JPS6057464B2 - Polyamide resin composition - Google Patents

Polyamide resin composition

Info

Publication number
JPS6057464B2
JPS6057464B2 JP3599577A JP3599577A JPS6057464B2 JP S6057464 B2 JPS6057464 B2 JP S6057464B2 JP 3599577 A JP3599577 A JP 3599577A JP 3599577 A JP3599577 A JP 3599577A JP S6057464 B2 JPS6057464 B2 JP S6057464B2
Authority
JP
Japan
Prior art keywords
weight
polyamide
nylon
resin composition
unsaturated organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3599577A
Other languages
Japanese (ja)
Other versions
JPS53120761A (en
Inventor
晃 宮本
勝男 佐藤
光康 長野
浄 森重
賢一 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP3599577A priority Critical patent/JPS6057464B2/en
Publication of JPS53120761A publication Critical patent/JPS53120761A/en
Publication of JPS6057464B2 publication Critical patent/JPS6057464B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】 本発明はポリアミド樹脂組成物に関し、更に詳しくは
キシリレンジアミンと直鎖脂肪族ジカルボン酸とを反応
させて得られるポリアミド樹脂(以下キシリレンジアミ
ン系ポリアミドと言う)にナイロン66、無機充填剤、
ガラス繊維及び不飽和有機酸て変性したポリオレフィン
を配合した成形用樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyamide resin composition, and more specifically, the present invention relates to a polyamide resin composition, and more specifically, a polyamide resin obtained by reacting xylylene diamine and a linear aliphatic dicarboxylic acid (hereinafter referred to as xylylene diamine polyamide) and nylon. 66, inorganic filler,
This invention relates to a molding resin composition containing glass fiber and a polyolefin modified with an unsaturated organic acid.

本発明に於ける樹脂組成物は一般に行われている射出
成形、押出成形等によつて容易に成形することが可能で
あり、本発明組成物より得られる成形物は物理的、熱的
及び化学的性質に優れ、寸法 安定性にも優れている。
The resin composition of the present invention can be easily molded by commonly used injection molding, extrusion molding, etc., and the molded product obtained from the composition of the present invention can be molded by physical, thermal, and chemical processes. It has excellent physical properties and dimensional stability.

メタキシリレンジアミンを主成分とするキシリレンジ
アミン系ポリアミドは、無延伸状態に於いては常温で脆
性破壊する性質を有し、耐衝撃性が著しく劣るが、これ
にガラス繊維を配合するときはこれらの欠点が著しく改
善され、従来から知られているガラス繊維強化熱可塑性
樹脂成形材料と比較して化学的、熱的、機械的諸性質に
優れた成形材料となる。(特開昭50−61449)。
更にこのガ”ラス繊維配合のキシリレンジアミン系ポリ
アミド組成物に無機充填剤を配合して、工業的実用化の
面からコストダウンを計ることが考えられる。 また、
キシリレンジアミン系ポリアミドはガラス繊維や無機充
填剤を配合することにより優れた性能を有する成形物を
与えるが、一方通常のナイロン6等と比較して結晶化が
遅いという難点があり、射出成形等の成形加工に際して
金型内に流入された材料の結晶固化が遅く、冷却に長時
間を要するという欠点があるが、これを解決するために
ナイロン66を結晶核剤として少量添加することも見い
たされている(特開昭51−63860)。しかしなが
ら、無機充填剤を配合した場合、物性面、特に耐衝撃性
等に於いて問題を生ずる。本発明者らは、ガラス繊維、
無機充填剤、ナイロン66を配合したキシリレンジアミ
ン系ポリアミド組成物に於いても物理的に満足できる性
質を付与する為の検討を行つた結果、このキシリレンジ
アミン系ポリアミド組成物に不飽和有機酸変性ポリオレ
フィンを配合することにより、無機充填剤を配合するこ
とによる衝撃強度の低下を防ぎ、且つガラス繊維の配合
に基づく成形時の異方性を少なすくることに成功し、本
発明に到達したものである。即ち、本発明は、キシリレ
ンジアミン系ポリアミド、ナイロン66.ガラス繊維、
無機充填剤及び不飽和有機酸変性ポリオレフィンからな
る樹脂組成物であつて、該組成物中ガラス繊維が5〜3
轍量%、無機充填剤が10〜7鍾量%、不飽和有機酸変
性ポリオレフィンが5〜2鍾量%及びキシリレンジアミ
ン系ポリアミドが24.5重量%以下、ナイロン66が
5重量%以下であるポリアミド樹脂組成物てある。
Xylylene diamine polyamide, whose main component is meta-xylylene diamine, has the property of brittle fracture at room temperature in an unstretched state and has significantly poor impact resistance, but when glass fiber is added to it, These drawbacks are significantly improved, resulting in a molding material with superior chemical, thermal, and mechanical properties compared to conventionally known glass fiber-reinforced thermoplastic resin molding materials. (Japanese Patent Application Laid-Open No. 50-61449).
Furthermore, it is conceivable to incorporate an inorganic filler into this xylylenediamine-based polyamide composition containing glass fibers to reduce costs from the standpoint of industrial practical application.
When xylylene diamine polyamide is blended with glass fibers and inorganic fillers, molded products with excellent performance can be obtained. However, it has the disadvantage that it crystallizes more slowly than ordinary nylon 6, etc., so it cannot be used for injection molding, etc. During the molding process, the crystallization of the material poured into the mold is slow and it takes a long time to cool down, which is a drawback.In order to solve this problem, it has been seen that a small amount of nylon 66 is added as a crystal nucleating agent. (Japanese Patent Application Laid-Open No. 51-63860). However, when an inorganic filler is blended, problems arise in terms of physical properties, especially impact resistance. The inventors have discovered that glass fiber,
As a result of conducting studies to impart physically satisfactory properties to a xylylene diamine-based polyamide composition containing an inorganic filler, nylon 66, we found that unsaturated organic acid was added to this xylylene diamine-based polyamide composition. By blending modified polyolefin, we have succeeded in preventing the drop in impact strength caused by blending inorganic fillers and in reducing the anisotropy during molding due to the blending of glass fibers, resulting in the present invention. It is something. That is, the present invention uses xylylene diamine polyamide, nylon 66. glass fiber,
A resin composition comprising an inorganic filler and an unsaturated organic acid-modified polyolefin, the composition containing 5 to 3 glass fibers.
Rut amount%, inorganic filler is 10 to 7 weight%, unsaturated organic acid-modified polyolefin is 5 to 2 weight%, xylylenediamine polyamide is 24.5% by weight or less, and nylon 66 is 5% by weight or less. There are certain polyamide resin compositions.

本発明に於けるキシリレンジアミン系ポリアミドとは、
メタキシリレンジアミン、又はメタキシリレンジアミン
60%以上とバラキシリレンジアミン40%以下との混
合物を炭素数6〜12の直鎖脂肪族ジカルボン酸と重縮
合反応させることによつて得られるものである。
The xylylene diamine polyamide in the present invention is
It is obtained by polycondensation reaction of metaxylylene diamine or a mixture of 60% or more metaxylylene diamine and 40% or less free xylylene diamine with a straight chain aliphatic dicarboxylic acid having 6 to 12 carbon atoms. be.

中でも直鎖脂肪族ジカルボン酸としてアジピン酸を使用
したポリアミドが成形材料としてバランスがよくとれた
成形品を与えるために特に望ましい。本発明組成物に於
いては、樹脂成分を多量に使用しないでも望ましい物性
を有する成形物を得ることが一つの目的であるので、こ
の観点からキシリレンジアミン系ポリアミドの量が上記
の如く24.5重量%以下に決められるが、あまり少量
過ぎても所望の性能が得られないばかりか、成形上も問
題があり、2鍾量%より少ない場合は望ましくない。
Among these, polyamides using adipic acid as the straight-chain aliphatic dicarboxylic acid are particularly desirable because they provide well-balanced molded products as molding materials. One of the purposes of the composition of the present invention is to obtain a molded product having desirable physical properties without using a large amount of the resin component, and from this point of view, the amount of the xylylene diamine polyamide is adjusted to 24. Although it is determined to be 5% by weight or less, if the amount is too small, not only will the desired performance not be obtained, but there will also be problems in molding, so if it is less than 2% by weight, it is not desirable.

本発明に於いてナイロン66の配合量は、成形加工性、
即ち成形サイクル時間の短縮という面から。
In the present invention, the blending amount of nylon 66 is determined by moldability,
In other words, from the perspective of shortening the molding cycle time.

見れば広い範囲にわたつて効果が有るが、成形物の物性
面を加味した場合、前記の如く5重量%以下が適当であ
る。但し、あまり少なくても効果が期待で来ず、1重量
%以上が望ましい。ガラス繊維は、一般に樹脂強化用と
して使用されているものであれば差支えないが、通常は
3T1rm程度の長さを有するチヨツプドストランドが
用いられ、その使用量は5〜3鍾量%である。
It appears to be effective over a wide range, but when considering the physical properties of the molded product, it is appropriate to use 5% by weight or less as mentioned above. However, if the amount is too small, the desired effect will not be achieved, so 1% by weight or more is desirable. There is no problem with the glass fiber as long as it is generally used for reinforcing resins, but chopped strands having a length of about 3T1rm are usually used, and the amount used is 5 to 3% by weight. be.

本発明に用いられる無機充填剤は、一般に用いられる粉
末状のものであり、例えばタルク、マイカ、メタ珪酸カ
ルシウム、炭酸カルシウム、シリカ、硫酸カルシウム、
亜硫酸カルシウム及びカオリナイト等があり、それらを
二種以上混合組合せ”て用いることもよく、又充填剤の
表面はカップリング剤、界面活性剤等で処理がなされて
いてもよい。
The inorganic fillers used in the present invention are commonly used powdered ones, such as talc, mica, calcium metasilicate, calcium carbonate, silica, calcium sulfate,
There are calcium sulfite, kaolinite, etc., and two or more of them may be used in combination, and the surface of the filler may be treated with a coupling agent, a surfactant, etc.

該充填剤の配合量は10〜7鍾量%であり、好ましくは
30〜5唾量%てある。次に不飽和有機酸で変性したポ
リオレフィンについて述べる。
The blending amount of the filler is 10 to 7% by weight, preferably 30 to 5% by weight. Next, polyolefins modified with unsaturated organic acids will be described.

元来ポリオレフィンは無機充填剤類との親和性に乏しく
、これを補うために無機充填剤の表面処理等が行われて
いるものの未だに十分とはいえないが、本発明で使用す
るポリオレフィン、例えばポリエチレン、ポリプロピレ
ン又はこれらの誘導体等を不飽和有機酸て処理した変性
ポリオレフィンは、キシリレンジアミン系ポリアミド及
び無機充填剤の両方に対して親和性を有しており、無機
充填剤を配合したことによる機械的強度、特に衝撃強度
の低下を避けることができる。ポリオレフィンの不飽和
有機酸による変性に於いて、不飽和有機酸の濃度はポリ
オレフィンに対して0.5〜5重量%程度が望ましく、
変性処理方法は、過酸化物系開始剤の存在下での溶液反
応、又は溶融押出時での混練による反応が採用できる。
Polyolefins originally have poor affinity with inorganic fillers, and although surface treatments with inorganic fillers have been carried out to compensate for this, it is still not sufficient. However, the polyolefins used in the present invention, such as polyethylene Modified polyolefin, which is obtained by treating polypropylene, polypropylene, or a derivative thereof with an unsaturated organic acid, has an affinity for both xylylene diamine-based polyamide and an inorganic filler. It is possible to avoid a decrease in physical strength, especially impact strength. In the modification of polyolefin with an unsaturated organic acid, the concentration of the unsaturated organic acid is preferably about 0.5 to 5% by weight based on the polyolefin.
As the modification treatment method, a solution reaction in the presence of a peroxide initiator or a reaction by kneading during melt extrusion can be adopted.

用いる不飽和有機酸としてはフマル酸、マレイン酸、ナ
デイツク酸、テトラヒドロフタル酸、メタクリル酸及び
アクリル酸等を挙げることが出来、又これらの無水物も
有効てある。これらの不飽和有機酸変性ポリオレフィン
の配合量は、成形物の物性を考慮して決められ、5〜2
鍾量%が好適である。
Examples of the unsaturated organic acids used include fumaric acid, maleic acid, nadic acid, tetrahydrophthalic acid, methacrylic acid, and acrylic acid, and anhydrides of these are also effective. The amount of these unsaturated organic acid-modified polyolefins is determined in consideration of the physical properties of the molded product, and is 5 to 2.
% weight is preferred.

以上に述べた各成分、即ちキシリレンジアミン系ポリア
ミド、ナイロン66、ガラス繊維、無機充填剤及び不飽
和有機酸変性ポリオレフィンの混合には種々の方法があ
り、任意の方法で行うことが出来るが、例えば各成分を
同時にタンブラーでドライブレンドし、これをスクリュ
ー式押出機にて溶融してストランド状に押出した後、冷
却して適当な長さに切断してペレットにする方法、また
はキシリレンジアミン系ポリアミド、ナイロン66、無
機充填剤及び不飽和有機酸変性ポリオレフィンを予め上
記のような方法で混合、押出ししたものに対してガラス
繊維を加えて再度押出しを行いペレット化する方法等が
ある。
There are various methods for mixing the above-mentioned components, that is, xylylene diamine polyamide, nylon 66, glass fiber, inorganic filler, and unsaturated organic acid-modified polyolefin, and any method can be used. For example, each component is dry-blended simultaneously in a tumbler, melted in a screw extruder, extruded into strands, cooled and cut into appropriate lengths to make pellets, or xylylenediamine-based There is a method in which polyamide, nylon 66, an inorganic filler, and an unsaturated organic acid-modified polyolefin are mixed and extruded in advance as described above, and then glass fiber is added to the mixture and extruded again to form pellets.

勿論本発明組成物は、押出混練工程に於いて、目的に応
じて難燃化剤、耐熱安定剤、滑剤、着色剤又は紫外線吸
収剤等の添加剤を、本発明の組成物の物性に悪影響を与
えない範囲て一種又は二種以上低下することが出来る。
本発明のポリアミド樹脂組成物成形品は、特に引張強さ
、曲け強さ、圧縮強さ、引張弾肚率、曲げ弾性率、圧縮
弾性率、硬度等の材料力学特性及び熱変形温度等の熱的
特性がよく、又成形時の収縮が少なく、寸法安定性が優
れており、更に、キシリレンジアミン系ポリアミドの特
徴である吸水率が低いこと、長期物性としてのクリープ
特性に優れているという特性も損なわず有しており、高
水準の成形材料である。
Of course, in the extrusion kneading process of the composition of the present invention, additives such as flame retardants, heat stabilizers, lubricants, colorants, or ultraviolet absorbers may be added depending on the purpose, without adversely affecting the physical properties of the composition of the present invention. It is possible to reduce one or more types within a range that does not give the same effect.
The polyamide resin composition molded article of the present invention has particularly good mechanical properties such as tensile strength, bending strength, compressive strength, tensile elastic modulus, bending elastic modulus, compressive elastic modulus, and hardness, and heat distortion temperature. It has good thermal properties, low shrinkage during molding, and excellent dimensional stability.Furthermore, it has low water absorption, which is a characteristic of xylylenediamine polyamide, and excellent long-term creep properties. It is a high-quality molding material that maintains its properties without sacrificing its properties.

以下に実施例で詳細に説明する。This will be explained in detail in Examples below.

なお、本実施例中「部」は重量部を表わす。実施例1 平均分子量18000のポリ(メタキシリレンアジパミ
ド)のペレット24.5部にナイロン665部、チヨツ
プドストランドガラス繊維(旭ファイバークラス社製、
CSO?A4O9C)108V及びポリエチレン(日石
レクスロン社製、F−41)を無水メチルナジツク酸で
処理(無水メチルナジツク酸とポリエチレンとの重量比
0.5/100)した変性ポリエチレン5部、炭酸カル
シウム(日東粉化社製、NS−100)55部及び滑剤
0.5部を混合し、押出機て溶融混練してストランド状
に押出した後、水浴て冷却しペレット状に切断後、乾燥
して成形材料を得た。
In addition, "part" in this example represents a weight part. Example 1 24.5 parts of poly(methaxylylene adipamide) pellets with an average molecular weight of 18,000, 665 parts of nylon, chopped strand glass fiber (manufactured by Asahi Fiber Class Co., Ltd.,
CSO? A4O9C) 108V and polyethylene (F-41, manufactured by Nisseki Rexron Co., Ltd.) treated with methylnadic anhydride (weight ratio of methylnadic anhydride to polyethylene 0.5/100), 5 parts of modified polyethylene, calcium carbonate (Nitto Powder Chemical) NS-100) and 0.5 parts of lubricant were mixed, melt-kneaded using an extruder, extruded into strands, cooled in a water bath, cut into pellets, and dried to obtain a molding material. Ta.

得られたペレットをシリンダー温度285℃、金型温度
75゜Cで射出成形して試験片を得、その物性値をAS
TMに準拠して測定した。
The obtained pellets were injection molded at a cylinder temperature of 285°C and a mold temperature of 75°C to obtain test pieces, and their physical properties were determined by AS.
Measured according to TM.

その結果を表に示す。実施例2 実施例1のうちの炭酸カルシウムをシリカ(土ォ8屋カ
オリン社製、ハイシリカF2)に置き換えた以外は実施
例1と同様な組成を用い、実施例1と同じ条件で押出、
射出成形をした。
The results are shown in the table. Example 2 The same composition as in Example 1 was used except that calcium carbonate in Example 1 was replaced with silica (Hi-Silica F2, manufactured by Toyo Ya Kaolin Co., Ltd.), and extrusion was carried out under the same conditions as in Example 1.
Made by injection molding.

物性値測定結果を表に示す。実施例3 実施例1のうちの炭酸カルシウムをタルク(土屋カオリ
ン社製、LM−R)に置き換えた以外は実施例1と同様
な組成を用い、実施例1と同じ条件で押出、射出成形を
した。
The physical property measurement results are shown in the table. Example 3 The same composition as in Example 1 was used except that calcium carbonate in Example 1 was replaced with talc (manufactured by Tsuchiya Kaolin Co., Ltd., LM-R), and extrusion and injection molding were carried out under the same conditions as in Example 1. did.

物性値測定結果を表に示す。実施例4 平均分子量18300のポリ(メタキシリレンアジパミ
ド)のペレット24.5部にナイロン665部、チヨツ
プドストランドガラス繊維w部及びポリエチレン田石レ
クスロン社製、F4l)をテトラヒドロ無水フタル酸で
処理(テトラヒドロ無水フタル酸とポリエチレンとの重
量比0.5/100)した変性ポリエチレン5部、メタ
珪酸カルシウム(インターベース社製、ウオラストナイ
トF−1)55部及び滑剤0.5部を混合し、実施例1
と同様に押し出してペレットとした後、射出成形した。
The physical property measurement results are shown in the table. Example 4 24.5 parts of poly(methaxylylene adipamide) pellets having an average molecular weight of 18,300, 665 parts of nylon, w part of chopped strand glass fiber, and polyethylene (manufactured by Rexron Taishi Co., Ltd., F4l) were added to tetrahydrophthalic anhydride. 5 parts of modified polyethylene treated with acid (weight ratio of tetrahydrophthalic anhydride to polyethylene 0.5/100), 55 parts of calcium metasilicate (Wollastonite F-1, manufactured by Interbase), and 0.5 part of lubricant. Example 1
After extruding into pellets in the same manner as above, injection molding was performed.

物性値の測定結果を表に示す。実施例5 平均分子量18000のポリ(メタキシリレンアジパミ
ド)のペレット加部にナイロン664.5部、長さ3T
fr1nのヂヨツプドストランドグラス1酩V及ひ無水
マレイン酸変性ポリエチレン(無水マレイン酸とポリエ
チレンとの重量比0.5/100)5部、炭酸カルシウ
ム印部及び滑剤0.5部を混合し、以下実”施例1と同
様にペレット化、成形を行い、物性値を測定した。
The measurement results of physical property values are shown in the table. Example 5 664.5 parts of nylon and 3T length were added to the poly(methaxylylene adipamide) pellet having an average molecular weight of 18,000.
1 cup of fr1n slender strand glass, 5 parts of maleic anhydride-modified polyethylene (weight ratio of maleic anhydride and polyethylene 0.5/100), calcium carbonate mark and 0.5 part of lubricant were mixed. In the following, pelletization and molding were carried out in the same manner as in Example 1, and the physical properties were measured.

その結果を表に示す。参考例1 平均分子量18100のポリ(メタキシリレンアジバミ
ド)のペレット24.5部にナイロン665部、・−炭
酸カルシウム7娼及び滑剤0.5部を混合し、実施例1
と同様に押し出してペレット化した後、射出成形した。
The results are shown in the table. Reference Example 1 24.5 parts of poly(methaxylylene adivamide) pellets having an average molecular weight of 18,100 were mixed with 665 parts of nylon, 7 calcium carbonate, and 0.5 part of a lubricant.
After extruding into pellets in the same manner as above, injection molding was performed.

物性値測定結果を表に示す。参考例2 参考例1のうちポリ(メタキシリレンアジパミノド)を
ナイロン66に置換し、同条件て押出、射出成形した。
The physical property measurement results are shown in the table. Reference Example 2 Poly(methaxylylene adipaminide) in Reference Example 1 was replaced with nylon 66, and extrusion and injection molding was carried out under the same conditions.

Claims (1)

【特許請求の範囲】[Claims] 1 キシリレンジアミン系ポリアミド、ナイロン66、
ガラス繊維、無機充填剤及び不飽和有機酸変性ポリオレ
フィンからなる樹脂組成物であつて、該組成物中ガラス
繊維が5〜30重量%、無機充填剤が10〜70重量%
、不飽和有機酸変性ポリオレフィンが5〜20重量%及
びキシリレンジアミン系ポリアミドが24.5重量%以
下、ナイロン66が5重量%以下であるポリアミド樹脂
組成物。
1 xylylene diamine polyamide, nylon 66,
A resin composition consisting of glass fiber, an inorganic filler, and an unsaturated organic acid-modified polyolefin, the composition containing 5 to 30% by weight of glass fiber and 10 to 70% by weight of inorganic filler.
A polyamide resin composition comprising 5 to 20% by weight of unsaturated organic acid-modified polyolefin, 24.5% by weight or less of xylylene diamine polyamide, and 5% by weight or less of nylon 66.
JP3599577A 1977-03-30 1977-03-30 Polyamide resin composition Expired JPS6057464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3599577A JPS6057464B2 (en) 1977-03-30 1977-03-30 Polyamide resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3599577A JPS6057464B2 (en) 1977-03-30 1977-03-30 Polyamide resin composition

Publications (2)

Publication Number Publication Date
JPS53120761A JPS53120761A (en) 1978-10-21
JPS6057464B2 true JPS6057464B2 (en) 1985-12-14

Family

ID=12457391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3599577A Expired JPS6057464B2 (en) 1977-03-30 1977-03-30 Polyamide resin composition

Country Status (1)

Country Link
JP (1) JPS6057464B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167740A (en) * 1980-05-29 1981-12-23 Toyobo Co Ltd Polyblend composition
DE3214118A1 (en) * 1981-04-17 1982-11-18 Toyo Boseki K.K., Osaka FIBER REINFORCED POLYMER BLEND COMPOSITION
JPS57172953A (en) * 1981-04-17 1982-10-25 Toyobo Co Ltd Fiber-reinforced polymer blend composition
JPS6026057A (en) * 1983-07-20 1985-02-08 Kanebo Ltd Electrically conductive polyamide resin composition for molding
JPS6053550A (en) * 1983-09-05 1985-03-27 Mitsui Petrochem Ind Ltd Polypropylene composition compounded with inorganic filler
JPH0618929B2 (en) * 1984-03-28 1994-03-16 チッソ株式会社 Glass fiber reinforced polypropylene composition
JPS6160754A (en) * 1984-09-03 1986-03-28 Asahi Chem Ind Co Ltd Glass fiber-reinforced polyamide resin composition
US4980407A (en) * 1988-10-21 1990-12-25 Toyoda Gosei Co., Ltd. Polyamide resin composition
JP2618721B2 (en) * 1989-10-20 1997-06-11 豊田合成 株式会社 Vibration damping resin molded products for engines
JP3298340B2 (en) * 1994-12-16 2002-07-02 三菱電機株式会社 Switch insulation components
JP4736194B2 (en) * 2001-01-31 2011-07-27 三菱エンジニアリングプラスチックス株式会社 Polyamide resin composition and molded article
US8198355B2 (en) * 2006-06-15 2012-06-12 E. I. Du Pont De Nemours And Company Nanocomposite compositions of polyamides and sepiolite-type clays
JP2011052230A (en) * 2010-12-13 2011-03-17 Mitsubishi Engineering Plastics Corp Polyamide resin composition and molding

Also Published As

Publication number Publication date
JPS53120761A (en) 1978-10-21

Similar Documents

Publication Publication Date Title
JPH02500917A (en) polyamide composition
JPS6057464B2 (en) Polyamide resin composition
JPS58204043A (en) Reinforced polyolefin resin composition
JPS632983B2 (en)
US5028649A (en) Polyethylene terephthalate molding compounds with sodium stearate and polyester amides
JPS58117250A (en) Reinforced resin composition with excellent moldability and its preparation
JPS63137956A (en) Polyamide resin for molding
JPH0447711B2 (en)
US5068274A (en) Secondary amides in polyethylene terephthalate molding compositions
JPS6229460B2 (en)
JPS60248775A (en) Resin composition
JPS63137955A (en) Polyamide resin for molding
JPS63202655A (en) Resin composition
JPS61188455A (en) Glass fiber-reinforced polyamide resin composition
JPH0395265A (en) Resin composition
JPH0368656A (en) Polyphenylene sulfide composition
JPH0114937B2 (en)
JPH0241360A (en) Resin composition
JPS59149955A (en) Polyamide composition having improved arc resistance
JPH0254384B2 (en)
US4908407A (en) Resin compositions
WO2004022632A1 (en) Method for producing polyamide resin composition excellent in durability at high temperature
EP0467368A2 (en) Secondary amides in polyethylene terepthalate molding compositions
JPS60135443A (en) Resin composition
JPS6351466B2 (en)