JPS63711B2 - - Google Patents

Info

Publication number
JPS63711B2
JPS63711B2 JP55072759A JP7275980A JPS63711B2 JP S63711 B2 JPS63711 B2 JP S63711B2 JP 55072759 A JP55072759 A JP 55072759A JP 7275980 A JP7275980 A JP 7275980A JP S63711 B2 JPS63711 B2 JP S63711B2
Authority
JP
Japan
Prior art keywords
stainless steel
plate
corrosion
welding
solar heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55072759A
Other languages
Japanese (ja)
Other versions
JPS57451A (en
Inventor
Takehisa Mizunuma
Hideo Anho
Seisaburo Abe
Jiro Oono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7275980A priority Critical patent/JPS57451A/en
Publication of JPS57451A publication Critical patent/JPS57451A/en
Publication of JPS63711B2 publication Critical patent/JPS63711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/40Preventing corrosion; Protecting against dirt or contamination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/504Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired non-plane plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はステンレス鋼製の太陽熱吸収板の水路
側(溶接部近傍の隙間部)に発生する隙間腐食、
応力腐食割れ等の局部腐食を抑制する耐食性の優
れた太陽熱吸収板の製造方法に関するものであ
る。 従来ステンレス鋼を太陽熱吸収板として使用す
る場合、その構造は集熱効果をあげるため山型に
凹凸を形成したステンレス鋼板を用いて、水路と
水路のほぼ中間部を溶接により接合して製作して
いる。 一般にステンレス鋼は塩素イオン(Cl-)を含
む環境では前記の局部腐食が問題になるが、通常
の水道水でも微量の塩素イオンを含むうえ、夏季
には水温が70℃以上にも達するため、従来の太陽
熱吸収板のような構造では隙間部が存在し、その
部分での局部腐食が発生しやすく、さらに溶接熱
による変質部は隙間腐食性が高く、また溶接残留
応力により応力腐食割れも発生し易くなつてい
る。そのために現状では耐隙間腐食性の高い高級
なステンレス鋼を使用する必要がある。 本発明は太陽熱吸収板を製造するにあたり、特
にこのような問題となる水路側の局部腐食を抑制
する効果的な方法に関するものである。 すなわち、本発明は集熱面と裏面とを接合して
所望の水路を形成するステンレス鋼製の太陽熱吸
収板において、集熱面と裏面とによつて形成され
る水路と水路の間のステンレス鋼板の接合部分
に、前記のステンレス鋼よりも電気化学的に卑な
金属板を介設して3層を形成し、その後ステンレ
ス鋼板の外側から抵抗溶接によつてステンレス鋼
板を接合することを特徴とする太陽熱吸収板の製
造方法である。 第1図に従来法を示すように、溶接による接合
部の近傍は、集熱面側のステンレス鋼板3―1と
裏面のステンレス鋼板3―2が接して、その左右
に隙間構造を有しており、前記の局部腐食が生じ
易くなつているが、本発明では第2図に示すよう
に水路1と水路1の間に、ステンレス鋼板3―
1,3―2よりも電気化学的に卑な金属材料4を
挾持した後溶接することによつて、金属材料4の
犠牲陽極としての効果(ステンレス鋼板3―1,
3―2に対して陽極となり犠牲的に腐食)によ
り、ステンレス鋼板3―1,3―2の水路側に発
生する前記局部腐食を抑制することを特徴として
いる。 本発明者らはより一般的な汎用ステンレス鋼
(SUS304,SUS434,17Cr―Ti)をもこのような
用途に利用できるようにするため種々検討した結
果、第2図に示すようにステンレス鋼板3―1,
3―2より電気化学的に卑な金属材料であるアル
ミニウム(以下元素記号Alで示す)もしくはAl
合金またはステンレス鋼板3―1,3―2よりも
電気化学的に卑な低合金鋼(クロム量3〜13%)
あるいは低級ステンレス鋼(クロム量13〜17%)
などを、接合部の間に挿入して溶接を行なうこと
により、前記の局部腐食を有効に防止できること
を見出した。 すなわち、第2図の集熱面側のステンレス鋼板
3―1と裏面のステンレス鋼板3―2には凹部
5、凸部6が形成されており、凹部5によつて形
成される接合部分7では前記ステンレス鋼板より
電気化学的に卑な板状の金属材料を介設して3層
とする。 その後ステンレス鋼板の外側から抵抗溶接によ
つてステンレス鋼板を接合させる。 本発明で、電気化学的に卑な金属材料としてア
ルミニウムを用いた場合には、集熱面と裏面とが
接合する際にアルミニウム等が押出されて隙間部
をうずめ、構造的な隙間をなくすとともに、犠牲
陽極としての効果によつて、素材のステンレス鋼
板の局部腐食の抑制を図ることができる。 また、電気化学的に卑な金属板として、低合金
鋼あるいは低級ステンレス鋼を用いる場合には、
前述の軟質な金属材料の場合のような溶接時の押
出されることによる隙間部をうずめる効果は少な
いものの、後者の効果により耐隙間腐食性の改善
に寄与する。 Al、低合金鋼および低級ステンレス鋼の防食
効果を電気化学的に検討するために、Al板(厚
さ1mmの工業用純Al板)およびステンレス鋼
(厚さ1mmの市販板材)を対象とし、塩素イオン
を含む中性水溶液(1000ppm Cl-,30℃)での各
種ステンレス鋼とAlおよびSUS304とSUS410の
接触電位を測定した結果を第1表に示す。
The present invention deals with crevice corrosion that occurs on the waterway side (gap near the welded part) of a stainless steel solar heat absorbing plate.
The present invention relates to a method for manufacturing a solar heat absorbing plate with excellent corrosion resistance that suppresses localized corrosion such as stress corrosion cracking. Conventionally, when stainless steel is used as a solar heat absorbing plate, the structure is made by using a stainless steel plate with unevenness formed in a mountain shape to improve the heat collection effect, and joining the two waterways approximately in the middle by welding. There is. In general, stainless steel suffers from the above-mentioned local corrosion in environments containing chlorine ions (Cl - ), but even regular tap water contains trace amounts of chlorine ions, and water temperatures reach over 70°C in the summer. Conventional structures such as solar heat absorbing plates have gaps, which are prone to local corrosion, and areas altered by welding heat are highly susceptible to crevice corrosion, and stress corrosion cracking can also occur due to welding residual stress. It's getting easier. For this reason, it is currently necessary to use high-grade stainless steel with high crevice corrosion resistance. The present invention relates to an effective method for suppressing local corrosion on the waterway side, which is particularly problematic when manufacturing solar heat absorbing plates. That is, the present invention provides a solar heat absorbing plate made of stainless steel in which a heat collecting surface and a back surface are joined to form a desired water channel, and the stainless steel plate is provided between the water channel formed by the heat collecting surface and the back surface. A metal plate that is electrochemically more base than the stainless steel is interposed in the joining part to form three layers, and then the stainless steel plates are joined by resistance welding from the outside of the stainless steel plate. This is a method for manufacturing a solar heat absorbing plate. As shown in Fig. 1 of the conventional method, in the vicinity of the welded joint, the stainless steel plate 3-1 on the heat collecting side and the stainless steel plate 3-2 on the back side are in contact with each other, with a gap structure on the left and right sides. However, in the present invention, as shown in FIG.
By sandwiching and welding a metal material 4 that is electrochemically more base than 1 and 3-2, the effect of the metal material 4 as a sacrificial anode (stainless steel plate 3-1,
The stainless steel plates 3-1 and 3-2 serve as an anode and sacrificially corrode (sacrificial corrosion), thereby suppressing the local corrosion occurring on the water channel side of the stainless steel plates 3-1 and 3-2. The present inventors conducted various studies to make it possible to use more general general-purpose stainless steels (SUS304, SUS434, 17Cr-Ti) for such applications, and as a result, the stainless steel plate 3- 1,
3-2 Aluminum (hereinafter indicated by the element symbol Al) or Al, which is a metal material that is less electrochemically
Low alloy steel that is electrochemically more base than alloy or stainless steel plate 3-1, 3-2 (chromium content 3-13%)
Or low grade stainless steel (chromium content 13-17%)
It has been found that the above-mentioned local corrosion can be effectively prevented by inserting a material between the joints and performing welding. That is, the stainless steel plate 3-1 on the heat collecting surface side and the stainless steel plate 3-2 on the back side in FIG. A plate-shaped metal material that is electrochemically more base than the stainless steel plate is interposed to form three layers. Thereafter, the stainless steel plates are joined by resistance welding from the outside of the stainless steel plates. In the present invention, when aluminum is used as the electrochemically base metal material, when the heat collecting surface and the back surface are joined, the aluminum etc. is extruded and fills the gap, eliminating the structural gap. By its effect as a sacrificial anode, it is possible to suppress local corrosion of the stainless steel plate used as the material. In addition, when using low alloy steel or low grade stainless steel as the electrochemically base metal plate,
Although the effect of filling the gap caused by extrusion during welding as in the case of the soft metal material mentioned above is small, the latter effect contributes to improving the crevice corrosion resistance. In order to electrochemically investigate the corrosion protection effect of Al, low alloy steel and low grade stainless steel, we used Al plate (industrial pure Al plate with a thickness of 1 mm) and stainless steel (commercially available plate material with a thickness of 1 mm). Table 1 shows the results of measuring the contact potential between various stainless steels and Al, and between SUS304 and SUS410 in a neutral aqueous solution containing chloride ions (1000ppm Cl - , 30°C).

【表】 一般にステンレス鋼(SUS304)の中性水溶液
中での隙間腐食および応力腐食割れの成長限界電
位(どんなに長時間かけても隙間腐食および応力
腐食割れが発生するに十分な液性変化がおこらな
い最高の電位)は、−0.3〜−0.4V(vs.SCE)であ
るとされている。 第1表に示したように、各種ステンレス鋼と
AlおよびSUS304とSUS410の接触電位は、これ
ら局部腐食の成長限界電位より、十分卑な電位と
なつており、局部腐食の発生および成長を十分に
抑制できることが判る。 本発明の太陽熱吸収板を製造する場合、スポツ
ト溶接あるいはシーム溶接により接合することに
よつて目的を達することができる。 なおスポツト溶接は抵抗発熱を利用して、比較
的薄い金属の板の接合を行なう抵抗溶接法の一種
で、シーム溶接は円板電極を使用し、スポツト溶
接を継続的に重ねてゆく方法である。 以下実施例にもとづいて本発明を説明する。 実施例 1 Alおよび低級ステンレス鋼の防食効果を確認
するために、前記Al板および各種ステンレス鋼
を対象に、第3図の隙間付試験片(試験片Aと試
験片BとをテフロンボルトCで締め付けたもの)
を作成し、塩化ナトリウムおよび過酸化水素を用
いて、表示の濃度、温度の各水溶液について単純
浸漬による隙間腐食試験を実施した結果を第2
表、第3表及び第4表に示す。
[Table] Growth limit potential for crevice corrosion and stress corrosion cracking in neutral aqueous solution of stainless steel (SUS304) The highest potential (not found) is said to be -0.3 to -0.4V (vs.SCE). As shown in Table 1, various types of stainless steel and
It can be seen that the contact potential between Al and SUS304 and SUS410 is sufficiently less than the growth limit potential for local corrosion, and the occurrence and growth of local corrosion can be sufficiently suppressed. When manufacturing the solar heat absorbing plate of the present invention, the purpose can be achieved by joining by spot welding or seam welding. Note that spot welding is a type of resistance welding method that uses resistance heat generation to join relatively thin metal plates, and seam welding is a method that uses a disc electrode to continuously overlap spot welds. . The present invention will be explained below based on Examples. Example 1 In order to confirm the anticorrosion effect of Al and low-grade stainless steel, test pieces with gaps shown in Fig. 3 (test pieces A and B were connected with Teflon bolts C) for the Al plate and various stainless steels. tightened)
A crevice corrosion test was conducted by simple immersion using sodium chloride and hydrogen peroxide in each aqueous solution at the indicated concentration and temperature.
The results are shown in Tables 3 and 4.

【表】【table】

【表】【table】

【表】 第2表〜第4表に示すごとくステンレス鋼
(SUS304,SUS434,SUS430)同志の組合せの
ものは鋼種間で差はみられるが、いずれもかなり
激しい隙間腐食を受けているのに対し、上記のス
テンレス鋼にAlを挿入したものおよびSUS304ま
たはSUS434にSUS410を挿入したものは、いず
れも隙間腐食を全く受けておらず、中間挿入材で
あるAlおよび低級ステンレス鋼(SUS410)によ
る隙間腐食防止効果が明らかに認められる。 実施例 2 実際の溶接試験片でのAlおよび低級ステンレ
ス鋼による局部腐食の防止の効果を確認するため
に、抵抗溶接によつて以下の試験片を準備し腐食
試験を行なつた。 SUS304同志を溶接したものと、SUS304の間
に前記のAl板およびSUS410を挿入して溶接した
ものについて、塩素イオンを含む中性水溶液
(600ppmCl-、80℃,14日間)中での腐食試験結
果を第5表に示す。 尚、試験片の大きさは、SUS304,SUS410 0.3
mm×30mm×50mm,Al板0.5mm×30mm×50mmで、
SUS304同士とSUS304の間にAl板およびSUS410
を挿入して、中央部で長手方向に少し間隔をおい
て2点スポツト溶接を行ない試験片とした。
[Table] As shown in Tables 2 to 4, stainless steel (SUS304, SUS434, SUS430) combinations are subject to fairly severe crevice corrosion, although there are differences between the steel types. The above-mentioned stainless steel with Al inserted and SUS304 or SUS434 with SUS410 have no crevice corrosion at all, and there is no crevice corrosion due to the intermediate inserted material Al and low grade stainless steel (SUS410). The preventive effect is clearly recognized. Example 2 In order to confirm the effect of preventing local corrosion by Al and low grade stainless steel on actual welded test pieces, the following test pieces were prepared by resistance welding and a corrosion test was conducted. Corrosion test results in a neutral aqueous solution containing chlorine ions (600ppmCl - , 80℃, 14 days) for two SUS304 welded together and one welded with the above Al plate and SUS410 inserted between SUS304. are shown in Table 5. The size of the test piece is SUS304, SUS410 0.3
mm×30mm×50mm, Al plate 0.5mm×30mm×50mm,
Al plate and SUS410 between SUS304 and SUS304
was inserted, and two-point spot welding was performed at a slight interval in the longitudinal direction at the center to prepare a test piece.

【表】 る判定である。
AlおよびSUS410を中間挿入材として溶接した
ものは、試験片2箇共前記局部腐食が全く発生し
ていないのに対し、中間挿入材なしのSUS304同
志の溶接試験片は、2箇共隙間腐食が発生してお
り、また試験片1箇の溶接部近傍には応力腐食割
れがみられ、実際の溶接試験片においてもAlお
よび低級ステンレス鋼を中間に挿入することによ
り、前記局部腐食を抑制することができることを
確認した。 またステンレス鋼板3―1,3―2の間にAl
を中間挿入材として溶接した場合の断面は、第4
図(×20)に示すように、ステンレス鋼板同志が
接合され、その周囲にAlが加熱溶融し、押し出
されたことにより溶接部直近の前記の最も局部腐
食が発生し易い隙間部にはAlが存在し、隙間構
造を有しておらず、太陽熱吸収板の強度および防
食という点で効果的に接合されていると言える。 以上述べたごとく本発明の太陽熱吸収板の製造
方法によれば、犠牲陽極材としてのAlもしくは
Al合金、低合金鋼あるいは低級ステンレス鋼を
中間挿入材として溶接することにより、水路側の
溶接近傍に発生する局部腐食を抑制できることが
明らかである。 なお本発明のステンレス鋼よりも電気化学的に
卑な金属材料を中間挿入材として溶接する方法
は、TIGおよびMIG溶接等による重ね縁溶接部
にも応用することも可能である。
[Table] This is the judgment.
In the two test specimens welded with Al and SUS410 as intermediate inserts, no local corrosion occurred at all, whereas in the welded test specimens of SUS304 without intermediate inserts, both showed crevice corrosion. In addition, stress corrosion cracking was observed near the weld in one of the test pieces, and it was possible to suppress the local corrosion by inserting Al and low-grade stainless steel in the middle of the actual weld test piece. We confirmed that it is possible. Also, Al between stainless steel plates 3-1 and 3-2
The cross section when welded as an intermediate insert material is the fourth
As shown in the figure (x20), when stainless steel plates are joined together, Al is heated and melted around it and extruded, resulting in Al being in the gap near the weld where local corrosion is most likely to occur. It can be said that the solar heat absorbing plate is effectively joined in terms of its strength and corrosion protection because it does not have a gap structure. As described above, according to the method for manufacturing a solar heat absorbing plate of the present invention, Al or Al as a sacrificial anode material
It is clear that local corrosion occurring near the weld on the waterway side can be suppressed by welding Al alloy, low alloy steel, or low grade stainless steel as an intermediate insert material. Note that the method of welding a metal material that is electrochemically more base than stainless steel as an intermediate insert material according to the present invention can also be applied to lapped edge welds by TIG, MIG, etc. welding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は太陽熱吸収板の従来法の説明図、第2
図は本発明の太陽熱吸収板の製造方法の説明図、
第3図は隙間付腐食試験片の説明図、第4図は
Alを中間挿入材とした場合のステンレス鋼板の
溶接部の断面の顕微鏡写真(×20)である。 1…水路、2…溶接部、3―1,3―2…ステ
ンレス鋼板、4…犠牲陽極板、5…凹部、6…凸
部、7…接合部分、A,B…腐食試験片、C…テ
フロンボルト。
Figure 1 is an explanatory diagram of the conventional method for solar heat absorption plates, Figure 2
The figure is an explanatory diagram of the manufacturing method of the solar heat absorption plate of the present invention,
Figure 3 is an explanatory diagram of the corrosion test piece with a gap, and Figure 4 is
This is a micrograph (x20) of a cross-section of a welded part of a stainless steel plate when Al is used as an intermediate insert material. DESCRIPTION OF SYMBOLS 1... Water channel, 2... Welded part, 3-1, 3-2... Stainless steel plate, 4... Sacrificial anode plate, 5... Recessed part, 6... Convex part, 7... Joint part, A, B... Corrosion test piece, C... Teflon bolt.

Claims (1)

【特許請求の範囲】[Claims] 1 集熱面と裏面とを接合して所望の水路を形成
するステンレス鋼製の太陽熱吸収板において、集
熱面と裏面とによつて形成される水路と水路との
間のステンレス鋼板の接合部分に、前記のステン
レス鋼よりも電気化学的に卑な金属板を介設して
3層を形成し、その後ステンレス鋼板の外側から
抵抗溶接によつてステンレス鋼板を接合すること
を特徴とする太陽熱吸収板の製造方法。
1. In a stainless steel solar heat absorbing plate that joins the heat collecting surface and the back surface to form a desired waterway, the joint part of the stainless steel plate between the waterway formed by the heat collecting surface and the back surface. A solar heat absorption method characterized in that three layers are formed by interposing a metal plate that is electrochemically more base than the stainless steel, and then the stainless steel plates are joined by resistance welding from the outside of the stainless steel plate. Method of manufacturing the board.
JP7275980A 1980-06-02 1980-06-02 Manufacture of solar heat adsorbing plates Granted JPS57451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7275980A JPS57451A (en) 1980-06-02 1980-06-02 Manufacture of solar heat adsorbing plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7275980A JPS57451A (en) 1980-06-02 1980-06-02 Manufacture of solar heat adsorbing plates

Publications (2)

Publication Number Publication Date
JPS57451A JPS57451A (en) 1982-01-05
JPS63711B2 true JPS63711B2 (en) 1988-01-08

Family

ID=13498602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7275980A Granted JPS57451A (en) 1980-06-02 1980-06-02 Manufacture of solar heat adsorbing plates

Country Status (1)

Country Link
JP (1) JPS57451A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210431A (en) * 1982-05-31 1983-12-07 Nisshin Steel Co Ltd Collector of solar heat water heater
JPS58186359U (en) * 1982-06-05 1983-12-10 日新製鋼株式会社 solar water heater collector
US4628252A (en) * 1983-12-12 1986-12-09 General Electric Company Corrosive impurity sensor
US9397240B2 (en) 2010-12-09 2016-07-19 Ppg Industries Ohio, Inc. Corrosion resistant solar mirror

Also Published As

Publication number Publication date
JPS57451A (en) 1982-01-05

Similar Documents

Publication Publication Date Title
CN1325218C (en) Double-side forming single-side butt welding method for thick-wall red copper pipe
CN105499749B (en) A kind of welding procedure of composite plate air cooler plug formula bobbin carriage longitudinal joint
EA036227B1 (en) Method of welding metal-based non weldable directly to each other materials using a spacer
CN102699484A (en) Method for welding titanium composites for titanium-steel composite plates
KR20010110152A (en) Method for the projection welding of high-carbon steels and high-tension low-alloy steels
CN206170771U (en) Anticorrosive panel of two -sided complex
JPS63711B2 (en)
CN103231160B (en) Fusion welding process for iron and aluminum-base alloy and stainless steel by taking Fe-Cr-Ni alloy as filling material
CN112719539B (en) Welding process for 304 stainless steel submerged-arc welding
CN105855669A (en) Butt-welded joint method of double surface coated Incoloy 825 laminated composite plate
CN110773892A (en) Welding method of three-layer corrosion-resistant alloy composite plate
CN219520916U (en) T-shaped joint welding groove structure
CN111215781B (en) Titanium steel composite plate and manufacturing method of corrosion hanging sheet of welding joint of titanium steel composite plate
JPH04313468A (en) Welding method for stainless clad steel pipe
Kinsey The welding of structural steels without preheat
CN112959007B (en) Preparation method of titanium steel composite plate profile
CN216326194U (en) Structure for reducing cracking tendency of 15Cr1Mo1V steam pipeline butt joint
Anderau Resistance seam welding of coated steel sheets
Krysiak Weldability of the New Generation of Ferritic Stainless Steels--Update
SU50581A1 (en) The method of contact welding difficult to weld metal sheets, tapes, etc.
Hakansson Machined Joints or Oxyacetylene Cut Joints for Critical Applications
JPH0112588B2 (en)
JPS62275578A (en) Welding method for clad steel
Rozalski et al. MIG/MAG braze-welding of galvanised steel sheets and examples of difficult to weld systems
Raj et al. An Investigation about Microstructures, Mechanical Properties and Corrosion Behaviour of the TIG-MIG Hybrid Welded Dissimilar UNS 2205 and is 2062 Steels