JPS6032905A - Turbine controller - Google Patents

Turbine controller

Info

Publication number
JPS6032905A
JPS6032905A JP14213783A JP14213783A JPS6032905A JP S6032905 A JPS6032905 A JP S6032905A JP 14213783 A JP14213783 A JP 14213783A JP 14213783 A JP14213783 A JP 14213783A JP S6032905 A JPS6032905 A JP S6032905A
Authority
JP
Japan
Prior art keywords
bleed
signal
control
output
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14213783A
Other languages
Japanese (ja)
Other versions
JPH0368204B2 (en
Inventor
Hiroya Sato
佐藤 碩哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14213783A priority Critical patent/JPS6032905A/en
Publication of JPS6032905A publication Critical patent/JPS6032905A/en
Publication of JPH0368204B2 publication Critical patent/JPH0368204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/20Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted
    • F01D17/22Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical
    • F01D17/24Devices dealing with sensing elements or final actuators or transmitting means between them, e.g. power-assisted the operation or power assistance being predominantly non-mechanical electrical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To automatically and effectively perform both load control and bleed pressure control without interfering each other by incorporating both a bleed pressure controller and a load controller in a bleeder turbine controller and placing both the controllers under cooperative control. CONSTITUTION:A speed control circuit 17, a load limiter 19, a bleed pressure control circuit 30, a valve opening detector 41 and so on are incorporated in the controller of a bleeder turbine 9. When a bleed regulation valve 8 is not opened fully yet, the output of an analog memory 43 is cut off by a contact point 44 and a high-value priority circuit 33 gives priority to the bleed air pressure control signal of the circuit 30. When the bleed regulation valve 8 is opened fully and the contact point 44 is closed, the high-value priority circuit 33 gives priority to the output of the memory 43. After the bleed regulation valve is opened fully, when the pressure of bleed air is reduced inspite of increased demand for it, the output of the bleed pressure control circuit 30 is increased. Once the output thereof exceeds the output of the memory 43, bleed pressure control is performed in response to the output signal of the circuit 30.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタービン制御装置に係り、特に抽気復水タービ
ンに於いて抽気圧力を効果的に制御する事によシ円滑な
タービン負荷への対応も行なうに好適なタービン制御装
置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a turbine control device, and particularly to a turbine control device that effectively controls the extraction pressure in an extraction condensation turbine to smoothly cope with the turbine load. The present invention relates to a turbine control device suitable for carrying out such operations.

〔発明の技術的背景〕[Technical background of the invention]

一般に、抽気復水タービンは、タービンの抽気蒸気を有
効利用する産業用の蒸気タービンとして多く用いられて
いる。一方、最近では発電を主目的としながら、併せて
大容量の蒸気を要する海水を淡水化する遣水プラントに
対して蒸気の供給も行なう形式の発電プラントの建設が
国際的に増加している。この場合、造水プラントと併せ
て建設される抽気復水タービンは、電力及び蒸気共に安
定し麺供給を行なう事が要求される。更に、電力を主目
的とした抽気復水タービンに於いては、蒸気タービンの
高性能化に対する要求も強い。
In general, extracted condensing turbines are often used as industrial steam turbines that effectively utilize extracted steam from the turbine. On the other hand, recently, the construction of power plants whose main purpose is to generate electricity, but also to supply steam to water plants that desalinate seawater, which require a large capacity of steam, has been increasing internationally. In this case, the extraction condensate turbine constructed in conjunction with the water production plant is required to stably supply both electric power and steam. Furthermore, in extraction condensation turbines whose main purpose is to generate electric power, there is a strong demand for higher performance steam turbines.

一般的な抽気復水タービンに於いては、第1図の運転特
性図に示す如く、抽気圧ExtPが一定で、最大抽気定
格出力Lmax時に最大効率が得られるように設計され
、部分負荷における効率はある程度無視されている。ち
なみに、第11図に於いて縦軸は抽気圧力、横軸はター
ビン負荷である。しかし、電力を主目的とした抽気復水
タービンに於いては、電力需gK合わせた運用が多くな
シ、部分負荷における性能を無視することはできなくな
っている。従って、このような目的で建設される抽気復
水タービン、発電ソ゛ラントに於いては、中間負荷での
み抽気タービンに内蔵した抽気加減弁による抽気圧制御
を行ない、中間負荷以上では抽気加減弁を全開とし、抽
気圧力を上りで運転することが行なわれている。
As shown in the operating characteristics diagram in Figure 1, a general extraction condensation turbine is designed so that the extraction pressure ExtP is constant and the maximum efficiency is obtained at the maximum extraction rated output Lmax, and the efficiency at partial load is has been ignored to some extent. Incidentally, in FIG. 11, the vertical axis is the extraction pressure, and the horizontal axis is the turbine load. However, in extraction condensation turbines whose main purpose is to generate electric power, they are often operated to match electric power demand gK, and performance at partial loads cannot be ignored. Therefore, in the extraction condensation turbines and power generation solenoid constructed for this purpose, the extraction pressure is controlled by the extraction adjustment valve built into the extraction turbine only at intermediate loads, and the extraction adjustment valve is fully opened at intermediate loads and above. The current practice is to increase the bleed pressure.

従来の抽気復水タービンのように、最大抽気定格出力が
得られるように抽気加減弁及び抽気段以降の低圧タービ
ンを大きくすると、最大抽気定格出力で運転される時以
外は常に抽気加減弁で絞り制御を行なっている状態とな
り、抽気加減弁の紋りによる圧力伊失が蒸気タービンの
性能を低下させることになってしまう。また、造水ブラ
ンドで必要とする蒸気圧力は2〜3Kp/cdtt程度
であり、この蒸気条件で低圧タービンを設計した場合、
低圧タービンが大きくなるばかりか、高性能が期待でき
ないこととなってしまう。これに対して、第2図の運転
特性図に示す如く、中間負荷以上で抽気加減弁を全開さ
せ、抽気圧力を定格抽気圧以上に上げて運転できるよう
に低圧タービンを設計してやれば、抽気加減弁の絞!l
l損失をなくすことができ、併せて低圧タービンの性能
向上を図る仁とができる。なお、中間負荷以上での抽気
は、造水プラント側に設けた減圧弁によって造水プラン
トに必要な2〜3Kp/crltの圧力に減圧して使用
すればよい。
As with conventional bleed condensing turbines, if the bleed regulator valve and the low-pressure turbine after the bleed stage are made large to obtain the maximum rated bleed output, the bleed regulator will always throttle the bleed air except when operating at the maximum rated rated output. The steam turbine is under control, and the loss of pressure due to the bleed control valve reduces the performance of the steam turbine. In addition, the steam pressure required for a fresh water production brand is about 2 to 3 Kp/cdtt, and if a low-pressure turbine is designed with this steam condition,
Not only does the low-pressure turbine become larger, but high performance cannot be expected. On the other hand, as shown in the operating characteristics diagram in Figure 2, if the low-pressure turbine is designed so that the bleed air control valve is fully opened at intermediate loads or higher and the bleed air pressure is raised above the rated bleed pressure, then the bleed air control valve can be Valve squeeze! l
1 loss can be eliminated, and at the same time, it is possible to improve the performance of the low-pressure turbine. In addition, the extracted air at an intermediate load or higher may be used by reducing the pressure to the pressure of 2 to 3 Kp/crlt required for the water production plant using a pressure reducing valve provided on the water production plant side.

〔背景技術の問題点〕[Problems with background technology]

以上述べた如く、中間負荷でのみ抽気圧力を低圧タービ
ン入口前に設けた抽気加減弁と高圧タービン入口側に設
けた蒸気加減弁とによって制御する抽気復水タービンに
おいては、抽気圧の制御方式を従来と変えない限υ以下
に列挙する様な問題が生じる。
As mentioned above, in the extraction condensing turbine where the extraction pressure is controlled only at intermediate loads by the extraction control valve installed before the low-pressure turbine inlet and the steam control valve installed at the high-pressure turbine inlet, the extraction pressure control method is As long as there is no change from the conventional method, problems such as those listed below will occur.

(11抽気加減弁が全開した状態から蒸気タービンの負
荷上昇を行なうと、高圧ターどン入ロ側の蒸気加減弁か
らの蒸気流入量が増え、抽気段の圧力上昇が起こる。こ
の圧力上昇を抽気圧力制御装置が検出すると、抽気圧の
上昇を阻止するために蒸気加減弁を閉じ、抽気加減弁を
開くように作用する。しかしながら、抽気加減弁は負荷
上昇前から全開しており、開くことはできない。つ捷り
抽気圧力の上昇を阻止するために蒸気加減弁の開度を元
の開度まで絞シ込むどとになる。以上のように、 −抽
気圧力制御装置の圧力設定値をそのままにして、抽気加
減弁が全開した後で負荷上昇を行なおうとすると、抽気
圧力制御装置によって負荷上昇を押さえこまれ、負荷上
昇が不可能となる。
(11) When the load on the steam turbine is increased from a state where the bleed air control valve is fully open, the amount of steam inflow from the steam control valve on the high pressure turbine inlet side increases, causing a pressure rise in the bleed stage. When the bleed pressure control device detects this, it closes the steam control valve and opens the bleed control valve to prevent the rise in bleed pressure.However, the bleed control valve is fully open before the load increases and cannot be opened. This is not possible.In order to prevent the bleed air pressure from increasing, the opening of the steam control valve must be reduced to its original opening.As described above, - the pressure setting value of the bleed air pressure controller If an attempt is made to increase the load after the bleed air adjustment valve is fully opened, the bleed air pressure control device will suppress the load increase, making it impossible to increase the load.

(2)一方、抽気加減弁が全開したことを条件に抽気圧
力設定値を上げてしまう方法もあるが、抽気圧設定をス
テップ状に上けてし甘うと抽気加減弁忙よる絞り制御が
行なわれることもあシ、前述した性能向上の目的を遅し
得なくなる。また、ステップ状に圧力設定値を変化させ
ることは抽気圧力制御に対して大きな外乱を与えること
になり好ましくない。
(2) On the other hand, there is a method of increasing the bleed pressure setting on the condition that the bleed air adjustment valve is fully open, but if you increase the bleed pressure setting in steps, the throttling control will be performed due to the bleed air adjustment valve being busy. However, the objective of improving performance mentioned above cannot be delayed. Further, changing the pressure set value in a stepwise manner is not preferable because it causes a large disturbance to the bleed pressure control.

(3)抽気圧力設定値を蒸気タービンの運転状態に応じ
て変化させることも出来るが、この場合の設定値は蒸気
タービンの出力と抽気流鼠の関舷となり、非常に複雑で
実用上好ましくない。
(3) It is also possible to change the bleed pressure set value according to the operating status of the steam turbine, but in this case the set value is a link between the steam turbine output and the bleed air flow rate, which is extremely complicated and undesirable in practice. .

〔発明の目的〕[Purpose of the invention]

従って、本発明の目的は上記従来技術の欠点を解消し、
抽気加減弁が全開する前は抽気圧力、タービン負荷が互
いに干渉しないように抽気復水タービンを制御し、抽気
加減弁が全開した後は抽気圧制御を自動的に停止させ、
抽気圧の上昇がタービンの負荷上昇に影響を及ぼすこと
のないように抽気復水タービンを制御する事によシ、効
率的な抽気復水タービンの制御を可能ならしめたタービ
ン制御装置を提供するものである。
Therefore, the object of the present invention is to overcome the drawbacks of the above-mentioned prior art,
Before the bleed control valve is fully opened, the bleed condensate turbine is controlled so that the bleed pressure and turbine load do not interfere with each other, and after the bleed control valve is fully opened, the bleed pressure control is automatically stopped.
To provide a turbine control device that enables efficient control of an extraction condensation turbine by controlling the extraction condensation turbine so that an increase in extraction pressure does not affect an increase in turbine load. It is something.

〔発明の概要〕[Summary of the invention]

上記目的を達成する為に、本発明は、抽気系に接続され
た蒸気タービンへの抽気圧力を調節する抽気加減弁と、
この抽気加減弁の開度調節を行なう為の抽気圧力制御手
段と、抽気加減弁の開度を検出する開度検出手段と、蒸
気タービンの中間負荷以下では一定の、中間負荷以上で
は負荷に応じた抽気圧力制御信号を発生する信号発生手
段と、抽気圧力制御信号を受け、これに追従またはこれ
を保持する記憶手段と、この記憶手段の出力信号をオン
・オフする開閉手段と、信号発生手段からの信号と開閉
手段からの信号をそれぞれのレベルに基いて選択し、制
御信号として抽気圧力制御手段に送出する選択手段と、
開度検出手段の出力に基いて、蒸気タービン負荷が中間
以上で抽気加減弁が全開した事を条件に記憶手段を保持
側に制御し、それ以外の時は追従側に制御する第1の制
御手段と、蒸気加減弁が全開した場合に開閉手段をオン
状態に保持し、蒸気加減弁が全開以下となった場合は記
憶手段の出力が抽気圧力制御信号に等しくなった事を条
件に開閉手段のオン状態を解除して、オフ状態とする第
2の制御手段とを備えた事を特徴とするタービン制御装
置を提供するものである。
In order to achieve the above object, the present invention includes a bleed air control valve that adjusts bleed air pressure to a steam turbine connected to an bleed air system;
A bleed pressure control means for adjusting the opening of the bleed air regulator, an opening detection means for detecting the opening of the bleed air regulator, and a pressure control means for controlling the opening of the bleed air regulator; a signal generating means for generating a bleed pressure control signal, a memory means for receiving and following or holding the bleed pressure control signal, an opening/closing means for turning on and off an output signal of the memory means, and a signal generating means. Selection means for selecting the signal from the and the signal from the opening/closing means based on their respective levels, and sending the selected signal to the bleed pressure control means as a control signal;
Based on the output of the opening detection means, the storage means is controlled to the holding side on the condition that the steam turbine load is intermediate or above and the extraction control valve is fully opened, and otherwise the storage means is controlled to the follow-up side. and an opening/closing means that holds the opening/closing means in an on state when the steam regulating valve is fully open, and when the steam regulating valve becomes less than fully open, the output of the storage means becomes equal to the bleed pressure control signal. and second control means for canceling the on state of the turbine and turning it off.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照しながら本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第3図は本発明の一実施例に係るタービン制御装置のブ
ロック図である。
FIG. 3 is a block diagram of a turbine control device according to an embodiment of the present invention.

同図構成に於いて、がイラー1で発生した蒸気は、主蒸
気止め弁2、蒸気加減弁3を経て高圧タービン4に入る
。高圧タービン4で仕事した蒸気の一部は高圧タービン
排気から逆止弁5、仕切弁6を介して図示しない造水プ
ラントへ抽気される。
In the configuration shown in the figure, steam generated in the boiler 1 enters the high-pressure turbine 4 through the main steam stop valve 2 and the steam control valve 3. A part of the steam worked in the high-pressure turbine 4 is extracted from the high-pressure turbine exhaust through a check valve 5 and a gate valve 6 to a water production plant (not shown).

残シの高圧タービン4の排気はクロスオーバー管7に設
けた抽気加減弁8を経て低圧タービン9に流入する。低
圧タービン9で仕事をした蒸気は複水器10に導かれ復
水される。高圧タービン4及び低圧タービン9から成る
蒸気タービンは発電機1工を駆動し発電させる。
The remaining exhaust gas from the high-pressure turbine 4 flows into the low-pressure turbine 9 via a bleed control valve 8 provided in the crossover pipe 7. The steam that has done work in the low-pressure turbine 9 is led to a water doubler 10 and condensed. A steam turbine consisting of a high pressure turbine 4 and a low pressure turbine 9 drives a generator 1 to generate electricity.

蒸気タービンのロータに直結して取付られた速度検出用
歯車12と、これに対向して取付けられた電磁ピックア
ップ13とによって、蒸気タービンの実回転数がタービ
ンの回転数に比例した周波数信号として検出される。こ
の周波数信号は、周波数/電圧変換器14で周波数に比
例したアナログ信号に変換される。タービンの実回転数
は加算器15によって速度設定器16からの設定信号と
比較演算される。加算器15の出力である速度誤差信号
は速度制御回路17で速度調定率に合った速度制御信号
に変換される。この速度制御信号は低値優先回路18に
よって負荷制限器19からの制限信号と比較され、いず
れか低い信号が優先され、蒸気加減弁及び抽気加減弁の
開度要求信号として出力される。低値優先回路18の出
力の一方は、加算器加で抽気圧力制御回路30の出力信
号を低値優先回路31.高値優先回路33、係数器47
を迎して得られる蒸気加減弁開度要求信号と加算され、
蒸気加減弁開度13号とされる。この蒸気加減弁開度信
号は加算器21によって蒸気加減弁の実開度信号と比較
され、その誤差信号はAワー増幅益田によって電流増幅
される。
The actual rotation speed of the steam turbine is detected as a frequency signal proportional to the rotation speed of the turbine by a speed detection gear 12 directly connected to the rotor of the steam turbine and an electromagnetic pickup 13 installed opposite to the speed detection gear 12. be done. This frequency signal is converted by a frequency/voltage converter 14 into an analog signal proportional to the frequency. The actual rotational speed of the turbine is calculated by comparing it with the setting signal from the speed setting device 16 by the adder 15. The speed error signal that is the output of the adder 15 is converted by the speed control circuit 17 into a speed control signal that matches the speed regulation rate. This speed control signal is compared with the limit signal from the load limiter 19 by a low value priority circuit 18, and the lower signal is given priority and output as an opening request signal for the steam control valve and the bleed air control valve. One of the outputs of the low value priority circuit 18 is added to an adder to convert the output signal of the bleed air pressure control circuit 30 into the low value priority circuit 31. High value priority circuit 33, coefficient unit 47
is added to the steam control valve opening request signal obtained in response to the
The steam control valve opening degree is set to 13. This steam control valve opening signal is compared with the actual steam control valve opening signal by an adder 21, and the error signal is current amplified by an A-power amplifier Masuda.

・ぐワー増幅器nの出力は電油変換益田で血気信号から
機械的ストローク信号に変換される。このストローク信
号は蒸気加減弁油筒列に与えられ、ここで蒸気加減弁3
を駆動できる操作力に増幅され、蒸気加減弁3を蒸気加
減弁開度要求45号に等しい開度に調節する。電油変換
器おの機械的ストローク信号は差動トランス5によって
検出され、復訓器26で復調された後で蒸気加減弁開度
1号として加算器21に負帰還される。
- The output of the blower amplifier n is converted from a blood signal to a mechanical stroke signal by an electro-oil converter Masuda. This stroke signal is given to the steam regulating valve oil cylinder train, where the steam regulating valve 3
is amplified to the operating force that can drive the steam regulator, and adjusts the steam regulator valve 3 to an opening equal to the steam regulator opening request No. 45. The mechanical stroke signal of the electro-hydraulic converter is detected by the differential transformer 5, demodulated by the demodulator 26, and then negatively fed back to the adder 21 as the steam control valve opening number 1.

一方、高圧タービン4の排気である抽気圧力は、圧力検
出器27によって抽気圧力に比例したアナログ信号とし
て検出される。抽気圧力検出器Mの出力である実抽気圧
力信号は加算器路によって抽気圧設定信号からの設定信
号と比較演算される。
On the other hand, the extracted air pressure, which is the exhaust gas of the high-pressure turbine 4, is detected by the pressure detector 27 as an analog signal proportional to the extracted air pressure. The actual bleed pressure signal, which is the output of the bleed pressure detector M, is compared with the set signal from the bleed pressure set signal by an adder path.

抽気圧設定信号と実抽気圧信号との誤差信号は、抽気圧
力制御回路(資)によって抽気圧力調定率に合つた抽気
圧力制御信号に変換される。ちなみに、抽気圧力制御の
場合、位相の進み遅れ等の補償機能を加え、抽気圧制御
の安定化を図る如き構成としてもよい。
The error signal between the bleed pressure setting signal and the actual bleed pressure signal is converted into a bleed pressure control signal that matches the bleed pressure adjustment rate by the bleed pressure control circuit. Incidentally, in the case of bleed pressure control, a configuration may be adopted in which a compensating function for phase lead/lag etc. is added to stabilize the bleed pressure control.

さて、抽気圧力制御回路30の出力である抽気圧力制御
信号の一方は低値優先回路31によって抽気制限器32
からの制限信号と比較され、いずれか低い方の値が選択
され出力される0更に、低値優先回路31の出力の一方
は、高値優先回路33で記憶回路からの抽気加減弁開度
信号と比較され、いずれか高い方の値が選択され出力さ
れる。高値優先回路33の出力の一方は係数器47を介
して加算器肋に入力され、負荷制御系からの蒸気加減弁
開度信号と加算される。高値優先回路33の出力のもう
一方は、加算器あにて負荷制御系からの抽気加減弁開度
信号を係数器48を介して加算され、抽気加減弁開度信
号に変換される。
Now, one of the bleed pressure control signals which is the output of the bleed pressure control circuit 30 is sent to the bleed limiter 32 by the low value priority circuit 31.
The lower value is selected and outputted.Furthermore, one of the outputs of the low value priority circuit 31 is inputted to the high value priority circuit 33, which outputs the bleed air adjustment valve opening signal from the storage circuit. They are compared and the higher value is selected and output. One of the outputs of the high value priority circuit 33 is input to the adder block via the coefficient multiplier 47, and is added to the steam control valve opening signal from the load control system. The other output of the high value priority circuit 33 is added to the bleed air adjustment valve opening signal from the load control system by an adder via a coefficient unit 48, and is converted into an bleed air adjustment valve opening signal.

ちなみに、係数器47に設定される定数は、抽気圧力制
御が負荷制御に干渉しないように、抽気圧制御信号の変
化による抽気加減弁の変化に対する負荷の変化量と抽気
圧制御信号の変化による蒸気加減弁の変化に対する負荷
の変化量の絶対値が等しくなるように設定されている。
Incidentally, the constant set in the coefficient unit 47 is set in such a way that the bleed pressure control does not interfere with the load control. It is set so that the absolute value of the amount of change in load with respect to the change in the control valve is equal.

一方、係数器48に設定される定数は、負イdjllI
II御が抽気圧制御に干渉しないように、負荷制御宿号
の変化による節気加減弁の流量変化が抽気加減弁の流量
変化に等しくなるように設定されている。
On the other hand, the constant set in the coefficient unit 48 is negative
In order to prevent the II control from interfering with the bleed pressure control, the change in the flow rate of the moderation control valve due to a change in the load control sign is set to be equal to the change in the flow rate of the bleed air control valve.

加算器あの出力の一方は加算器35にて抽気加減弁の実
開度信号と比較演算される。加算器35の出力である抽
気加減弁開度誤差信号はパワー増幅器36で電力増幅さ
れ、電油変換器37に入力される。
One of the outputs of the adder is compared with the actual opening degree signal of the bleed control valve in the adder 35. The bleed air control valve opening error signal, which is the output of the adder 35, is power amplified by a power amplifier 36 and input to an electro-hydraulic converter 37.

電油変換器37は抽気加減弁開度要求48号を、これに
比例した機械的ストローク信号に変換し、抽気加減弁油
筒間に送出する。ストローク信号は抽気加減弁油筒38
で操作力を増幅され、抽気加減弁8を抽気加減弁開度要
求信号と等しい開度に制御する。電油変換器37の出力
である機械的ストローク信号は、差動トランス39にて
ストロークを検出され、復調器40にてアナログ信号に
変換され、抽気加減弁の実開度信号として加算器35に
負帰還される0 抽気圧力制御回路(資)の出力のもう一方は、接点42
を介してアナログメモリ43に入力される。つまり、接
点42が閉じている間アナログメモリ43は抽気圧力制
御回路間の出力に追従しこれを記憶する0アナログメモ
リ43の出力は接点44を介して高値優先回路33に与
えられ、低値優先回路31の出力として得られた抽気圧
力制御信号と比較され、いずれか高い方の制御信号が抽
気圧力制御信号として送出される。なお、接点42は加
算器34の出力側に設けられた抽気加減弁開度誤差信号
が全開であることを検出する開度検出器41によって開
閉制御される。つまり、抽気加減弁8が全開しない状態
では接点42が閉じ、アナログメモリ43は抽気圧力制
御回路間の出力と同じ値を記憶しこれを出力する。
The electro-hydraulic converter 37 converts the bleed air adjustment valve opening request No. 48 into a mechanical stroke signal proportional to this, and sends it between the bleed air adjustment valve oil cylinders. The stroke signal is from the bleed air control valve oil cylinder 38
The operating force is amplified and the bleed air control valve 8 is controlled to the opening degree equal to the bleed air control valve opening request signal. The mechanical stroke signal that is the output of the electro-hydraulic converter 37 is detected by the differential transformer 39, converted to an analog signal by the demodulator 40, and sent to the adder 35 as the actual opening signal of the bleed control valve. The other output of the 0 extraction pressure control circuit (equipment) that is negatively fed back is connected to contact 42.
The signal is input to the analog memory 43 via. In other words, while the contact 42 is closed, the analog memory 43 follows and stores the output between the bleed air pressure control circuits.The output of the analog memory 43 is given to the high value priority circuit 33 via the contact 44, giving priority to the low value. It is compared with the bleed pressure control signal obtained as the output of the circuit 31, and the higher control signal is sent out as the bleed pressure control signal. The contact 42 is controlled to open and close by an opening detector 41 provided on the output side of the adder 34, which detects that the bleed air adjustment valve opening error signal is fully open. That is, when the bleed air control valve 8 is not fully opened, the contact 42 closes, and the analog memory 43 stores and outputs the same value as the output between the bleed air pressure control circuits.

一方、抽気加減弁8の開度が全開に達すると、開度検出
器4工が動作して接点42を開き、アナログメモリ43
は接点42が開く直前の値を記憶しそのまま保持する。
On the other hand, when the opening degree of the bleed air control valve 8 reaches full open, the opening degree detector 4 operates to open the contact 42, and the analog memory 43
stores the value immediately before the contact 42 opens and holds it as it is.

また、接点44は低値優先回路31の出力信号とアナロ
グメモリ43の出力信号を加算器45で比較し、その誤
差が零であることを検出する検出器46からの接点信号
と、抽気加減弁8が全開であることを検出する開度検出
器41の接点信号によって動作するセルフホールド機能
f有するリレー回路49によって操作される0つ捷り、
接点44は抽気加減弁8が全開すると閉じ、低値優先回
路3Jの出力とアナログメモリ43の出力が等しく、抽
気加減弁8が全開以下の開度で開くことになる。
The contact 44 also receives a contact signal from a detector 46 which compares the output signal of the low value priority circuit 31 and the output signal of the analog memory 43 with an adder 45 and detects that the error is zero, and a contact signal from the bleed air control valve. 0 switch operated by a relay circuit 49 having a self-hold function f operated by a contact signal of an opening detector 41 that detects that 8 is fully open;
The contact 44 closes when the bleed air control valve 8 is fully opened, and the output of the low value priority circuit 3J is equal to the output of the analog memory 43, so that the bleed air control valve 8 opens at an opening less than full open.

第4図は第3図に示したリレー回路49のit禰11な
構成を示す回路構成図である。同図に於いて、接点41
aは抽気加減弁8の開度検出器41によって操作される
。つまり、抽気加減弁8の開度が全開になると接点41
aが閉じる。接点41aが閉じるとリレーA、Bが励磁
し、接点42及び接点Iが閉じる。
FIG. 4 is a circuit configuration diagram showing the basic configuration of the relay circuit 49 shown in FIG. 3. In the figure, contact 41
a is operated by the opening degree detector 41 of the bleed air control valve 8. In other words, when the opening degree of the bleed air adjustment valve 8 becomes fully open, the contact point 41
a closes. When contact 41a closes, relays A and B are excited, and contact 42 and contact I close.

その結果、リレーC及びリレーDが励磁する。リレーC
が励磁すると接点51が閉じる。接点46bは低値優先
回路31の出力とアナログメモリ43の出力が等しいこ
とを検出する検出器46の出力接点であシ、両川力が等
しい場合に接点46bが開き、それ以外は閉じている。
As a result, relay C and relay D are energized. Relay C
When energized, contact 51 closes. The contact 46b is an output contact of the detector 46 that detects that the output of the low value priority circuit 31 and the output of the analog memory 43 are equal. When the two river forces are equal, the contact 46b is open, and otherwise it is closed.

つまカ、リレーDは接虞父が閉じるか、接点46bと接
点5工の両方が閉じることKよって励磁され、接点44
を閉じる。
The relay D is energized by the closing of the contact or by the closing of both the contact 46b and the contact 5, and the relay D is energized by the contact 44 being closed.
Close.

以上の動作を要約すると次のようになる。The above operation can be summarized as follows.

抽気加減弁8が全開している間は、常にアナログメモリ
43は抽気圧力制御信号に自動追従しその値を記憶し続
ける。抽気加減弁8が全開するとアナログメモリ43の
自動追従は停止し、追従直前の値を記憶する。抽気加減
弁8が全開していない状態では、アナログメモリ43の
出力は接点44で高値優先回路おと切り離されておシ、
この間高値優先回路おは抽気圧力制御回路Iの出方であ
る抽気圧力制御信号を優先させている。抽気加減弁8が
全開し接点44が閉じると、アナログメモリ43と抽気
圧力制御回路Iの出力とは高値優先回路33によって比
較される。つまシ、抽気加減弁8が全開した時、その以
上タービン負荷を増加させると実抽気圧力が上昇するた
め、抽気圧力制御回路頷の出力は減少することになる。
While the bleed air control valve 8 is fully open, the analog memory 43 always automatically follows the bleed pressure control signal and continues to store its value. When the bleed air control valve 8 is fully opened, automatic tracking in the analog memory 43 is stopped and the value immediately before tracking is stored. When the bleed air control valve 8 is not fully opened, the output of the analog memory 43 is disconnected from the high value priority circuit at the contact 44.
During this time, the high value priority circuit or the bleed pressure control signal from the bleed pressure control circuit I is prioritized. When the bleed air control valve 8 is fully opened and the contact 44 is closed, the analog memory 43 and the output of the bleed air pressure control circuit I are compared by the high value priority circuit 33. When the bleed air control valve 8 is fully opened, if the turbine load is increased any further, the actual bleed air pressure will increase, so the output of the bleed air pressure control circuit will decrease.

しかしながら、アナログメモリ43は抽気加減弁8が全
開する直前の値を記憶しており、高値優先回路33はア
ナログメモリ43の出力を優先させる。つまり、抽気圧
力制御回路刃からの蒸気加減弁3及び抽気加減弁8への
一度要求信号は抽気加減弁8が全開する直前の値に保持
される。つま9、従来技術では出来なかった抽気加減弁
8の全開後のタービン負荷上昇が、抽気圧力制御回路刃
の動作によって可能となる。即ち、抽気加減弁8が全開
している状態で抽気の需要が増加し抽気圧力が設定値以
下に低下した場合は、抽気圧力制御回路Jの出力が増加
する。この出力がアナログメモリ43の出力より大きく
なると、高値優先回路33は抽気圧力制御回路(9)の
出力を優先させて送出し、この信号に基いて抽気圧力制
御が行なわれる。従って、抽気圧力が設定値以下に下が
ることは無い。また、この状態で抽気加減弁8が全開以
下に絞られた場合、アナログメモリ43の出力が抽気圧
力制御回路(9)の出力に追従し始める。
However, the analog memory 43 stores the value immediately before the bleed air control valve 8 is fully opened, and the high value priority circuit 33 prioritizes the output of the analog memory 43. In other words, the request signal once sent from the bleed pressure control circuit blade to the steam control valve 3 and the bleed control valve 8 is held at the value immediately before the bleed control valve 8 is fully opened. The claw 9 makes it possible to increase the turbine load after fully opening the bleed air control valve 8, which was not possible with the prior art, by operating the bleed air pressure control circuit blade. That is, when the demand for bleed air increases and the bleed pressure falls below the set value while the bleed air control valve 8 is fully open, the output of the bleed air pressure control circuit J increases. When this output becomes larger than the output of the analog memory 43, the high value priority circuit 33 sends out the output of the bleed pressure control circuit (9) with priority, and the bleed pressure is controlled based on this signal. Therefore, the bleed pressure does not fall below the set value. Further, in this state, when the bleed air control valve 8 is throttled to less than full open, the output of the analog memory 43 starts to follow the output of the bleed air pressure control circuit (9).

この場合、アナログメモリ43の出力と抽気圧力制御回
路頷の出力が等しい状態でアナログメモリ43の出力側
接点44が開くため、切替えに伴なう衝撃は全く発生し
ない。
In this case, since the output side contact 44 of the analog memory 43 opens when the output of the analog memory 43 and the output of the bleed air pressure control circuit are equal, no impact occurs at all due to the switching.

なお、上述の如き制御動作を行なわせる事により、基本
的に第2図の抽気圧力制御特性図に示す如き制御特性を
得ることが出来る。第2図中、2点鎖線で示す抽気圧力
は抽気加減弁8が全開した後の無抽気量に於ける抽気圧
力の上昇状態を示し、1点鎖線で示す抽気圧力は抽気加
減弁8が全開した後の最大抽気量に於ける抽気圧力の上
昇状態を示す。
By performing the control operations as described above, control characteristics as shown in the bleed pressure control characteristic diagram in FIG. 2 can basically be obtained. In FIG. 2, the bleed pressure shown by the two-dot chain line indicates the rising state of the bleed pressure in the non-bleed air amount after the bleed control valve 8 is fully opened, and the bleed pressure shown by the one-dot chain line indicates the state of increase in the bleed pressure after the bleed control valve 8 is fully opened. This shows the increase in bleed pressure at the maximum bleed amount after

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明におけるタービン制御装置に於
いでは、蒸気タービンが中間負荷以下、つまシ抽気加減
弁が全開するまでの負荷状態では抽気圧力を一定に制御
し、しかも負荷制御とお互いに干渉しない様に制御する
ことを可能としている。一方、中間負荷以上のタービン
負荷、っまり抽気加減弁が全開での負荷状態においては
、抽気圧力制御の制御信号を抽気加減弁が全開する直前
の値に保持し、タービンの負荷制御に干渉しない様に制
御することを可能としている。また、中間負荷以上のタ
ービン負荷、つま勺抽気加減弁が全開での負荷状態にお
いて、抽気の需要によって実抽気圧力が抽気圧力設定値
以下に低下した場合も、タービンの負荷制御に優先して
抽気圧力制御を行なう事によシ抽気需要を満足すること
を可hヒとしている。このように、本発明によれハj1
 タービン負荷制御と抽気圧力制御を効果的かつ自動的
に、しかもお互いに干渉しない様に行なう事を可能なら
しめたタービン制御装置を実現する事が出来る。
As described above, in the turbine control device of the present invention, when the steam turbine is at an intermediate load or below and the load state is up to the point where the bleed air control valve is fully opened, the bleed pressure is controlled to be constant, and moreover, the bleed pressure is controlled at a constant level and This allows for control to prevent interference. On the other hand, when the turbine load is above intermediate load, i.e. when the bleed air control valve is fully open, the control signal for the bleed air pressure control is held at the value just before the bleed air control valve was fully opened, so that it does not interfere with the turbine load control. This makes it possible to control the In addition, even if the actual bleed pressure falls below the bleed pressure set value due to bleed demand when the turbine load is above the intermediate load and the bleed bleed control valve is fully open, the bleed air will be given priority over turbine load control. By controlling the pressure, it is possible to satisfy the bleed air demand. Thus, according to the present invention, hj1
It is possible to realize a turbine control device that can perform turbine load control and extraction pressure control effectively and automatically without interfering with each other.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な抽気復水タービンにおける抽気圧力の
制御特性図、 第2図は低圧タービンの性能向上に適し九抽気圧力の制
御特性図〈 第3図は本発明の一実施例に係るタービン制御装置のブ
ロック図、 第4図は第3図に示したリレー回路の回路構成図である
。 1・・・ボイラー、3・・・蒸気加減弁、4・・・高圧
タービン、8・・・抽気加減弁、9・・・低圧タービン
、17・・・速度制御回路、18・・・低値優先回路、
加・・・抽気圧力制御回路、31・・・低値優先回路、
33・・・高値優先回路、41・・・開度検出器、43
・・・アナログメモリ、49・・・リレー回路。 出願人代理人 猪 股 清 負伺 1711(]” 第3図 第4図 3
Fig. 1 is a control characteristic diagram of extraction pressure in a general extraction condensation turbine; Fig. 2 is a control characteristic diagram of extraction pressure suitable for improving the performance of a low-pressure turbine. Block Diagram of Turbine Control Device FIG. 4 is a circuit configuration diagram of the relay circuit shown in FIG. 3. DESCRIPTION OF SYMBOLS 1... Boiler, 3... Steam control valve, 4... High pressure turbine, 8... Bleed air control valve, 9... Low pressure turbine, 17... Speed control circuit, 18... Low value priority circuit,
Addition: extraction pressure control circuit, 31: low value priority circuit,
33... High value priority circuit, 41... Opening degree detector, 43
...Analog memory, 49...Relay circuit. Applicant's agent Kiyoshi Inomata 1711 (]" Figure 3 Figure 4 Figure 3

Claims (1)

【特許請求の範囲】 1、抽気系に接続された蒸気タービンへの抽気圧力を調
節する抽気加減弁と、との抽気加減弁の開度調節を行な
う為の抽気圧力制御手段と、前記抽気加減弁の開度を検
出する開度検出手段と、蒸気タービンの中間負荷以下で
は一定の、中間負荷以上では負荷に応じた抽気圧力制御
信号を発生する信号発生手段と、前記抽気圧力制御信号
を受け、これに追従またはこれを保持する記憶手段と、
この記憶手段の出力信号をオン・オフする開閉手段と、
前記信号発生手段からの信号と前記開閉手段からの信号
をそれぞれのレベルに基いて選択し、制御信号として前
記抽気圧力制御手段に送出する選択手段と、前記開度検
出手段の出力に基いて、蒸気タービン負荷が中間以上で
前記抽気加減弁が全開した事を条件に前記記憶手段を保
持側K *lJ ill L、それ以外の時は追従側に
制御する第1の制御手段と、前記蒸気加減弁が全開した
場合に前記開閉手段をオン状態に保持し、前記蒸気加減
弁が全開以下となった場合は前記記憶手段の出力が前記
抽気圧力制御信号に等しくなった事を条件に前記開閉手
段のオン状態を解除してオン状態とする第2の制御手段
とを備えた事を特徴とするタービン制御装置。 2、前記選択手段が、2つの入力信号のうち、レベルの
高い方の信号を優先して出力する高値優先回路を含んで
いる事を特徴とする特許請求の範囲第1項に記載のター
ビン制御装置。
[Scope of Claims] 1. A bleed air control valve for adjusting the bleed air pressure to a steam turbine connected to the bleed air system; bleed air pressure control means for adjusting the opening of the bleed air control valve; an opening detecting means for detecting the opening of the valve; a signal generating means for generating a bleed pressure control signal that is constant below an intermediate load of the steam turbine and responsive to the load above the intermediate load; and a signal generating means that receives the bleed pressure control signal. , storage means for following or holding this,
opening/closing means for turning on and off the output signal of the storage means;
a selection means for selecting a signal from the signal generation means and a signal from the opening/closing means based on their respective levels, and sending the selected signal to the bleed pressure control means as a control signal; and based on the output of the opening degree detection means; a first control means that controls the storage means to the holding side on the condition that the steam turbine load is intermediate or above and the extraction control valve is fully opened, and to the follow-up side otherwise; When the valve is fully open, the opening/closing means is maintained in an on state, and when the steam control valve is less than fully open, the opening/closing means is maintained on the condition that the output of the storage means becomes equal to the bleed pressure control signal. and second control means for canceling the on state and turning on the turbine control device. 2. The turbine control according to claim 1, wherein the selection means includes a high value priority circuit that outputs a higher level signal with priority among two input signals. Device.
JP14213783A 1983-08-03 1983-08-03 Turbine controller Granted JPS6032905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14213783A JPS6032905A (en) 1983-08-03 1983-08-03 Turbine controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14213783A JPS6032905A (en) 1983-08-03 1983-08-03 Turbine controller

Publications (2)

Publication Number Publication Date
JPS6032905A true JPS6032905A (en) 1985-02-20
JPH0368204B2 JPH0368204B2 (en) 1991-10-25

Family

ID=15308223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14213783A Granted JPS6032905A (en) 1983-08-03 1983-08-03 Turbine controller

Country Status (1)

Country Link
JP (1) JPS6032905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173382U (en) * 1985-04-19 1986-10-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173382U (en) * 1985-04-19 1986-10-28

Also Published As

Publication number Publication date
JPH0368204B2 (en) 1991-10-25

Similar Documents

Publication Publication Date Title
US20030167774A1 (en) Method for the primary control in a combined gas/steam turbine installation
JPS6158644B2 (en)
CN113638776A (en) Steam extraction back pressure type steam turbine thermodynamic system and control method thereof
JP4734184B2 (en) Steam turbine control device and steam turbine control method
US4271473A (en) Control of parallel operated turbines in cogeneration
JPS6032905A (en) Turbine controller
JP2578328B2 (en) Output control method for back pressure turbine generator
JPH07243304A (en) Extraction pressure control method for extraction turbine
GB2176248A (en) Turbine control
JPS6239655B2 (en)
JPS6189911A (en) Preventive measure against excessive speed of steam turbine
JP2645766B2 (en) Power recovery system for steam supply line
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JP2511009B2 (en) Turbin controller having non-linear characteristics
JPS6371505A (en) Control process for steam turbine generator
JPH0270906A (en) Control of bleeding turbine and device thereof
JPH0232442B2 (en) JOKITAABINNOKIDOHOHO
JP4060654B2 (en) Water supply pump recirculation flow control device
JP2758279B2 (en) Power generation control device
JP2001221010A (en) Load control method and apparatus of electric power plant
JPS6239654B2 (en)
JPH0128202B2 (en)
JP2000097403A (en) Controller for turbine-drive water supply pump
JPH07324603A (en) Controller for water feed turbine
JPH0122521B2 (en)