JPS6033254A - Manufacture of high ion conductivity leucite ceramics - Google Patents

Manufacture of high ion conductivity leucite ceramics

Info

Publication number
JPS6033254A
JPS6033254A JP58143313A JP14331383A JPS6033254A JP S6033254 A JPS6033254 A JP S6033254A JP 58143313 A JP58143313 A JP 58143313A JP 14331383 A JP14331383 A JP 14331383A JP S6033254 A JPS6033254 A JP S6033254A
Authority
JP
Japan
Prior art keywords
leucite
ceramics
solution
manufacture
ion conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58143313A
Other languages
Japanese (ja)
Inventor
星川 武
伸夫 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka City
Original Assignee
Osaka City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka City filed Critical Osaka City
Priority to JP58143313A priority Critical patent/JPS6033254A/en
Publication of JPS6033254A publication Critical patent/JPS6033254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、高イオン導電性の白榴石系セラミックスの製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing highly ionic conductive leucite-based ceramics.

一般にセラミックス体を構成する結晶が眉間空隙又は空
孔を有する場合、アルカリ陽イオンが層、間空隙又は空
孔を移動しやすい為に、該セラミックス体は、高いイオ
ン導電性を示す。この様な結晶の代表例としては、β−
A1203.α−AgI等が挙げられ、これ等は、固体
電解質として化学ポテンシアルセンサ、電池等に広く利
用されている。実用上の観点からは、この様なセラミッ
クス体は、イオン導電性に優れていることに加えて、熱
的及9〆又は化学的に安定であること、機械的強度が大
きいこと、成形加工性及び焼結性に優れていること等の
性質を具備する必要がある。しかるに、β−Ad2(:
)3 は、熱的及び化学的に安定しており且つ機械的強
度も優れてはいるものの、成形焼結時の温度が1600
°C以上と極めて高く、又高硬度である為焼結体の加工
性に劣るのが難点である。
Generally, when the crystals constituting a ceramic body have glabellar voids or pores, the ceramic body exhibits high ionic conductivity because alkali cations easily move through the layers, gaps, or pores. A typical example of such a crystal is β-
A1203. Examples include α-AgI, which are widely used as solid electrolytes in chemical potential sensors, batteries, and the like. From a practical standpoint, such ceramic bodies have excellent ionic conductivity, thermal and chemical stability, high mechanical strength, and moldability. It is necessary to have properties such as excellent sinterability and excellent sinterability. However, β-Ad2(:
)3 is thermally and chemically stable and has excellent mechanical strength, but the temperature during shaping and sintering is 1600℃.
The problem is that the sintered body has poor workability due to its extremely high temperature (°C or more) and high hardness.

一方、α−AgI等のハロゲン化銀糸の固体電解質は、
イオン導電性の点では極めて優れているものの、熱的及
び化学的安定性に劣り、機械的強度も低い。従って、現
今の厳しい技術的要求に応えて多様な機能性電子部品を
開発する為には、熱的及び化学的に安定で、低温度での
焼結が可能であって、加工性に優れ、機械的強度も大で
ある高イオン導電性セラミックスの出現が望まれている
On the other hand, solid electrolytes of silver halide threads such as α-AgI,
Although it has excellent ionic conductivity, it has poor thermal and chemical stability and low mechanical strength. Therefore, in order to develop a wide variety of functional electronic components in response to today's strict technical requirements, it is necessary to develop electronic components that are thermally and chemically stable, can be sintered at low temperatures, and have excellent processability. The emergence of highly ionic conductive ceramics with high mechanical strength is desired.

本発明者は、上記の如き現況を踏まえて種々研究を重ね
た結果、特定組成のS 102−A1203−に20系
の非晶体を加圧成形し、焼結することにより得られる白
榴石固溶体(KAl) 1−XS i2+X06が前記
の要件を良く充足する高イオン導電性セラミックスとな
ることを見出し、本発明を完成するにいたった。即ち、
本発明は、SiO2,Al2O3及びに20を基本成分
とし、St/Si 十An 十Kにより表わされる原子
比0.5乃至0.6の範囲内にあり且つAIVKにより
表わされる原子比が0.9乃至1.1の範囲内にある非
晶体成形物を焼結することにより白榴石固溶体C(KA
A’ )1−XS i2+X06) (但し0(X≦百
)の結晶を主成分とする高イオン導電性白榴石系セラミ
ックスを形成させることを特徴とするセラミックスの製
造方法に係る。
As a result of various studies based on the above-mentioned current situation, the present inventor has discovered a leucite solid solution obtained by press-molding a 20 series amorphous material into S 102-A1203- with a specific composition and sintering it. It was discovered that (KAl) 1-XS i2+X06 becomes a highly ionic conductive ceramic that satisfies the above requirements, and the present invention was completed. That is,
The present invention uses SiO2, Al2O3, and 20 as basic components, and has an atomic ratio of 0.5 to 0.6 expressed by St/Si 10K and an atomic ratio of 0.9 expressed by AIVK. A leucite solid solution C (KA
A' ) 1-XS i2 +

本発明において形成される白榴石固溶体は純粋な白榴石
(KAlS i 206)中のKAn02成分の一部が
S r 02により置換された形態を有している。を九
このSiO2置換量が大きい程、白榴石固溶体結晶骨格
内のに+カチオンが不足して空孔が大量に形成されてい
る為、K+カチオンの移動が容易となって固溶体が高イ
オン導電性を示し、延いては該固溶体により構成される
セラミックスも高イオン導電性を発現する。
The leucite solid solution formed in the present invention has a form in which a part of the KAn02 component in pure leucite (KAlS i 206) is replaced by S r 02. The larger the amount of SiO2 substitution, the more vacancies are formed due to the lack of K+ cations in the leucite solid solution crystal framework, which facilitates the movement of K+ cations and makes the solid solution highly ionic conductive. Ceramics composed of the solid solution also exhibit high ionic conductivity.

本発明方法は、例えば、以下の様にして実施される。The method of the present invention is carried out, for example, as follows.

先ず、メチルシリケート(CH30)4St 、エチル
タノール、エタノール等の水溶性低級アルキルアルコー
ルに溶解させ、均質溶液とした後、これに硝酸カリウム
水溶液と水とを加えて、均質溶液とする。溶媒がメタノ
ールの場合、硝酸アルミニウムの濃度は、Al2O3と
して0.8〜0.95y/10mJ程度、硝酸カリウム
水溶液の濃度は、5%程度とすることが好ましく、エチ
ルシリケートと硝酸アルミニウムアルコール溶液の合量
に対してメタノールを約2倍量加えることにより、硝酸
カリウム水溶液の添加によっても均質溶液が得られる。
First, methyl silicate (CH30)4St is dissolved in a water-soluble lower alkyl alcohol such as ethyltanol or ethanol to form a homogeneous solution, and then an aqueous potassium nitrate solution and water are added to form a homogeneous solution. When the solvent is methanol, the concentration of aluminum nitrate is preferably about 0.8 to 0.95y/10mJ as Al2O3, the concentration of potassium nitrate aqueous solution is preferably about 5%, and the total amount of ethyl silicate and aluminum nitrate alcohol solution A homogeneous solution can also be obtained by adding an aqueous potassium nitrate solution by adding about twice the amount of methanol.

エチルシリケート、硝酸アルミニウムアルコール溶液及
び硝酸カリウム水溶液の混合比は、最終的に形成される
均質溶液中のSt/Si + A# + K により示
される原子比が0.5以上で且つ0.6以下となり、又
Al/Kにより示される原子比が0.9以上で且つ1.
1以下となる量とする。次いで、上記の如くして得られ
たSi、A#及びに源を含む均質溶液を撹拌しつつ、ア
ルカリ性となるまでアンモニア水を滴下し、ゲルを形成
させる。得られたゲル化物を80〜120°C程度に加
熱して脱水乾燥させた後、結晶化しない様に留意しつつ
650〜850°Cで加熱することにより残存硝酸アン
モニウムを分解除去する。或いは、メチルシリケート、
エチルシリケートの如きアルキルシリケート、アルミニ
ウムイソプロピレートの如きアルミニウムアルコレート
及びカリウム−tert−ブチレートの如きカリウムア
ルコレートをブチルアルコール等のアルコールに溶解さ
せ、塩酸及び水を添加することによりゲルを形成させた
後、上記と同様の脱水乾燥及び加熱を行なっても良い。
The mixing ratio of ethyl silicate, aluminum nitrate alcohol solution, and potassium nitrate aqueous solution is such that the atomic ratio represented by St/Si + A# + K in the finally formed homogeneous solution is 0.5 or more and 0.6 or less. , and the atomic ratio represented by Al/K is 0.9 or more and 1.
The amount should be 1 or less. Next, aqueous ammonia is added dropwise to the homogeneous solution containing Si, A#, and a source obtained as described above while stirring the solution until the solution becomes alkaline to form a gel. The obtained gelled product is heated to about 80 to 120°C to dehydrate and dry, and then heated at 650 to 850°C, taking care not to crystallize, to decompose and remove residual ammonium nitrate. Or methyl silicate,
After dissolving an alkyl silicate such as ethyl silicate, an aluminum alcoholate such as aluminum isopropylate, and a potassium alcoholate such as potassium tert-butyrate in an alcohol such as butyl alcohol, and forming a gel by adding hydrochloric acid and water. , dehydration, drying and heating may be performed in the same manner as above.

加熱後の残留物は、SiO□−A1203−に20系の
無水の均質な非晶体であり、瞬間的にゲル化が行なわれ
たために、Si。
The residue after heating is an anhydrous, homogeneous amorphous material of SiO□-A1203-20 series, which is Si due to instantaneous gelation.

Al及びKの各元素は、原子のオーダーで均質に混り合
っている。かくして得られた無水の非晶体をボールミル
等により微粉砕し、加圧成形法、泥漿鋳込み成形法、テ
ープ成形法等の公知の方法により成形した後、1100
〜1400°C程度で3〜24時間程時間熱することに
より、焼結結晶化が完了し、高イオン導電性のセラミッ
クス体が得られる。
Each element of Al and K is homogeneously mixed on the order of atoms. The anhydrous amorphous material thus obtained was finely pulverized using a ball mill, etc., and molded by a known method such as a pressure molding method, a slurry casting method, a tape molding method, etc.
By heating at about 1400° C. for 3 to 24 hours, sintering and crystallization is completed and a highly ionic conductive ceramic body is obtained.

焼結前の均質な非晶体においては、A13+とSt’十
とは無秩序状態にあるが、非晶体を構成するそれぞれの
組成物の液相温度以下で非晶体を加熱し、結晶化させる
と A l 3+とSt’十とが配列して白榴石の結晶
溝造が形成される。この際、非晶体中のSi含有率(δ
)を前記特定範囲内としておくと、KAn02の一部が
SiO2により置換されて、適量のSiO□を含有する
白榴石固溶体が得られる。
In a homogeneous amorphous material before sintering, A13+ and St'0 are in a disordered state, but when the amorphous material is heated below the liquidus temperature of each composition making up the amorphous material and crystallized, A13+ and St'0 are in a disordered state. The arrangement of l 3+ and St'0 forms the crystal groove structure of leucite. At this time, the Si content (δ
) within the specified range, a part of KAn02 is replaced by SiO2, and a leucite solid solution containing an appropriate amount of SiO□ is obtained.

メこの様な白榴石固溶体中のに十カチオンは部分的に欠
けており、結晶中に空孔が形成されているので、白榴石
結晶のイオン導電率に比して極めて高いイオン導電率を
有する材料となる。
The 10 cations in such a leucite solid solution are partially missing, and vacancies are formed in the crystal, so the ionic conductivity is extremely high compared to that of leucite crystals. It becomes a material with

以下実施例及び比較例を示し、本発明の特徴とするとこ
ろをより一層明らかにする。
Examples and comparative examples will be shown below to further clarify the characteristics of the present invention.

実施例1 エチルシリケート83.39’と硝酸アルミニウムAl
(NO3)3・9H2069,8yとをメタノール40
0m1 に均一に溶解させた後、5%硝酸カリウム水溶
液416.5m/を加え、均一溶液を形成させた。
Example 1 Ethyl silicate 83.39' and aluminum nitrate Al
(NO3)3.9H2069,8y and methanol 40
After uniformly dissolving in 0 ml, 416.5 ml of 5% potassium nitrate aqueous solution was added to form a homogeneous solution.

次いで、該均一溶液を撹拌しつつアルカリ性となるまで
アンモニア水を加え、ゲル化させた。得られたゲル化物
を110°Cで約40時間加熱して脱水乾燥させた後、
800°Cで1時間加熱して硝酸アンモニウムの分解を
行なった。得られたS i /S i+An−)Kのモ
ル比が0.505の無水の非晶体をボールミルにより約
50μm以下に微粉砕した後、直径20mmX厚さ4m
mの大きさに1.2 ton/cm2の圧力で加圧成形
し、1300℃で10時間焼成して、本発明の高イオン
導電性白榴石系セラミックスを得た。
Next, aqueous ammonia was added to the homogeneous solution while stirring until it became alkaline to form a gel. After dehydrating and drying the obtained gelatinized product by heating it at 110°C for about 40 hours,
Ammonium nitrate was decomposed by heating at 800°C for 1 hour. The obtained anhydrous amorphous material having a molar ratio of S i /S i + An-)K of 0.505 was finely ground to approximately 50 μm or less using a ball mill, and then milled into a powder having a diameter of 20 mm and a thickness of 4 m.
The material was pressure-molded to a size of 1.2 ton/cm2 at a pressure of 1.2 ton/cm2, and fired at 1300°C for 10 hours to obtain a highly ionic conductive leucite-based ceramic of the present invention.

第1表に焼成前の非晶体の組成を示し、第2表に焼結体
の物性を示す。第1表中δとあるのは、St/Si +
An 十にで示される原子比を表わす。又、第1図に絶
対温度の逆数に対する導電率の依存性を曲線Aとして示
す。
Table 1 shows the composition of the amorphous body before firing, and Table 2 shows the physical properties of the sintered body. In Table 1, δ means St/Si +
An represents the atomic ratio shown in 10. Further, in FIG. 1, the dependence of electrical conductivity on the reciprocal of absolute temperature is shown as curve A.

実施例2〜5 硝酸アルミニウムと硝酸カリウムの量を第1表に示す様
に変更した以外は実施例1と同様の手法で本発明の高イ
オン導電性セラミックスを得た。
Examples 2 to 5 Highly ionic conductive ceramics of the present invention were obtained in the same manner as in Example 1, except that the amounts of aluminum nitrate and potassium nitrate were changed as shown in Table 1.

第2表に物性を示し、第1図に絶対温度の逆数に対する
導電率の依存性を曲線B(実施例2)及び曲線C(実施
例4)として示す。
Table 2 shows the physical properties, and FIG. 1 shows the dependence of electrical conductivity on the reciprocal of absolute temperature as curve B (Example 2) and curve C (Example 4).

比較例1〜2 硝酸アルミニウムと硝酸カリウムの量を第1表に示す様
に変更した以外は実施例1と同様の手法でセラミックス
を得た。第2表に物性を示し、第1図に絶対温度の逆数
に対する導電率の依存性を示す。尚、比較例1及び2で
得られるセラミックス中の白榴石結晶は、いずれも理論
組成(KAnS 1206) を有しているので、第1
図においてほぼ同一曲線りを呈しており、又第2表に示
す如く、結晶転移温度(α=β)も620°Cと一定で
ある。
Comparative Examples 1-2 Ceramics were obtained in the same manner as in Example 1, except that the amounts of aluminum nitrate and potassium nitrate were changed as shown in Table 1. Table 2 shows the physical properties, and FIG. 1 shows the dependence of electrical conductivity on the reciprocal of absolute temperature. Incidentally, since the leucite crystals in the ceramics obtained in Comparative Examples 1 and 2 both have the theoretical composition (KAnS 1206),
In the figure, the curves are almost the same, and as shown in Table 2, the crystal transition temperature (α=β) is also constant at 620°C.

第 1 表 第 2 表 第1図及び第2表に示す結果から、本発明セラミックス
は、導電性、機械的強度及び耐熱性の点において、比較
例のセラミックスよりも奢るしく優れていることが明ら
かである。
From the results shown in Tables 1 and 2, it is clear that the ceramics of the present invention are luxuriously superior to the comparative ceramics in terms of conductivity, mechanical strength, and heat resistance. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明実施例及び比較例により得られたセラ
ミックスの絶対温度の逆数に対する導電率の依存性を示
すグラフである。 (以上) 第1図 103/T(K)
FIG. 1 is a graph showing the dependence of electrical conductivity on the reciprocal of absolute temperature of ceramics obtained in Examples and Comparative Examples of the present invention. (or more) Figure 1 103/T(K)

Claims (1)

【特許請求の範囲】 ■ 5in21A1203及びに20を基本成分とし、
St/Si + AA’ + K により表わされる原
子比が0.5乃至0.6の範囲内にあり且つkl/Kに
より表わされる原子比が0.9乃至1.1の範囲内にあ
る非晶体成形物を焼結することにより白榴石間溶体〔(
KAl)1−XSi2+xO6〕(但しO(X≦1)の
結晶を主成分とする高イオン導電性白榴石系セラミック
スを形成させることを特徴とするセラミックスの製造方
法。
[Claims] ■ 5in21A1203 and 20 as basic components,
An amorphous material whose atomic ratio expressed by St/Si + AA' + K is within the range of 0.5 to 0.6 and whose atomic ratio expressed by kl/K is within the range of 0.9 to 1.1. By sintering the molded product, a leucite intersolution [(
A method for producing ceramics, characterized by forming highly ionic conductive leucite-based ceramics containing crystals of O (X≦1) as a main component.
JP58143313A 1983-08-04 1983-08-04 Manufacture of high ion conductivity leucite ceramics Pending JPS6033254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58143313A JPS6033254A (en) 1983-08-04 1983-08-04 Manufacture of high ion conductivity leucite ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58143313A JPS6033254A (en) 1983-08-04 1983-08-04 Manufacture of high ion conductivity leucite ceramics

Publications (1)

Publication Number Publication Date
JPS6033254A true JPS6033254A (en) 1985-02-20

Family

ID=15335863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58143313A Pending JPS6033254A (en) 1983-08-04 1983-08-04 Manufacture of high ion conductivity leucite ceramics

Country Status (1)

Country Link
JP (1) JPS6033254A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763136A (en) * 1986-04-08 1988-08-09 Oki Electric Industry Co., Ltd. Planar thermal head and display device incorporating the same
JPH04104692U (en) * 1991-02-21 1992-09-09 共同印刷株式会社 Printed materials for signboards
WO1995011866A1 (en) * 1993-10-29 1995-05-04 Minnesota Mining And Manufacturing Company Chemically derived leucite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763136A (en) * 1986-04-08 1988-08-09 Oki Electric Industry Co., Ltd. Planar thermal head and display device incorporating the same
JPH04104692U (en) * 1991-02-21 1992-09-09 共同印刷株式会社 Printed materials for signboards
WO1995011866A1 (en) * 1993-10-29 1995-05-04 Minnesota Mining And Manufacturing Company Chemically derived leucite
US5622551A (en) * 1993-10-29 1997-04-22 Minnesota Mining And Manufacturing Company Chemically derived leucite

Similar Documents

Publication Publication Date Title
JPS614002A (en) Support of optical reflector and optically reflecting film, manufacture of single-phase ceramic structure and manufacture and structural member of matter made of ceramic material
JP2011121837A5 (en)
JPS6033254A (en) Manufacture of high ion conductivity leucite ceramics
CN102260076B (en) X8R ceramic capacitor ceramic material and preparation method thereof
JPS6350318B2 (en)
JPS629552B2 (en)
JPS5925751B2 (en) Manufacturing method of dense silicon nitride porcelain
JP2004210601A (en) Dielectric material having high dielectric constant, and its manufacturing method
JPH10330154A (en) Production of beta-spodumene structure
US3395029A (en) Binding means useful in the manufacture of shaped bodies
JPS5846446B2 (en) Method for producing forsterite clinker
JP2984317B2 (en) Method for producing zeolite composition
JPS6311516A (en) Production of high purity magnesia powder having anti-hydration property
JPH01140505A (en) Dielectric porcelain composition
JP3225828B2 (en) High frequency dielectric composition
JPH03115180A (en) Production of heat insulation structure for high temperature
JP2615188B2 (en) Raw materials for dense sodium-beta alumina low-temperature firing production
JP3202492B2 (en) Beta alumina electrolyte
JPS5858762B2 (en) dielectric composition
JPH0226863A (en) Cordierite-based ceramic and production thereof
JPH01100060A (en) Production of anorthite-based sintered material
JPH0244060A (en) Production of anorthite series sintered body
JPH0757707B2 (en) Manufacturing method of porous ceramics sintered body
JPH027481B2 (en)
JPH0543312A (en) Production of anorthite-based powder and its sintered material