JPS6033308A - Steel modifier - Google Patents
Steel modifierInfo
- Publication number
- JPS6033308A JPS6033308A JP14280583A JP14280583A JPS6033308A JP S6033308 A JPS6033308 A JP S6033308A JP 14280583 A JP14280583 A JP 14280583A JP 14280583 A JP14280583 A JP 14280583A JP S6033308 A JPS6033308 A JP S6033308A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- steel
- titanium
- modifier
- iron powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
【発明の詳細な説明】
チタン成分を鋼中に添加し、鋼の特性を改善することは
近年一般に行はれ、構造用合金鋼、高張力鋼、ステンレ
ス鋼として利用されている。DETAILED DESCRIPTION OF THE INVENTION In recent years, it has become common practice to add titanium components to steel to improve the properties of the steel, and the titanium component is used in structural alloy steels, high-strength steels, and stainless steels.
従来鉄鋼、ステンレスなどに添加するチタン成分として
は、主としてフェロチタンが使われ、製鋼用の転炉或は
取鍋中の溶鋼にフェロチタンを添加し、鋼湯の成分調整
等の改質が行われている。Conventionally, ferrotitanium has been mainly used as a titanium component added to steel, stainless steel, etc., and ferrotitanium is added to molten steel in a converter or ladle for steelmaking, and modifications such as adjusting the composition of steel hot water are carried out. It is being said.
フェロチタンの製造法は高周波誌導炉などの高温加熱炉
にて鉄鋼片を溶解し、密閉状態或はアルゴン雰囲気中に
て、金属チタン片を添加、溶解して、任意の組成のフェ
ロチタン合金とする。これを冷却、粉砕し、更に粒度調
整して、フェロチタンの鉄鋼改質剤とする。Ferrotitanium is produced by melting steel pieces in a high-temperature heating furnace such as a high-frequency induction furnace, and adding and melting metallic titanium pieces in a closed state or in an argon atmosphere to create a ferrotitanium alloy of any composition. shall be. This is cooled, pulverized, and further adjusted in particle size to produce a ferrotitanium steel modifier.
以上のように製造されたフェロチタン合金は日本工業規
格によシその組成、粒度などが規格化されている。The composition, particle size, etc. of the ferrotitanium alloy produced as described above are standardized according to Japanese Industrial Standards.
本発明は、従来のフェロチタン合金の鉄鋼改質剤の如く
鋼を溶解して製造する工程を必要としない、経済的な改
質剤を提供せんとするものである。The present invention aims to provide an economical modifier that does not require the manufacturing process of melting steel, unlike conventional steel modifiers for ferrotitanium alloys.
本発明の鉄鋼改質剤は、従来のフェロチタン合金から々
る改質剤と同様に鉄鋼用原料として脱酸、脱窒、或は、
合金成分添加などの目的に使用できるものであシ、チタ
ン粉末と鉄粉末とを塊状化したことを特徴とする鉄鋼改
質剤である。The steel modifier of the present invention can be used as a raw material for steel for deoxidation, denitrification, or
This is a steel modifier that can be used for purposes such as adding alloying components, and is characterized by being made by agglomerating titanium powder and iron powder.
本発明に於いて、チタン粉末は、その粒度に限定はなく
、粒状ないし顆粒状の例えば10mesh程度のものも
使用可能であるが、通常、60mesh以下が望ましく
、例えばスポンジチタンの工業的生産に於いて、四塩化
チタンを金属ナトリウム又は金属マグネシウムで還元す
るときにスポンジチタンに随伴して生産される粉末チタ
ンを利用するのが好ましい。鉄粉末は、チタン粉末と同
様に10mesh程度のものも使用できるが、60me
sh以下が望ましく、例えば一般に粉末冶金用に使用さ
れるものが望ましく使用することができる。これら粉末
は、純度が高く、鉄鋼組成として忌避されている燐、硫
黄、水素、酸素などの不純分の増加の懸念されることが
ないので好ましい。チタン粉末と鉄粉末との混合比は、
最終的な改質の目的に応じて種々変更可能であるが、チ
タン粉末を全体の10ないし90重1t%の比率で混合
するのが好ましく、又塊状の大きさは1個52ないし1
002程度が、使用に便利である。In the present invention, the particle size of the titanium powder is not limited, and granular or granular particles of, for example, about 10 mesh can be used, but it is usually desirable to have a particle size of 60 mesh or less, and for example, in the industrial production of titanium sponge. Therefore, it is preferable to use powdered titanium produced along with titanium sponge when titanium tetrachloride is reduced with metallic sodium or metallic magnesium. Iron powder of about 10mesh can be used like titanium powder, but 60mesh
Sh or less is desirable, and for example, those commonly used for powder metallurgy can be desirably used. These powders are preferable because they have high purity and there is no concern about an increase in impurities such as phosphorus, sulfur, hydrogen, and oxygen, which are avoided in steel compositions. The mixing ratio of titanium powder and iron powder is
Although various changes can be made depending on the purpose of final modification, it is preferable to mix titanium powder at a ratio of 10 to 90% by weight and 1t% of the total, and the size of each piece is 52 to 1 t%.
A value of about 002 is convenient for use.
塊状化する方法については、特に限定はないが、圧縮成
型するのが経済的であシ、チタン粉末と鉄粉末の混合物
をit/i以上好ましくは2 t / or1以上で圧
縮して成型する。圧縮圧力を上げると塊状物の機械的強
度は上がるが、圧縮圧力を上げることのみによって機械
的強度を上げるのは経済的に不利であシ、一旦圧縮成型
したものを焼結させるのが望ましい。焼結は真空中或は
不活性ガス雰囲気中にて600℃ないし800℃で約2
時間ないし5時間で行なうことができる。There are no particular limitations on the method of agglomeration, but it is economical to use compression molding, and the mixture of titanium powder and iron powder is compressed and molded at a rate of at least it/i, preferably at least 2 t/or1. Increasing the compression pressure increases the mechanical strength of the lump, but it is economically disadvantageous to increase the mechanical strength only by increasing the compression pressure, so it is desirable to sinter the material once compression molded. Sintering is performed at 600°C to 800°C in vacuum or in an inert gas atmosphere for about 2
It can be done in hours to 5 hours.
本発明の主な利点を列記すれば次の如くである。The main advantages of the present invention are listed below.
1フ工ロチタン合金を製造するだめの設備費、加工費、
電気エネルギーを節約合理化することができる。Equipment costs and processing costs for manufacturing 1-factor titanium alloy,
Electrical energy can be saved and streamlined.
2粉末を混合、成型するので組成が均一化し、大きさ及
び形が自由に決定できる。Since two powders are mixed and molded, the composition is uniform and the size and shape can be freely determined.
3塊状化されているので取扱に際し粉塵化が防止でき作
業環境が改善され、且つ機械化も容易である。Since it is made into three lumps, it is possible to prevent dust formation during handling, improve the working environment, and facilitate mechanization.
本発明を実施する場合の一例について述べる。An example of implementing the present invention will be described.
実施例1
表1に示されるチタン粉末70部と表2に示される鉄粉
末30部をよく混合し、粉末成型機にて76″
2.000にグ/ cniの圧力にて直径約3 cmの
球状(釣台1i’)に成型し見掛比重4.6f/cm、
気孔率85チの鉄鋼改質剤を作った。これは5mの高さ
から鉄板上への落下破壊テストを行っても破壊すること
はなかった。この鉄鋼改質剤を従来のフェロチタン合金
からなる鉄鋼改質剤とほぼ同様に製鋼用転炉取鍋中に投
入し、鉄鋼の脱酸、脱窒或は合金成分用添加を目的とし
て使用することにょシ従来のフェロチタン合金を使用し
た場合と同様な効果を得ることができる。Example 1 70 parts of the titanium powder shown in Table 1 and 30 parts of the iron powder shown in Table 2 were thoroughly mixed and molded using a powder molding machine to a size of about 3 cm in diameter at a pressure of 76" 2.000 g/cni. Molded into a spherical shape (fishing platform 1i') with an apparent specific gravity of 4.6 f/cm,
A steel modifier with a porosity of 85 cm was made. Even when this was tested by dropping it from a height of 5 meters onto a steel plate, it did not break. This steel modifier is poured into a steelmaking converter ladle in the same way as conventional steel modifiers made of ferrotitanium alloys, and used for the purpose of deoxidizing and denitrifying steel or adding alloy components. In particular, it is possible to obtain the same effects as when using conventional ferrotitanium alloys.
表1 チタン粉末 化学組成(チ) 粒度分布 表2 鉄粉末 化学組成(饅) 粒度分布Table 1 Titanium powder Chemical composition (ch) Particle size distribution Table 2 Iron powder Chemical composition (rice cake) Particle size distribution
Claims (3)
する鉄鋼改質剤。(1) A steel modifier characterized by agglomerated titanium powder and iron powder.
特許請求の範囲第1項記載の鉄鋼改質剤。(2) The steel modifier according to claim 1, wherein the steel modifier is compression molded during agglomeration.
特徴とする特許請求の範囲第1項記載の鉄鋼改質剤。(3) The steel modifier according to claim 1, wherein the steel modifier is formed into agglomerates, compression molded, and further sintered.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14280583A JPS6033308A (en) | 1983-08-04 | 1983-08-04 | Steel modifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14280583A JPS6033308A (en) | 1983-08-04 | 1983-08-04 | Steel modifier |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6033308A true JPS6033308A (en) | 1985-02-20 |
Family
ID=15324046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14280583A Pending JPS6033308A (en) | 1983-08-04 | 1983-08-04 | Steel modifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6033308A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09346U (en) * | 1986-02-10 | 1997-06-10 | マレリ・オートロニカ・ソシエタ・ペル・アチオニ | Electrical parts that are mechanically connected |
JP2014514445A (en) * | 2011-03-22 | 2014-06-19 | ノルスク・チタニウム・コンポーネンツ・アーエス | Method for manufacturing titanium alloy welding wire |
US9469887B2 (en) | 2009-10-23 | 2016-10-18 | Norsk Titanium As | Method for production of titanium welding wire |
-
1983
- 1983-08-04 JP JP14280583A patent/JPS6033308A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09346U (en) * | 1986-02-10 | 1997-06-10 | マレリ・オートロニカ・ソシエタ・ペル・アチオニ | Electrical parts that are mechanically connected |
US9469887B2 (en) | 2009-10-23 | 2016-10-18 | Norsk Titanium As | Method for production of titanium welding wire |
JP2014514445A (en) * | 2011-03-22 | 2014-06-19 | ノルスク・チタニウム・コンポーネンツ・アーエス | Method for manufacturing titanium alloy welding wire |
US20160151865A1 (en) * | 2011-03-22 | 2016-06-02 | Norsk Titanium As | Method for production of alloyed titanium welding wire |
US9662749B2 (en) | 2011-03-22 | 2017-05-30 | Norsk Titanium As | Method for production of alloyed titanium welding wire |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100519803C (en) | Nano TiO2 oxide containing ferroalloy intermediate and preparation method and uses thereof | |
CN111254344B (en) | Preparation method of ferrovanadium alloy | |
CN110369730A (en) | A kind of copper-clad iron powder and preparation method thereof | |
CN105734201B (en) | A kind of alfer, preparation method and the usage | |
CN105695846A (en) | Phosphorus-contained iron-based powder metallurgy material and preparing process thereof | |
CN113699300A (en) | Inoculant for nodular cast iron flywheel shell and preparation method thereof | |
CN106834891A (en) | A kind of preparation method of ferro-titanium | |
CN117344231A (en) | Iron-nickel alloy powder and preparation method and application thereof | |
CA1211962A (en) | Method for producing a machinable high strength hot formed powdered ferrous base metal alloy | |
JPH06172916A (en) | Manufacturing of stainless steel | |
CN102266940B (en) | Intermediate for refining alumina inclusions in steel and preparation and use methods thereof | |
JPS6033308A (en) | Steel modifier | |
JPH0754002A (en) | Metal powder for part manufacturing by compression molding and sintering and preparation of said powder | |
US3419383A (en) | Producing pulverulent iron for powder metallurgy by multistage reduction | |
US4169730A (en) | Composition for atomized alloy bronze powders | |
US3202503A (en) | Production of high quality steel from iron sand | |
DE68919843T2 (en) | Manufacture of manganese carbide and iron (II) alloys. | |
CN112355315B (en) | Preparation method of spherical iron-based vanadium titanium carbide metal ceramic powder | |
US3744998A (en) | Additives for controlling the physical and structural characteristics of cast iron | |
JPS63161101A (en) | Production of low-oxygen metallic chromium power | |
JPS60169512A (en) | Carburizer for metallurgy | |
JPS6077945A (en) | Manufacture of metallic material containing dispersed particle | |
US4035183A (en) | Method for making aluminum-containing ferroalloy | |
US3271139A (en) | Process for the production of low sulfur ferrochromium | |
JPH01180902A (en) | Fe powder for sintering |