2 (corresponding to Figure 2 showing the inserted state), the medium introduction member 4 and the medium discharge member 4a are inserted into the opening of the passage 2 of the aluminum alloy plate l to seal the passage 2 and introduce the medium. A refrigerant flow is formed in the passage 2 by introducing refrigerant from the member 4 and extracting it from the refrigerant discharge member 4a.

こうした準備が整ったら開先部Wの溶接(MIG溶接等
)を開始する。これにより熱影響部に伝わる熱はアルミ
ニウム合金板材の壁を介して通路2内の媒体に伝達され
系外へ運びさられるので溶接線近傍が過度に昇温される
ことがなく、アルミニウム合金板材全体への伝熱も防止
することができる。その結果溶接熱によるアルミニウム
合金板材の歪が防止され又ミクロ割れや軟化域の発生等
”の問題も回避することができる。
Once these preparations are complete, welding (MIG welding, etc.) of the groove W is started. As a result, the heat transmitted to the heat-affected zone is transmitted to the medium in the passage 2 through the wall of the aluminum alloy plate and carried out of the system, so the temperature near the weld line does not rise excessively, and the entire aluminum alloy plate It can also prevent heat transfer to. As a result, distortion of the aluminum alloy plate material due to welding heat is prevented, and problems such as the occurrence of microcracks and softened regions can also be avoided.

」二記実施例では通路2の断面形状が矩形であるアルミ
ニウム合金板材の溶接について説明したが、アルミニウ
ム合金板材の形状並びに通路の断面形状には特別の制限
がある訳ではなく、例えば第4〜11図に示す形状のア
ルミニウム合金板材の溶接についても同様に実施するこ
とができる。尚第4〜6,8.9図では溶接すべき母材
を代表的に1つだけ表しており図中の矢印はいずれも溶
接トーチの指向位置及び方向を示す、即ち。
In the second embodiment, welding of an aluminum alloy plate material in which the cross-sectional shape of the passage 2 is rectangular has been described, but there is no particular restriction on the shape of the aluminum alloy plate material or the cross-sectional shape of the passage. Welding of aluminum alloy plates having the shape shown in FIG. 11 can be carried out in the same manner. In addition, in FIGS. 4 to 6 and 8.9, only one base material to be welded is representatively shown, and the arrows in the figures all indicate the pointing position and direction of the welding torch.

第4図は平板状アルミニウム合金板材Iの溶接アーク発
生面と反対側の面に断面形状が半円形の通路2を形成し
た例、第5図は平板状アルミニウム合金板材lの溶接ア
ーク発生面及びその面と反対側の面に断面が矩形の通路
2を夫々形成した例、第6図は対面する2枚のアルミニ
ウム合金板材1.1の間を桟材8で接続してなる例で、
両端側腔部を夫々通路2としている。第7図は第6図例
の変形例であって、両端部桟材の一方8aには凸部9a
を形成すると共に他方の桟材8aには四部9bを形成し
たものであり、溶接に当っては該凸部9aと該凹部9b
を嵌合することによって熱歪に対する抵抗力の向上をは
かり、且つ溶接箇所からの熱伝達面積を増大させている
。第8図は湾曲したアルミニウム合金板材lの両端側内
面に断面が矩形の通路2を夫々形成した例を示す。第9
図はコの字型アルミニウム合金板材1の両端部近傍内面
に断面が矩形の通路2を夫々形成した例を示す。これら
の例では媒体通路を溶接線から少し離れた位置に設けた
が突合わせ溶接部の直下に配設することも可能であり、
第1O図では突合わせ面の下側に裏当材兼用の断面矩形
パイプ15(アルミニウムに限定されない)を添設した
例、第11図は一方のアルミニウム合金板材の下に媒体
通路を一体に且つ開先の底面側へ突出する様に押出成形
し、これに通常のアルミニウム合金板材を突合わせて溶
接する例を示す。次に第12図はすみ肉溶接を行なう場
合の実施例を示す斜視図で、平板状アルミニウム合金部
材Iのアルミニウム合金1b立設位置の裏側に溝部材1
0(アルミニウム、銅、鋼、ゴム等が利用される)を締
付部材11等によって密着させて通路2を形成した例を
示す。尚図例では溝部材の長手面に取付けたピンを締付
部材11によって固定しているが、バンド方式の採用に
切替えることもできる。又溝部材を断面矩形のパイプに
置き換えることもできる。又第13図は管状をなすアル
ミニウム合金製部材la同士の突合せ周溶接を行なう場
合の実施例を示す胴視図で、突合せ部の両側近傍に第1
4図(第13図におけるW−Xlll線断面矢視図)に
示す様な断面半円形のバンド状通路部材12を夫々巻付
害着させた例を示し、これらの実施例においても前記と
同様の効果を得ることができる。
Fig. 4 shows an example in which a passage 2 with a semicircular cross-section is formed on the opposite side of the welding arc generation surface of a flat aluminum alloy plate I, and Fig. 5 shows the welding arc generation surface and An example in which passages 2 each having a rectangular cross section are formed on the surface opposite to that surface, and FIG. 6 shows an example in which two facing aluminum alloy plates 1.1 are connected by a crosspiece 8.
The cavity portions at both ends serve as passages 2, respectively. FIG. 7 shows a modification of the example shown in FIG.
and four parts 9b are formed on the other crosspiece 8a, and during welding, the convex part 9a and the concave part 9b are formed.
By fitting these, we aim to improve the resistance to thermal distortion and increase the heat transfer area from the welded area. FIG. 8 shows an example in which passages 2 each having a rectangular cross section are formed on the inner surface of both ends of a curved aluminum alloy plate l. 9th
The figure shows an example in which passages 2 each having a rectangular cross section are formed on the inner surface near both ends of a U-shaped aluminum alloy plate material 1. In these examples, the medium passage was placed a little away from the weld line, but it is also possible to place it directly below the butt weld.
Fig. 1O shows an example in which a rectangular cross-section pipe 15 (not limited to aluminum) that also serves as a backing material is attached to the lower side of the butt surface, and Fig. 11 shows an example in which a medium passage is integrated under one aluminum alloy plate. An example is shown in which the groove is extruded so as to protrude toward the bottom side, and a normal aluminum alloy plate is butted and welded to this. Next, FIG. 12 is a perspective view showing an embodiment in which fillet welding is performed, in which a groove member 1 is placed on the back side of the aluminum alloy 1b standing position of the flat aluminum alloy member I.
0 (aluminum, copper, steel, rubber, etc. are used) are brought into close contact with each other by a tightening member 11 or the like to form a passage 2. In the illustrated example, the pin attached to the longitudinal surface of the groove member is fixed by the tightening member 11, but it is also possible to switch to a band method. Further, the groove member can be replaced with a pipe having a rectangular cross section. FIG. 13 is a trunk view showing an example of butt circumferential welding between tubular aluminum alloy members la, in which first welding tubes are provided near both sides of the butt portion.
An example is shown in which band-shaped passage members 12 each having a semicircular cross section as shown in FIG. 4 (cross-sectional view taken along the line W-Xllll in FIG. effect can be obtained.

次に第2図に示した形状のアルミニウム合金部材につい
て第1表の条件下にMIG溶接を行ない、歪、ミクロ割
れ及び軟化域の幅等を調査したところ第2表に示す結果
が得られた。
Next, MIG welding was performed on the aluminum alloy member having the shape shown in Figure 2 under the conditions shown in Table 1, and the strain, microcracks, width of the softened area, etc. were investigated, and the results shown in Table 2 were obtained. .

被溶接材:A6063−T5 肉厚 2mm 第 2 表 溶接結果 尚各溶接結果は下記の測定法によって導き出した。Material to be welded: A6063-T5 Wall thickness 2mm Table 2 Welding results In addition, each welding result was derived by the following measurement method.

(1)溶接歪 ■横収縮:溶接線をはさむ3箇所の横収縮をコンタクト
ストレインゲージ (ゲージ長さ60a+m)にて測定し た。値は平均値を示す。
(1) Welding strain ■ Lateral shrinkage: Lateral shrinkage at three locations sandwiching the weld line was measured using a contact strain gauge (gauge length 60a+m). Values indicate average values.

■縦収縮:溶接線から3011111+1れた位t!t
(4箇所)の縦収縮をコンタクトスト レインゲージ(ゲージ長さ100 mm)にて測定した。値は平均値を 示す。
■Vertical shrinkage: 3011111+1 from the weld line! t
The longitudinal shrinkage at (4 locations) was measured using a contact strain gauge (gauge length 100 mm). Values indicate average values.

■角変形:溶接開始位置から125mmの位置の面外変
形をダイヤルゲージにて 測定し、角度を算出して角変形と した。
■Angular deformation: Out-of-plane deformation at a position 125 mm from the welding start position was measured with a dial gauge, and the angle was calculated and defined as angular deformation.

(2)ミクロ割れ測定法 溶接部断面を検鏡し、共晶融解及びミクロ割れを下記第
3表に従い数値化した。値は4点の平均値を示す。
(2) Microcracking measurement method The cross section of the welded part was examined under a microscope, and eutectic melting and microcracks were quantified according to Table 3 below. The value shows the average value of 4 points.

第 3 表、 (3)溶接部断面の硬度分布を測定し軟化域の幅をめた
Table 3 (3) The hardness distribution of the cross section of the welded part was measured to determine the width of the softened region.

(4)最高温度 第15図に示す如くアルミニウム合金板材lド面であっ
て媒体通路2の外側側部にヒートラベル13を貼着させ
測定した。
(4) Maximum temperature As shown in FIG. 15, the temperature was measured by attaching a heat label 13 to the outer side of the medium passage 2 on the side of the aluminum alloy plate.

第2表に示される様に、Al−A3に比べてWl−W3
は夫々、溶接歪、ミクロ割れ及び軟化域の幅のいずれに
おいても優れていると判断できる。又最高温度について
実施例は比較例より約110℃低い値にとどまっており
このことからも流水冷却は溶接線近傍の温度上昇を効果
的に防1にしく1)′ることが分かる。
As shown in Table 2, compared to Al-A3, Wl-W3
It can be judged that each of these is excellent in terms of welding distortion, microcracks, and width of the softened region. Furthermore, the maximum temperature in the example remains about 110° C. lower than that in the comparative example, which also shows that running water cooling effectively prevents the temperature rise in the vicinity of the weld line.

更に本発明を実施するに当っては前記目的を達成し得る
程度に冷却能力換言すれば通路に流通させる媒体量を調
整することが望まれる。木発明者等は」二記媒体流量(
水の場合)の好ましい設定範囲について検討を加えた結
果第16〜18図のグラフに示す適正範囲を得た。尚検
討に際しては第19図に示す様な形状のアルミニウム合
金板材を用いて実験溶接を行なった。又図中の記号は下
記の意味を示す。
Furthermore, in carrying out the present invention, it is desirable to adjust the cooling capacity, in other words, the amount of medium flowing through the passages, to such an extent that the above object can be achieved. Wood inventors, etc. "2 medium flow rate (
In the case of water), as a result of examining the preferable setting range, the appropriate range shown in the graphs of FIGS. 16 to 18 was obtained. In the study, experimental welding was performed using an aluminum alloy plate material having a shape as shown in FIG. 19. The symbols in the figure have the following meanings.

A:溶接電流(アンペア) ■・溶接電圧(ボルト) T : IiJ材肉厚(mIB) d:接合面の幅(IIll) d=dt+dz ただしd1=d2 なお開先を設けない場合には接合面の巾dは概略ビード
巾に置き換えることができる。
A: Welding current (ampere) ■・Welding voltage (volts) T: IiJ material thickness (mIB) d: Width of joint surface (IIll) d=dt+dz However, d1=d2 Note that if no groove is provided, the joint surface The width d can be replaced with the approximate bead width.

即ち第16図は冷却水流量と母材肉厚の関係を示すグラ
フで両者は(冷却水流量)×(母材肉厚)≧にαの関係
にある。尚実験例の場合にはKa= 40 (mm*c
m” asee )であった・第17図は溶接入熱と冷
却水流量の関係を示すグラフで両者は(冷却水流り≧に
β×(溶接入熱)の関係にあった。尚にβ= (cm3
/KJ)であった。第18図は単位接合面の巾あたりの
入熱と母材肉厚の関係を示すグラフで、前述の通り(単
位接合面のrbあたりの入熱)×(母材肉厚)≦にαの
関係にある。尚K a = 1.2 (KJ/mm a
see )であった。
That is, FIG. 16 is a graph showing the relationship between the cooling water flow rate and the base material thickness, and the relationship between the two is α (cooling water flow rate)×(base material thickness)≧. In the case of the experimental example, Ka=40 (mm*c
Figure 17 is a graph showing the relationship between welding heat input and cooling water flow rate, and the relationship between the two is (cooling water flow ≧ β × (welding heat input). Furthermore, β = (cm3
/KJ). Figure 18 is a graph showing the relationship between heat input per width of unit joint surface and base material thickness. As mentioned above, (heat input per unit joint surface rb) x (base material thickness) ≦ α In a relationship. Note that K a = 1.2 (KJ/mm a
see).

実際に溶接する場合には、母材形状(肉厚および接合面
の巾)に合わせて第18図より適正溶接入熱を定め、ま
た第16図、第17図より適正冷却水?&11を定め、
溶接すればミクロ割れを発生させることなく、溶接歪及
び軟化域の巾が可及的に小さくなる様な溶接が可能とな
る。なおこの場合定めた条件が第16〜18図の適正領
域のいずれにも含まれてなければならない。水冷の効果
のあった例をX印で第16〜18図に示す。
When actually welding, determine the appropriate welding heat input from Figure 18 according to the shape of the base material (thickness and width of the joint surface), and determine the appropriate cooling water input from Figures 16 and 17. &11,
By welding, welding can be performed in such a way that welding distortion and the width of the softened region are made as small as possible without generating microcracks. In this case, the defined conditions must be included in any of the appropriate areas shown in FIGS. 16-18. Examples in which water cooling was effective are shown by X marks in FIGS. 16 to 18.

本発明は以−Fの様に構成されているので、溶接部にブ
ローホール発生等の悪影響を与えることなしに、溶接部
周辺の効果的な冷却を行なうことかり能になった。その
結果溶接歪やミクロ割れがなくなり、又軟化域の発生も
極めて少なくなった。
Since the present invention is constructed as shown in FIG. As a result, welding distortion and microcracks were eliminated, and the occurrence of softened areas was also extremely reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接母材板厚と入熱の一般的関係を示すグラフ
、第2図は本発明の実施器具を概念的に示す斜視図、第
3(a)図は第2図における■−m線断面矢視図、第3
(b)図は通路への密封状態を示す対応図、第4〜11
図は本発明アルミニウム合金部材である冷媒通路の形成
例を示す断面図、第12図はすみ肉溶接への適用例を示
す斜視図、第13図はパイプの突合せ溶接への適用例を
示す斜視図、第14図は第13図におけるW−W線断面
矢視図、第15図は最高温度測定方法におけるヒートラ
ベルの取付状態を示す断面図、第16図は母材肉厚と冷
却水流量の関係を示すグラフ、第17図は冷却水流量と
溶接入熱の関係を示すグラフ、第18図は母材肉厚と単
位接合面の巾あたりの入熱の関係を示すグラフ、第19
図は実験溶接部の断面図を示す。 1・・・アルミニウム合金板材もしくは部材2・・・冷
奴通路 出願人 株式会社 神戸製鋼所 第16図 冷却水流電(菌/5ec) 単位接合面の巾あたりの入熱 A・V −7−(KJ/sec@mm ) 第19図 手系売ネ市正書 (自発) ヨ ] l、・I9件の表示 昭和58年特許願第142361号 2、発明の名称 アルミニウムまたはアルミニウム合金部材の溶接方法お
よびアルミニウム合金部材 3、補正をする者 17、・11件との関係 特許出願人 神戸市中央区脇浜町−丁目3番18号 (119)株式会社 神戸製鋼所 代表者 牧 冬 彦 4、代理人 〒530 大阪市北区堂島2丁目3番7号 シンコービル 明細書の「発明の詳細な説明」の欄及び図面) (1)明細書第9頁第17行の「桟材8a」を「桟材8
bJを訂正します。 (2)同第12〜13頁の「第1表」を別紙と差し替え
ます。 (3)同第18頁第8行の「Kβ= (Cm /KJ)
 Jを「Kβ= 3 (am3/KJ) 4に訂正しま
す。 (4)同第18頁第11行の「≦にα」を「≦にγ」に
訂正します。 (5)同第18頁第12行の「Kα」を「Kγ」に訂正
します。 (8)図面の第15図、第16図、第17図を別紙と差
し替えます。
Fig. 1 is a graph showing the general relationship between welding base material plate thickness and heat input, Fig. 2 is a perspective view conceptually showing the implement of the present invention, and Fig. 3(a) is a graph showing the - in Fig. 2. M-line cross-sectional view, 3rd
(b) The figure is a corresponding diagram showing the sealing state to the passage, Nos. 4 to 11.
Figure 12 is a sectional view showing an example of the formation of a refrigerant passage made of the aluminum alloy member of the present invention, Figure 12 is a perspective view showing an example of application to fillet welding, and Figure 13 is a perspective view showing an example of application to butt welding of pipes. , Fig. 14 is a sectional view taken along the line W-W in Fig. 13, Fig. 15 is a sectional view showing the installation state of the heat label in the maximum temperature measurement method, and Fig. 16 is a diagram showing the base material thickness and cooling water flow rate. Graph showing the relationship, Figure 17 is a graph showing the relationship between cooling water flow rate and welding heat input, Figure 18 is a graph showing the relationship between base material wall thickness and heat input per unit joint surface width, Figure 19
The figure shows a cross-sectional view of the experimental weld. 1... Aluminum alloy plate material or member 2... Cold tofu passage Applicant Kobe Steel, Ltd. Figure 16 Cooling water galvanic current (bacteria/5ec) Heat input A V per unit width of joint surface -7- (KJ /sec@mm) Figure 19 Hand-kei sales official book (spontaneous) yo] l,・I 9 indications 1982 Patent Application No. 142361 2 Title of invention Method for welding aluminum or aluminum alloy members and aluminum Alloy member 3, person making amendment 17, relationship with 11 cases Patent applicant No. 3-18 Wakihama-cho, Chuo-ku, Kobe City (119) Kobe Steel, Ltd. Representative Fuyuhiko Maki 4, agent 530 Shinko Building, 2-3-7 Dojima, Kita-ku, Osaka
I will correct bJ. (2) Replace “Table 1” on pages 12-13 with an attached sheet. (3) “Kβ= (Cm /KJ)” on page 18, line 8 of the same
Correct J to ``Kβ = 3 (am3/KJ) 4.'' (4) Correct ``≦ to α'' to ``≦ to γ'' on page 18, line 11. (5) Correct "Kα" in line 12 of page 18 to "Kγ". (8) Replace Figures 15, 16, and 17 of the drawings with attached sheets.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウムまたはアルミニウム合金部材の溶接
線の近傍に冷却媒体の通路を設け、該通路に冷却媒体を
通過させて冷却することを特徴とするアルミニウムまた
はアルミニウム合金部材の溶接方法。
(1) A method for welding aluminum or aluminum alloy members, characterized in that a cooling medium passage is provided near the weld line of the aluminum or aluminum alloy member, and the cooling medium is cooled by passing through the passage.
(2)溶接線近傍で溶接線に沿った冷却媒体の通路を溶
接母材と一体に設けたことを特徴とするアルミニウム合
金部材。
(2) An aluminum alloy member characterized in that a cooling medium passage along the weld line is provided near the weld line and integrally with the weld base material.
JP14236183A 1983-08-03 1983-08-03 Welding method of aluminum or aluminum alloy member and aluminum alloy member Pending JPS6033882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14236183A JPS6033882A (en) 1983-08-03 1983-08-03 Welding method of aluminum or aluminum alloy member and aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14236183A JPS6033882A (en) 1983-08-03 1983-08-03 Welding method of aluminum or aluminum alloy member and aluminum alloy member

Publications (1)

Publication Number Publication Date
JPS6033882A true JPS6033882A (en) 1985-02-21

Family

ID=15313590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14236183A Pending JPS6033882A (en) 1983-08-03 1983-08-03 Welding method of aluminum or aluminum alloy member and aluminum alloy member

Country Status (1)

Country Link
JP (1) JPS6033882A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174940A (en) * 1974-12-26 1976-06-29 Komatsu Mfg Co Ltd YOSETSUHO
JPS53125946A (en) * 1977-04-11 1978-11-02 Babcock Hitachi Kk Method of preventing shrinkage of open end during welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174940A (en) * 1974-12-26 1976-06-29 Komatsu Mfg Co Ltd YOSETSUHO
JPS53125946A (en) * 1977-04-11 1978-11-02 Babcock Hitachi Kk Method of preventing shrinkage of open end during welding

Similar Documents

Publication Publication Date Title
US6153854A (en) Aluminum sheet product and method of welding structural components
JPS6033882A (en) Welding method of aluminum or aluminum alloy member and aluminum alloy member
JPS5829617A (en) Method of welding crosslinked polyethylene pipe
JPS58209486A (en) Welding method of copper to iron or steel
US20080069175A1 (en) Electrode Arm for Arc Furnaces
JPS63711B2 (en)
Sampath et al. Evaluation of new high performance electrodes for GMA welding of HSLA-100 steel
US2863982A (en) Arc welding
Tretyak et al. The Effect of Repeated Passes on the Properties of Joints in Electron Beam Welding of 1201 Alloy
Yablonskii et al. Twin-Arc Welding of 10 KhSND Steel With Simultaneous Contouring of Weld Beads
MacPherson et al. Fusion Welding of Beryllium
Zhdanov et al. Residual Deformation Decrease by Directed Heat Removal During Welding of Thin-Sheet Articles
Uchida Properties and Welding of 7 N 01 Alloy
Stosic Analysis of Factors Affecting Welded Joints in Aluminum and Aluminum Alloys and Recommendations for Quality Assurance.(Retroactive Coverage)
Sugiyama Plasma Arc Cutting of Aluminum Alloys for Construction and Its Effects on Welded Joints
Belchik The Strength of Steel-Aluminum Welded Joints in Thermal Cycling
US4287947A (en) Solar panel elements and method of manufacture thereof
CA1144405A (en) Backing support strip for welding
Astakhin et al. Plasma-Arc Welding of Cryogenic Pipelines Made From Aluminum Alloys
Crouch The Properties of Welded Transition Joints Between Steels and Aluminium Alloys for Use in Structural Applications
Honeycombe et al. High Arc Energy Submerged Arc Welding of Austenitic Stainless Steels
Ibatullin et al. The Influence of Repeated Welding Passes on the Properties of AMg 5 Aluminum Alloy Weld Joints
Makhnenko et al. An Investigation of Deformation Conditions in the Brittleness Temperature Range During Two-Electrode Welding
JPS57118887A (en) Method of joining tube to opening part of plate
Kelly et al. Evaluation of an Advanced Pressure Welding Method for Fabrication of Marine-Service Aluminum Alloys