JPS6033308A - Steel modifier - Google Patents

Steel modifier

Info

Publication number
JPS6033308A
JPS6033308A JP14280583A JP14280583A JPS6033308A JP S6033308 A JPS6033308 A JP S6033308A JP 14280583 A JP14280583 A JP 14280583A JP 14280583 A JP14280583 A JP 14280583A JP S6033308 A JPS6033308 A JP S6033308A
Authority
JP
Japan
Prior art keywords
powder
steel
titanium
modifier
iron powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14280583A
Other languages
Japanese (ja)
Inventor
Takao Iida
飯田 卓男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP14280583A priority Critical patent/JPS6033308A/en
Publication of JPS6033308A publication Critical patent/JPS6033308A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To obtain the economic modifier unnecessary for the process where steel is manufactured by melting, by agglomerating titanium powder and iron powder. CONSTITUTION:The modifier adding titanium component into steel is manufactured by, for example, compressive forming of the mixture of titanium powder and iron powder to lumpy state. Though the particle size of titanium powder is not limited, it should, as a rule, be preferably about 60 mesh at the max. Further, iron powder should be preferably about 60 mesh at the max, too, and that used for powder metallurgy should be, as a rule, preferable because of its high purity. Though the mixing ratio of titanium powder and iron powder may be variously changeable according to the final purpose for modification, the percentage of titanium powder should preferably be about 10-90wt% of total amount. Further, for the size of lump, 5-100g degree per one piece is easy to be used. This modifier indicates the same effect as that of traditional modifier consisting of ferrotitanium alloy.

Description

【発明の詳細な説明】 チタン成分を鋼中に添加し、鋼の特性を改善することは
近年一般に行はれ、構造用合金鋼、高張力鋼、ステンレ
ス鋼として利用されている。
DETAILED DESCRIPTION OF THE INVENTION In recent years, it has become common practice to add titanium components to steel to improve the properties of the steel, and the titanium component is used in structural alloy steels, high-strength steels, and stainless steels.

従来鉄鋼、ステンレスなどに添加するチタン成分として
は、主としてフェロチタンが使われ、製鋼用の転炉或は
取鍋中の溶鋼にフェロチタンを添加し、鋼湯の成分調整
等の改質が行われている。
Conventionally, ferrotitanium has been mainly used as a titanium component added to steel, stainless steel, etc., and ferrotitanium is added to molten steel in a converter or ladle for steelmaking, and modifications such as adjusting the composition of steel hot water are carried out. It is being said.

フェロチタンの製造法は高周波誌導炉などの高温加熱炉
にて鉄鋼片を溶解し、密閉状態或はアルゴン雰囲気中に
て、金属チタン片を添加、溶解して、任意の組成のフェ
ロチタン合金とする。これを冷却、粉砕し、更に粒度調
整して、フェロチタンの鉄鋼改質剤とする。
Ferrotitanium is produced by melting steel pieces in a high-temperature heating furnace such as a high-frequency induction furnace, and adding and melting metallic titanium pieces in a closed state or in an argon atmosphere to create a ferrotitanium alloy of any composition. shall be. This is cooled, pulverized, and further adjusted in particle size to produce a ferrotitanium steel modifier.

以上のように製造されたフェロチタン合金は日本工業規
格によシその組成、粒度などが規格化されている。
The composition, particle size, etc. of the ferrotitanium alloy produced as described above are standardized according to Japanese Industrial Standards.

本発明は、従来のフェロチタン合金の鉄鋼改質剤の如く
鋼を溶解して製造する工程を必要としない、経済的な改
質剤を提供せんとするものである。
The present invention aims to provide an economical modifier that does not require the manufacturing process of melting steel, unlike conventional steel modifiers for ferrotitanium alloys.

本発明の鉄鋼改質剤は、従来のフェロチタン合金から々
る改質剤と同様に鉄鋼用原料として脱酸、脱窒、或は、
合金成分添加などの目的に使用できるものであシ、チタ
ン粉末と鉄粉末とを塊状化したことを特徴とする鉄鋼改
質剤である。
The steel modifier of the present invention can be used as a raw material for steel for deoxidation, denitrification, or
This is a steel modifier that can be used for purposes such as adding alloying components, and is characterized by being made by agglomerating titanium powder and iron powder.

本発明に於いて、チタン粉末は、その粒度に限定はなく
、粒状ないし顆粒状の例えば10mesh程度のものも
使用可能であるが、通常、60mesh以下が望ましく
、例えばスポンジチタンの工業的生産に於いて、四塩化
チタンを金属ナトリウム又は金属マグネシウムで還元す
るときにスポンジチタンに随伴して生産される粉末チタ
ンを利用するのが好ましい。鉄粉末は、チタン粉末と同
様に10mesh程度のものも使用できるが、60me
sh以下が望ましく、例えば一般に粉末冶金用に使用さ
れるものが望ましく使用することができる。これら粉末
は、純度が高く、鉄鋼組成として忌避されている燐、硫
黄、水素、酸素などの不純分の増加の懸念されることが
ないので好ましい。チタン粉末と鉄粉末との混合比は、
最終的な改質の目的に応じて種々変更可能であるが、チ
タン粉末を全体の10ないし90重1t%の比率で混合
するのが好ましく、又塊状の大きさは1個52ないし1
002程度が、使用に便利である。
In the present invention, the particle size of the titanium powder is not limited, and granular or granular particles of, for example, about 10 mesh can be used, but it is usually desirable to have a particle size of 60 mesh or less, and for example, in the industrial production of titanium sponge. Therefore, it is preferable to use powdered titanium produced along with titanium sponge when titanium tetrachloride is reduced with metallic sodium or metallic magnesium. Iron powder of about 10mesh can be used like titanium powder, but 60mesh
Sh or less is desirable, and for example, those commonly used for powder metallurgy can be desirably used. These powders are preferable because they have high purity and there is no concern about an increase in impurities such as phosphorus, sulfur, hydrogen, and oxygen, which are avoided in steel compositions. The mixing ratio of titanium powder and iron powder is
Although various changes can be made depending on the purpose of final modification, it is preferable to mix titanium powder at a ratio of 10 to 90% by weight and 1t% of the total, and the size of each piece is 52 to 1 t%.
A value of about 002 is convenient for use.

塊状化する方法については、特に限定はないが、圧縮成
型するのが経済的であシ、チタン粉末と鉄粉末の混合物
をit/i以上好ましくは2 t / or1以上で圧
縮して成型する。圧縮圧力を上げると塊状物の機械的強
度は上がるが、圧縮圧力を上げることのみによって機械
的強度を上げるのは経済的に不利であシ、一旦圧縮成型
したものを焼結させるのが望ましい。焼結は真空中或は
不活性ガス雰囲気中にて600℃ないし800℃で約2
時間ないし5時間で行なうことができる。
There are no particular limitations on the method of agglomeration, but it is economical to use compression molding, and the mixture of titanium powder and iron powder is compressed and molded at a rate of at least it/i, preferably at least 2 t/or1. Increasing the compression pressure increases the mechanical strength of the lump, but it is economically disadvantageous to increase the mechanical strength only by increasing the compression pressure, so it is desirable to sinter the material once compression molded. Sintering is performed at 600°C to 800°C in vacuum or in an inert gas atmosphere for about 2
It can be done in hours to 5 hours.

本発明の主な利点を列記すれば次の如くである。The main advantages of the present invention are listed below.

1フ工ロチタン合金を製造するだめの設備費、加工費、
電気エネルギーを節約合理化することができる。
Equipment costs and processing costs for manufacturing 1-factor titanium alloy,
Electrical energy can be saved and streamlined.

2粉末を混合、成型するので組成が均一化し、大きさ及
び形が自由に決定できる。
Since two powders are mixed and molded, the composition is uniform and the size and shape can be freely determined.

3塊状化されているので取扱に際し粉塵化が防止でき作
業環境が改善され、且つ機械化も容易である。
Since it is made into three lumps, it is possible to prevent dust formation during handling, improve the working environment, and facilitate mechanization.

本発明を実施する場合の一例について述べる。An example of implementing the present invention will be described.

実施例1 表1に示されるチタン粉末70部と表2に示される鉄粉
末30部をよく混合し、粉末成型機にて76″ 2.000にグ/ cniの圧力にて直径約3 cmの
球状(釣台1i’)に成型し見掛比重4.6f/cm、
気孔率85チの鉄鋼改質剤を作った。これは5mの高さ
から鉄板上への落下破壊テストを行っても破壊すること
はなかった。この鉄鋼改質剤を従来のフェロチタン合金
からなる鉄鋼改質剤とほぼ同様に製鋼用転炉取鍋中に投
入し、鉄鋼の脱酸、脱窒或は合金成分用添加を目的とし
て使用することにょシ従来のフェロチタン合金を使用し
た場合と同様な効果を得ることができる。
Example 1 70 parts of the titanium powder shown in Table 1 and 30 parts of the iron powder shown in Table 2 were thoroughly mixed and molded using a powder molding machine to a size of about 3 cm in diameter at a pressure of 76" 2.000 g/cni. Molded into a spherical shape (fishing platform 1i') with an apparent specific gravity of 4.6 f/cm,
A steel modifier with a porosity of 85 cm was made. Even when this was tested by dropping it from a height of 5 meters onto a steel plate, it did not break. This steel modifier is poured into a steelmaking converter ladle in the same way as conventional steel modifiers made of ferrotitanium alloys, and used for the purpose of deoxidizing and denitrifying steel or adding alloy components. In particular, it is possible to obtain the same effects as when using conventional ferrotitanium alloys.

表1 チタン粉末 化学組成(チ) 粒度分布 表2 鉄粉末 化学組成(饅) 粒度分布Table 1 Titanium powder Chemical composition (ch) Particle size distribution Table 2 Iron powder Chemical composition (rice cake) Particle size distribution

Claims (3)

【特許請求の範囲】[Claims] (1)チタン粉末と鉄粉末とを塊状化したことを特徴と
する鉄鋼改質剤。
(1) A steel modifier characterized by agglomerated titanium powder and iron powder.
(2)塊状化に当たシ、圧縮成型することを特徴とする
特許請求の範囲第1項記載の鉄鋼改質剤。
(2) The steel modifier according to claim 1, wherein the steel modifier is compression molded during agglomeration.
(3)塊状化に当たシ、圧縮成型し更に焼結することを
特徴とする特許請求の範囲第1項記載の鉄鋼改質剤。
(3) The steel modifier according to claim 1, wherein the steel modifier is formed into agglomerates, compression molded, and further sintered.
JP14280583A 1983-08-04 1983-08-04 Steel modifier Pending JPS6033308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14280583A JPS6033308A (en) 1983-08-04 1983-08-04 Steel modifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14280583A JPS6033308A (en) 1983-08-04 1983-08-04 Steel modifier

Publications (1)

Publication Number Publication Date
JPS6033308A true JPS6033308A (en) 1985-02-20

Family

ID=15324046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14280583A Pending JPS6033308A (en) 1983-08-04 1983-08-04 Steel modifier

Country Status (1)

Country Link
JP (1) JPS6033308A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09346U (en) * 1986-02-10 1997-06-10 マレリ・オートロニカ・ソシエタ・ペル・アチオニ Electrical parts that are mechanically connected
JP2014514445A (en) * 2011-03-22 2014-06-19 ノルスク・チタニウム・コンポーネンツ・アーエス Method for manufacturing titanium alloy welding wire
US9469887B2 (en) 2009-10-23 2016-10-18 Norsk Titanium As Method for production of titanium welding wire

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09346U (en) * 1986-02-10 1997-06-10 マレリ・オートロニカ・ソシエタ・ペル・アチオニ Electrical parts that are mechanically connected
US9469887B2 (en) 2009-10-23 2016-10-18 Norsk Titanium As Method for production of titanium welding wire
JP2014514445A (en) * 2011-03-22 2014-06-19 ノルスク・チタニウム・コンポーネンツ・アーエス Method for manufacturing titanium alloy welding wire
US20160151865A1 (en) * 2011-03-22 2016-06-02 Norsk Titanium As Method for production of alloyed titanium welding wire
US9662749B2 (en) 2011-03-22 2017-05-30 Norsk Titanium As Method for production of alloyed titanium welding wire

Similar Documents

Publication Publication Date Title
CN100519803C (en) Nano TiO2 oxide containing ferroalloy intermediate and preparation method and uses thereof
CN111254344B (en) Preparation method of ferrovanadium alloy
CN110369730A (en) A kind of copper-clad iron powder and preparation method thereof
CN105734201B (en) A kind of alfer, preparation method and the usage
CN105695846A (en) Phosphorus-contained iron-based powder metallurgy material and preparing process thereof
CN113699300A (en) Inoculant for nodular cast iron flywheel shell and preparation method thereof
CN106834891A (en) A kind of preparation method of ferro-titanium
CN117344231A (en) Iron-nickel alloy powder and preparation method and application thereof
CA1211962A (en) Method for producing a machinable high strength hot formed powdered ferrous base metal alloy
JPH06172916A (en) Manufacturing of stainless steel
CN102266940B (en) Intermediate for refining alumina inclusions in steel and preparation and use methods thereof
JPS6033308A (en) Steel modifier
JPH0754002A (en) Metal powder for part manufacturing by compression molding and sintering and preparation of said powder
US3419383A (en) Producing pulverulent iron for powder metallurgy by multistage reduction
US4169730A (en) Composition for atomized alloy bronze powders
US3202503A (en) Production of high quality steel from iron sand
DE68919843T2 (en) Manufacture of manganese carbide and iron (II) alloys.
CN112355315B (en) Preparation method of spherical iron-based vanadium titanium carbide metal ceramic powder
US3744998A (en) Additives for controlling the physical and structural characteristics of cast iron
JPS63161101A (en) Production of low-oxygen metallic chromium power
JPS60169512A (en) Carburizer for metallurgy
JPS6077945A (en) Manufacture of metallic material containing dispersed particle
US4035183A (en) Method for making aluminum-containing ferroalloy
US3271139A (en) Process for the production of low sulfur ferrochromium
JPH01180902A (en) Fe powder for sintering