JPS6033852B2 - Polyamide resin composition for molding - Google Patents

Polyamide resin composition for molding

Info

Publication number
JPS6033852B2
JPS6033852B2 JP13069083A JP13069083A JPS6033852B2 JP S6033852 B2 JPS6033852 B2 JP S6033852B2 JP 13069083 A JP13069083 A JP 13069083A JP 13069083 A JP13069083 A JP 13069083A JP S6033852 B2 JPS6033852 B2 JP S6033852B2
Authority
JP
Japan
Prior art keywords
molding
weight
potassium titanate
polyamide resin
average fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13069083A
Other languages
Japanese (ja)
Other versions
JPS6023446A (en
Inventor
多希雄 田坂
勇夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
Otsuka Chemical Co Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Mitsubishi Gas Chemical Co Inc filed Critical Otsuka Chemical Co Ltd
Priority to JP13069083A priority Critical patent/JPS6033852B2/en
Publication of JPS6023446A publication Critical patent/JPS6023446A/en
Publication of JPS6033852B2 publication Critical patent/JPS6033852B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ポリアミド樹脂組成物に関する。[Detailed description of the invention] The present invention relates to polyamide resin compositions.

更に詳しくは、キシリレンジアミン系ポリアミド樹脂の
成形用組成物における物理的性能及び成形作業性の改良
された成形物を提供する成形用ポリアミド樹脂組成物に
関する。既に、メタキシリレンジアミンを主成分とする
キシリレンジアミンとQ,■−直鎖脂肪族こ塩基酸とか
ら合成されるキシリレンジアミン系ポリアミド樹脂(以
下「MXナイロン」と略称する)にガラス繊維あるいは
炭素繊維を加えて強化することにより、樹脂単独では得
ることの出来なかった化学的、熱的及び機械的性質のす
ぐれたポリアミド樹脂成形材料が得られることは公知と
なっている(日特開昭50−6144計号、日特開昭5
1−63860号、日特開昭54−111547号)。
More specifically, the present invention relates to a molding polyamide resin composition that provides a molded article with improved physical performance and molding workability in a molding composition of a xylylenediamine-based polyamide resin. Already, glass fibers have been applied to xylylene diamine polyamide resin (hereinafter abbreviated as "MX nylon") synthesized from xylylene diamine whose main component is meta-xylylene diamine and Q,■-linear aliphatic basic acid. Alternatively, it is well known that by adding and reinforcing carbon fiber, a polyamide resin molding material with excellent chemical, thermal, and mechanical properties that could not be obtained with resin alone can be obtained (Japanese Patent Publication No. 1986-6144 number, Nippon Tokukai 1977
No. 1-63860, Japanese Patent Application Publication No. 111547-1982).

しかしながら、ガラス繊維あるいは炭素繊維強化成形材
料では、平均繊維径3〜13仏m、平均繊維長2肋以上
と繊維サイズが比較的大きい為、ゲート口径が直径0.
3肌以下の時計用歯車等の精密部品を射出成形する場合
、当該繊維強化成形材料では、射出圧を2000〜40
00k9/地に高めてもゲートを通過しない為、所望の
成形物は得られない。
However, in glass fiber or carbon fiber reinforced molding materials, the average fiber diameter is 3 to 13 French meters, and the average fiber length is 2 or more square meters, which is a relatively large fiber size, so the gate diameter is 0.5 mm.
When injection molding precision parts such as watch gears with a diameter of 3 skin or less, the injection pressure must be set at 2000 to 40
Even if it is raised to 00k9/ground, it does not pass through the gate, so the desired molded product cannot be obtained.

一方、これらの繊維強化材を全く含有しない、つまり、
ナチュラルのキシリレンジアミン系ポリアミド樹脂は、
ゲート口径が直径0.3肌以下でも勿論射出成形可能で
あるが、得られる成形品が、例えば歯車の如く非常に薄
肉である場合には、ナチュラルでは強度・剛性率が不足
しており実用化困難であった。又、別の用途として、表
面精度および熱時硬度の要求されるプラスチックロール
の製造においても、ガラス繊維あるいは炭素繊維強化成
形材料では熱時硬度は満たされるが、後加工(表面研磨
)を行っても表面粗さ(中心線平均粗さRa)を0.1
仏m以下に仕上げることは不可能であり、一方、ナチュ
ラルでは表面組さは0.05rm以下の精度に仕上るが
、熱時硬度が不足し実用に到らなかった。そこで、本発
明者らは、各種ミクロ強化材料およびその表面処理法に
つき色々検討した結果、これらの諸問題を解決する成形
用ポリアミド樹脂組成物を見出し本発明に到ったもので
ある。
On the other hand, it does not contain any of these fiber reinforcements, that is,
Natural xylylene diamine polyamide resin is
Of course, injection molding is possible even if the gate diameter is less than 0.3 mm in diameter, but if the molded product to be obtained is extremely thin, such as a gear, the strength and rigidity of natural is insufficient for practical use. It was difficult. Another application is the production of plastic rolls that require surface precision and hardness when hot. Glass fiber or carbon fiber reinforced molding materials can satisfy the hardness when hot, but post-processing (surface polishing) is required. Also, the surface roughness (center line average roughness Ra) is 0.1
It is impossible to finish the surface to a precision of less than 0.05 rm, while with natural, the surface roughness can be finished with an accuracy of less than 0.05 rm, but the hardness when heated is insufficient and it has not been put to practical use. As a result of various studies on various micro-reinforced materials and their surface treatment methods, the present inventors have found a polyamide resin composition for molding that solves these problems and have arrived at the present invention.

本発明におけるキシリレンジアミン系ポリアミド樹脂、
すなわち「MXナイロン」とは、メタキシリレンジアミ
ン単独または、メタキシリレンジアミン60%以上を含
有するパラキシリレンジアミンとの混合キシリレンジア
ミンをジアミン成分とし、これと炭素数6なし、し12
のQ,の一直鎖脂肪族二塩基酸;例えばアジピン酸、セ
バシン酸などの1種以上との重縮合反応によって合成さ
れるポリアミド樹脂である。
Xylylene diamine polyamide resin in the present invention,
In other words, "MX nylon" is a diamine component consisting of metaxylylene diamine alone or a mixture of para-xylylene diamine containing 60% or more of meta-xylylene diamine, and which has 6 carbon atoms, 12 carbon atoms, and 12 carbon atoms.
It is a polyamide resin synthesized by a polycondensation reaction with Q, one or more linear aliphatic dibasic acids such as adipic acid and sebacic acid.

成形物の性能のバランスを考慮するとき、上記のQ,w
−直鎖脂肪族二塩基酸の中ではアジピン酸が特にすぐれ
ている。
When considering the balance of performance of molded products, the above Q, w
-Adipic acid is particularly excellent among straight-chain aliphatic dibasic acids.

このMXナイロンは、機械的強度等すぐれた成形物を与
えるが、他方、結晶化が通常のナイロンに比較してや)
遅いという観点があり、これを解決するために、ナイロ
ン66を結晶核剤として添加すると結晶化が促進される
ことが先に見出されており(日特開昭51−6386ぴ
号)、本発明の成形用組成物においてもこの結晶化促進
効果は生かされるのであって、本発明の成形用組成物に
おけるナイロン66の配合は成形サイクル時間の短縮と
いう面から見れば広い量的範囲にわたって効果を生むが
、成形物の物性面を考慮して、ナイロン66が全組成中
の5〜15重量%の範囲を占めるのが適当である。
This MX nylon gives molded products with excellent mechanical strength, but on the other hand, it has less crystallization than normal nylon).
To solve this problem, it was previously discovered that adding nylon 66 as a crystal nucleating agent promoted crystallization (Japanese Patent Publication No. 6386/1986), and this paper This crystallization promoting effect is also utilized in the molding composition of the present invention, and the blending of nylon 66 in the molding composition of the present invention is effective over a wide quantitative range in terms of shortening the molding cycle time. However, in consideration of the physical properties of the molded product, it is appropriate that nylon 66 occupies 5 to 15% by weight of the total composition.

本発明において使用されるチタン酸カリウム繊維は、一
般式K20・nTi02またはK20・nTi02・1
/2日20(式中、nは2〜8の整数を表わす)で示さ
れる単結晶繊維であり、具体的には、例えば4−チタン
酸カリウム繊維、6ーチタン酸カリウム繊維または8−
チタン酸カリウム繊維などの単一組成物あるいはこれら
の混合組成物であって、平均繊維径1仏以下、平均繊維
長5〜100仏で、かつ平均繊維長/平均繊維隆比率(
アスペクト比)が10以上のものが適当である。
The potassium titanate fiber used in the present invention has the general formula K20・nTi02 or K20・nTi02・1
/2day20 (in the formula, n represents an integer of 2 to 8), and specifically, for example, 4-potassium titanate fiber, 6-potassium titanate fiber, or 8-potassium titanate fiber.
A single composition such as potassium titanate fiber or a mixed composition thereof, with an average fiber diameter of 1 French or less, an average fiber length of 5 to 100 French, and an average fiber length/average fiber ridge ratio (
A suitable material has an aspect ratio of 10 or more.

ここで、チタン酸カリウム繊維の平均繊維径、平均繊維
長およびアスペクト比は、走査型電子顕微鏡により少な
くとも視野数5以上で、かつ1視野あたり少なくとも1
庇滅絶以上の繊維について測定した結果によるものであ
る。
Here, the average fiber diameter, average fiber length, and aspect ratio of the potassium titanate fibers are determined by scanning electron microscopy in at least 5 fields of view and at least 1 field per field of view.
This is based on the results of measurements on fibers that are more than extinct.

チタン酸カリウム繊維の平均繊維径、平均繊維長及びア
スペクト比が前記範囲をはずれる場合、例えば平均繊維
蓬がlrよりも大で平均繊維長が5山より小、即ちアス
ペクト比が5よりも小であると、チタン酸カリウム繊維
による強化効果が小さく好ましくない。
When the average fiber diameter, average fiber length, and aspect ratio of the potassium titanate fibers are outside the above ranges, for example, when the average fiber diameter is larger than lr and the average fiber length is smaller than 5 threads, that is, the aspect ratio is smaller than 5. If it is present, the reinforcing effect of the potassium titanate fibers will be small and undesirable.

又平均繊維長が100一よりも長い繊維は工業的に製造
することが困難であり、実用性に欠ける。本発明におい
て使用されるチタン酸カリウム繊維としては、例えば「
ティスモ」(TISM0、大塚化学薬品■製)なる商標
で市販されているものがあり、これは平均繊維径0.2
〜0.5ム、平均繊維長10〜20山、アスペクト比2
0〜100の高強度単結晶ウイスカーである。
Furthermore, fibers with an average fiber length longer than 100 mm are difficult to produce industrially and lack practical use. As the potassium titanate fiber used in the present invention, for example, “
There is a product commercially available under the trademark "TISM0" (manufactured by Otsuka Chemicals), which has an average fiber diameter of 0.2.
~0.5mm, average fiber length 10-20 strands, aspect ratio 2
0-100 high strength single crystal whiskers.

該チタン酸カリウム繊維は、本発明の成形用樹脂組成物
において5〜4の重量%配合することにより機械的物性
及び耐熱性を大幅に向上できるが、配合量が5重量%未
満では向上効果が乏しく、又反対に4の重量%を超えて
もその配合量の割に物性の向上効果が小さく、又、チタ
ン酸カリウム繊維の高密度がMXナイロンベレツトと比
較して著しく小さく、コンパウンド化が困難となる為実
用性も乏しい。
The mechanical properties and heat resistance can be significantly improved by incorporating the potassium titanate fibers in the molding resin composition of the present invention in an amount of 5 to 4% by weight; however, if the amount is less than 5% by weight, the improvement effect is not achieved. On the other hand, even if it exceeds 4% by weight, the effect of improving physical properties is small compared to the amount added, and the high density of potassium titanate fibers is significantly lower than that of MX nylon berets, making compounding difficult. It is difficult and therefore not practical.

該チタン酸カリウム繊維は、禾処理のま)使用しても効
果はみられるが、通常のカップリング剤たとえば、エポ
キシシラン、アミノシラン、アクリルシラン等のシラン
系カップリング剤あるいはチタネート系カップリング剤
で表面処理をすると機械的物性が一層向上する。
Although the potassium titanate fibers are effective even if used without being hardened, they cannot be used with ordinary coupling agents such as silane coupling agents such as epoxysilane, aminosilane, acrylic silane, or titanate coupling agents. Surface treatment further improves mechanical properties.

なかでも、ェポキシシラン、アミノシラン系カップリン
グ剤が効果が大きく、チタン酸カリウム繊維に対し0.
3〜5重量%加えて表面処理をしたものが好適である。
本発明の成形用組成物を得るために、チタン酸カリウム
繊維をMXナイロン中に配合する方法は種々の方法があ
り、任意の方法を選ぶことが出来るが、例えばMXナイ
ロン合成時に原料と共に配合する方法;合成終了直前に
加える方法;あるいは合成で得られたMXナイロンベレ
ットと、チタン酸カリウム繊維とをドライブレンドした
後溶融押出してべレット化する方法等を挙げることがで
きる。又、本発明の成形用樹脂組成物には、組成物本来
の成形性及び物性に悪影響を与えない範囲で、その用途
、目的に応じて難燃化剤、熱安定剤、滑剤等の各種添加
剤を一種または二種以上添加することが出来る。本発明
の成形用ポリァミド樹脂組成物は、非常にミクロでしか
も高強度のチタン酸カリウム単結晶繊維で強化されてい
る為、従釆使用されているガラス繊維あるいは炭素繊維
強化ポリァミド樹脂組成物では成形できなかった腕時計
歯車等の超精密部品の成形も可能であり、又、引張強度
、曲げ強度、曲げ弾性率等の諸特性が大幅に改良されて
いる為、益々軽・薄・短・小化が可能となり、技術革新
および省資源化に大きく寄与する。
Among them, epoxysilane and aminosilane coupling agents are highly effective, with 0.0% strength against potassium titanate fibers.
It is preferable to add 3 to 5% by weight and subject it to surface treatment.
In order to obtain the molding composition of the present invention, there are various methods for blending potassium titanate fibers into MX nylon, and any method can be selected. Method: A method of adding it just before the end of synthesis; or a method of dry blending the MX nylon pellet obtained in the synthesis with potassium titanate fibers and then melt-extruding them to form pellets. In addition, the molding resin composition of the present invention may contain various additives such as flame retardants, heat stabilizers, and lubricants, depending on the use and purpose, within a range that does not adversely affect the original moldability and physical properties of the composition. One or more types of agents can be added. The polyamide resin composition for molding of the present invention is reinforced with extremely microscopic yet high-strength potassium titanate single crystal fibers. It is now possible to mold ultra-precision parts such as watch gears, which were previously impossible to mold, and the properties such as tensile strength, bending strength, and flexural modulus have been significantly improved, making them increasingly lighter, thinner, shorter, and smaller. This will greatly contribute to technological innovation and resource conservation.

又、ガラス繊維あるいは炭素繊維強化材料に比較して成
形収縮の異万性も、ミクロファイバーであることから少
なし、にも拘らず、熱変形温度の向上効果も大きく、又
、得られる成形物の表面状態がナチュラル品に近く、従
来の強化材料では出せなかった面精度が出せる等実用上
極めてその効果は大であり各種精密機械は勿論、一般外
装部品及び内装部品にも使用されていくものと期待され
る。以下、本発明の内容を実施例にて更に詳述するが、
これらはあくまでも一実施態様にすぎず、これらの実施
例により本発明が何ら限定されるものではない。実施例
1〜3及び比較例1、2 ポリマー 1夕を96%硫酸100肌に溶解し、25℃
で測定した相対粘度が2.43のポリ(メタキシリレン
アジパミド)(以下「ナイロンMX6Jと略記する)の
べレツトに、同様に測定した相対粘度が2.67のナイ
ロン66のべレツトを加え、さらに、チタン酸カリウム
単結晶繊維としてティスモーDI02(商品名大塚化学
薬品■製、平均繊維径0.3仏、平均繊維長14仏、ア
スペクト比47、ェポキシシラン 1重量%添加処理品
)を、全量中の配合割合が3の重量%となる量加えてV
型ブレンダーで混合したのち、スクリュー溶融押出機を
用いて熔融濃練し、ひも状に押出したのち、水浴を通し
て冷却し、回転切断機を用いてべレット状に切断後乾燥
して成形用組成物を得た。
In addition, compared to glass fiber or carbon fiber reinforced materials, mold shrinkage is less variable because it is a microfiber, but the effect of improving heat distortion temperature is also large, and the resulting molded product is Its surface condition is close to that of a natural product, and it can achieve surface precision that could not be achieved with conventional reinforced materials.It is extremely effective in practical use, and is used not only in various precision machines, but also in general exterior and interior parts. It is expected that Hereinafter, the content of the present invention will be explained in more detail with reference to Examples.
These are just one embodiment, and the present invention is not limited to these examples in any way. Examples 1 to 3 and Comparative Examples 1 and 2 Polymer was dissolved in 96% sulfuric acid 100% at 25°C.
A pellet of poly(meth-xylylene adipamide) (hereinafter abbreviated as "nylon MX6J") with a relative viscosity of 2.43 as measured in In addition, as a potassium titanate single crystal fiber, TISMO DI02 (trade name manufactured by Otsuka Chemical ■, average fiber diameter 0.3 mm, average fiber length 14 mm, aspect ratio 47, treated product with 1% by weight of epoxy silane added), In addition to the amount such that the blending ratio in the total amount is 3% by weight, V
After mixing in a mold blender, it is melted and thickened using a screw melt extruder, extruded into a string, cooled through a water bath, cut into pellets using a rotary cutting machine, and dried to obtain a molding composition. I got it.

この際ナイロンMX6に対するナイロン66の配合条件
、ナイロンMX6/ナイ。ン66を70/0、65/5
、60/10、55′15、50/20と変化させた。
これらの成形用組成物を射出成形機により金型温度13
000として、JISK7203に定める曲げ強度試験
片を射出成形し、成形後型開き直後の成形物の表面硬度
がバーコール硬度で20、30または40に達するまで
の冷却所要時間を測定した。
At this time, the mixing conditions of nylon 66 to nylon MX6, nylon MX6/nylon. 66 to 70/0, 65/5
, 60/10, 55'15, and 50/20.
These molding compositions are heated to a mold temperature of 13°C using an injection molding machine.
A bending strength test piece specified in JIS K7203 was injection molded as 000, and the cooling time required until the surface hardness of the molded product reached 20, 30, or 40 in Barcoll hardness immediately after opening the mold was measured.

この結果および曲げ特性測定結果をまとめて表1に示す
。表 1表1より、ナイロン66の配合量は5〜15重
量%が適当であり、5重量%未満であると、冷却所要時
間が長く、成形性に問題があり、一方15重量%を超え
ると機械物性が低下してくる為、望ましくないことがわ
かる。
The results and the bending property measurement results are summarized in Table 1. Table 1 From Table 1, the appropriate blending amount of nylon 66 is 5 to 15% by weight; if it is less than 5% by weight, the cooling time will be long and there will be problems with moldability, while if it exceeds 15% by weight, It can be seen that this is not desirable because the mechanical properties deteriorate.

実施例4〜7及び比較例3 実施例1〜3で用いたのと同じナイロン661の重量%
に、同様に測定した相対粘度が2.25のナィロンMX
6を使用し、アミノシラン処理をしたチタン酸カリウム
繊維(大塚化学薬品■製、ティスモーDIOI 平均繊
維径 0.3仏、平均繊維長 14ム、アスペクト比
47)を添加量をかえて添加し、実施例1〜3と同様に
べレット状の成形用組成物を作成し、かつ、各種JIS
試験片を射出成形して各種物性を測定した。
Examples 4-7 and Comparative Example 3 Weight % of the same nylon 661 used in Examples 1-3
Nylon MX with a relative viscosity of 2.25 measured in the same manner
Potassium titanate fiber treated with aminosilane (manufactured by Otsuka Chemical Co., Ltd., Tismo DIOI, average fiber diameter 0.3mm, average fiber length 14mm, aspect ratio
47) was added in different amounts to prepare pellet-shaped molding compositions in the same manner as in Examples 1 to 3, and various JIS
Test pieces were injection molded and various physical properties were measured.

その結果を表2に示す。表 2 表2より、チタン酸カリウム繊維を5〜4の重量%添加
すると、ナチュラルに比較して機械的強度、耐熱性、成
形収縮率共に改良効果の大きいことが明らかである。
The results are shown in Table 2. Table 2 From Table 2, it is clear that when 5 to 4% by weight of potassium titanate fiber is added, the mechanical strength, heat resistance, and molding shrinkage rate are greatly improved compared to natural fibers.

なお実施例7の場合以上、即ち40重量%を超えて配合
した組成物は溶融押出し工程においてチタン酸カリウム
繊維が嵩高い為供給がかなり困難となることは前記した
通りである。又、実施例6の成形用組成物と同様にして
作成した繊維長3肌のガラス繊維を3の重量%配合した
成形用組成物及び比較例3の樹脂組成物を使用し、ピン
ポィントゲ−ト口径0.2側の時計用歯車用金型を用い
て射出成形を試みたところ、ガラス繊維配合成形用組成
物では、成形圧力を1500kg/塊以上に上げても充
填できなかったのに対し、比較例3及び実施例6の成形
用組成物では、500k9/めでも充分に充填可能であ
った。
It should be noted that, as described above, in the case of Example 7, it is quite difficult to supply a composition containing more than 40% by weight because the potassium titanate fibers are bulky in the melt extrusion process. In addition, a molding composition prepared in the same manner as the molding composition of Example 6 and containing 3% by weight of glass fiber with a fiber length of 3 skin and the resin composition of Comparative Example 3 were used, and the pinpoint gate diameter was When injection molding was attempted using a mold for a watch gear on the 0.2 side, the molding composition containing glass fiber could not be filled even if the molding pressure was increased to 1500 kg/lump or higher, whereas the comparison In the molding compositions of Example 3 and Example 6, it was possible to sufficiently fill the molding composition even at 500 k9/m.

しかし、比較例3の組成物では熱変形温度93qoと低
い為、脱型が困難であり、連続生産ができなかった。
However, since the composition of Comparative Example 3 had a low heat distortion temperature of 93 qo, demolding was difficult and continuous production was not possible.

Claims (1)

【特許請求の範囲】 1 キシリレンジアミン系ポリアミド樹脂55〜90重
量%、ナイロン665〜15重量%およびチタン酸カリ
ウム単結晶繊維5〜40重量%を含有してなる成形用ポ
リアミド樹脂組成物。 2 チタン酸カリウム単結晶繊維が平均繊維径1μ以下
、平均繊維長5〜100μでかつ平均繊維長/平均繊維
径比率が10以上の短繊維である特許請求の範囲第1項
記載の成形用ポリアミド樹脂組成物。 3 チタン酸カリウム単結晶繊維が、繊維重量の0.3
〜5.0重量%の表面処理剤で処理されたものである特
許請求の範囲第1項記載の成形用ポリアミド樹脂組成物
[Scope of Claims] 1. A molding polyamide resin composition comprising 55 to 90% by weight of a xylylene diamine polyamide resin, 665 to 15% by weight of nylon, and 5 to 40% by weight of potassium titanate single crystal fiber. 2. The polyamide for molding according to claim 1, wherein the potassium titanate single crystal fibers are short fibers with an average fiber diameter of 1 μ or less, an average fiber length of 5 to 100 μ, and an average fiber length/average fiber diameter ratio of 10 or more. Resin composition. 3 Potassium titanate single crystal fiber is 0.3 of the fiber weight
The polyamide resin composition for molding according to claim 1, which is treated with a surface treatment agent of 5.0% by weight.
JP13069083A 1983-07-18 1983-07-18 Polyamide resin composition for molding Expired JPS6033852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13069083A JPS6033852B2 (en) 1983-07-18 1983-07-18 Polyamide resin composition for molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13069083A JPS6033852B2 (en) 1983-07-18 1983-07-18 Polyamide resin composition for molding

Publications (2)

Publication Number Publication Date
JPS6023446A JPS6023446A (en) 1985-02-06
JPS6033852B2 true JPS6033852B2 (en) 1985-08-05

Family

ID=15040287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13069083A Expired JPS6033852B2 (en) 1983-07-18 1983-07-18 Polyamide resin composition for molding

Country Status (1)

Country Link
JP (1) JPS6033852B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185566A (en) * 1985-02-12 1986-08-19 Otsuka Chem Co Ltd Resin composition for slidable parts
JPS61185560A (en) * 1985-02-12 1986-08-19 Otsuka Chem Co Ltd Resin composition for slidable parts
JP2816864B2 (en) * 1989-07-07 1998-10-27 大塚化学株式会社 Transfer wafer basket and storage case
JP6961957B2 (en) * 2017-03-06 2021-11-05 三菱瓦斯化学株式会社 Stretched molded product and method for producing stretched molded product

Also Published As

Publication number Publication date
JPS6023446A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
US4442254A (en) Polyamide resin composition
JP3169951B2 (en) High strength polyamide resin composition and method for producing the same
TW200848467A (en) Polyamide molding materials reinforced with flat glass fibers and injection molded parts made thereof
WO2014203811A1 (en) Crystalline thermoplastic resin composition and molded article
JPS6057464B2 (en) Polyamide resin composition
JPS6033852B2 (en) Polyamide resin composition for molding
EP0441623B1 (en) Process for the production of an automobile mirror stay.
JPS58101146A (en) Enhanced thermoplastic resin composition
JP3530536B2 (en) Glass fiber reinforced polyamide resin composition and molding method thereof
JPH0317156A (en) Highly heat-resistant crystalpolyphthalamide compounds
CN112500639B (en) Isotropic high-strength polypropylene composite material and preparation method thereof
JP2007106959A (en) Polyamide resin composition
JPS6248987B2 (en)
JPH0352953A (en) Polyamide resin composition
JPS63137955A (en) Polyamide resin for molding
JP2648745B2 (en) Thermotropic liquid crystal polymer composition and method for producing the same
KR101465757B1 (en) Polyamide resin composition
CN103642179B (en) Polybutylene terephthalate/glass fiber compound material and preparation method thereof
KR20190066877A (en) Polyamide resin composition and Idle Gear by using the same
CN114716811A (en) Nylon composite material and preparation method thereof
JPS60206861A (en) Resin composition as substitute for light-alloy casting
JPS59157150A (en) Polyether ketone resin composition
JP2761563B2 (en) Polyetherimide resin composition
JPS63156856A (en) Polyamide resin molded article
JPH0352951A (en) Molding polyamide resin composition