JPS6032167B2 - LCD color display device - Google Patents

LCD color display device

Info

Publication number
JPS6032167B2
JPS6032167B2 JP50049155A JP4915575A JPS6032167B2 JP S6032167 B2 JPS6032167 B2 JP S6032167B2 JP 50049155 A JP50049155 A JP 50049155A JP 4915575 A JP4915575 A JP 4915575A JP S6032167 B2 JPS6032167 B2 JP S6032167B2
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
hue
substrate
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50049155A
Other languages
Japanese (ja)
Other versions
JPS51124398A (en
Inventor
正一 松本
正博 河元
清 水野谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50049155A priority Critical patent/JPS6032167B2/en
Priority to US05/678,553 priority patent/US4097128A/en
Priority to DE2617924A priority patent/DE2617924B2/en
Publication of JPS51124398A publication Critical patent/JPS51124398A/en
Publication of JPS6032167B2 publication Critical patent/JPS6032167B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は液晶色表示装置に関する。[Detailed description of the invention] The present invention relates to a liquid crystal color display device.

従来、ネマチック液晶を用いた色表示方式として 、
ECB ( Electrically Contr
olledBirefrin鉾nce)、(または、D
AP(DeのrmationofvenjcaINig
肥dPhases))方式と呼ばれるものが知られてい
る。
Conventionally, as a color display method using nematic liquid crystal,
ECB (Electrically Contr.
(Or, D
AP(De rmationofvenjcaINig
A system called phases) is known.

これは、誘電異方性が正の液晶の場合は、液晶の分子長
軸方向が基板面に水平に配列するように処理した2枚の
基板間に液晶をはさみ、譲露異方性が負の液晶の場合に
は、液晶の分子長軸方向が基板面に垂直に配列するよう
処理した2枚の基板間に液晶をはさみ、これにある強さ
以上の電圧を印加した時に液晶分子が基板に対して頃斜
し、液晶層の後屈折率が変化する現象により、2枚の偏
光子を用いて、色を表示する方式である。しかし、この
ECB(DAP)方式では、初期配列状態から基板面に
対して分子を傾斜させるに要する電圧(閥値電圧)が高
く、従って、動作電圧が高くなる。
In the case of a liquid crystal with positive dielectric anisotropy, the liquid crystal is sandwiched between two substrates that have been treated so that the long axis direction of the molecules of the liquid crystal is aligned horizontally to the substrate surface, and the dielectric anisotropy is negative. In the case of a liquid crystal, the liquid crystal is sandwiched between two substrates that have been treated so that the long axis direction of the liquid crystal molecules is aligned perpendicular to the substrate surface, and when a voltage of a certain strength or higher is applied, the liquid crystal molecules This is a method of displaying colors using two polarizers due to the phenomenon that the rear refractive index of the liquid crystal layer changes as the liquid crystal layer tilts toward the opposite direction. However, in this ECB (DAP) method, the voltage required to tilt the molecules with respect to the substrate surface from the initial alignment state (the threshold voltage) is high, and therefore the operating voltage is high.

さらに、赤、青、緑等の各種の色を表示できる電圧範囲
が、非常に狭く、関値電圧から約IV程度の間に数色変
化し、色選択が非常に困難である。つまり色相を電圧で
制御することが非常にむづかしく、このため、電源の安
定性と精度が特に要求される。このような欠点のため、
ECB方式は効果的な液晶色表示装置としては実用化さ
れていない。本発明は上記点に鑑みなされたもので、動
作電圧(肌s)が低く、色相変調可能電圧領域の広い液
晶色表示装置を提供するものである。
Furthermore, the voltage range in which various colors such as red, blue, and green can be displayed is very narrow, and several colors change between the function voltage and about IV, making color selection very difficult. In other words, it is extremely difficult to control the hue with voltage, and for this reason, the stability and precision of the power supply are particularly required. Because of these shortcomings,
The ECB system has not been put to practical use as an effective liquid crystal color display device. The present invention has been made in view of the above points, and provides a liquid crystal color display device with a low operating voltage (skin s) and a wide voltage range in which hue can be modulated.

即ち、電極が一体的ないしは部分的に施された少なくと
も1枚は透明な2枚の基板よりなる容器に誘電異方性が
正のネマチック液晶層を保持し、この液晶を保持する容
器の光路に偏光子を設け、前記容器の一方の基板内面に
液晶分子を水平配向する処理をし、他方の基板内面に液
晶分子を垂直配向する処理を施した液晶色表示装置の例
えば印加電圧(皿s)を変化させることにより前記液晶
の複屈折率を変化させて多色表示する手段を設けた色表
示装置を得るものである。
That is, a nematic liquid crystal layer with positive dielectric anisotropy is held in a container consisting of two substrates, at least one of which is transparent, on which electrodes are integrally or partially provided, and the optical path of the container holding this liquid crystal is For example, an applied voltage (dish s) of a liquid crystal color display device in which a polarizer is provided, liquid crystal molecules are horizontally aligned on the inner surface of one substrate of the container, and liquid crystal molecules are vertically aligned on the inner surface of the other substrate. The present invention provides a color display device provided with means for displaying multiple colors by changing the birefringence of the liquid crystal by changing the birefringence of the liquid crystal.

即ち、この発明は、譲亀異方性の正のネマチック液晶を
保持する容器の一方の基板内面に液晶分子が水平配向す
る処理を施し、他の一方の基板内面に液晶分子が華直配
向する処理を施した液晶色表示装置に印加する電圧(r
ms)や磁場などを変化させることにより液晶の複屈折
率を変化させて赤線青およびこれらの中間色などの多色
表示を可能とした点に特徴を有するものである。
That is, in the present invention, liquid crystal molecules are horizontally aligned on the inner surface of one substrate of a container holding a positive nematic liquid crystal with anisotropy, and liquid crystal molecules are aligned vertically on the inner surface of the other substrate. The voltage (r) applied to the treated liquid crystal color display device
ms), a magnetic field, etc., to change the birefringence of the liquid crystal, thereby making it possible to display multiple colors such as red, blue, and intermediate colors.

このような配向手段の基に液晶の複屈折率を変化させる
ことにより赤、緑、青に対応する動作電圧が低くしかも
この動作電圧の間隔が広く、色分離が極めてよく、かつ
同じセルで次々と電圧や磁場などを変えるだけで所望の
色表示できることが特徴である。さらに詳しく例示的に
説明すると一方の透明基板においては、液晶の分子長藤
が基板面に水平配列するように処理し、もう一方の基板
面では、液晶の分子長軸が基板面に垂直配列するように
処理した2枚の透明電極を有する基板間にその処理面が
対向するようにして誘電異方性が正のネマチック液晶を
サンドイッチ状にはさんだ構造の液晶セルを作成し、さ
らに、この液晶セルの両側に偏光子を設置した液晶表示
構造物と、この液晶層に例えば印加する電圧を変化させ
て、液晶の複屈折率の変化する領域で液晶印加電圧を変
化させることにより多色表示する手段とから成る液晶色
表示装置を得るものである。
By changing the birefringence of the liquid crystal based on such alignment means, the operating voltages corresponding to red, green, and blue are low and the intervals between these operating voltages are wide, and color separation is extremely good, and the same cell can be used one after another. The feature is that the desired color can be displayed simply by changing the voltage, magnetic field, etc. To explain in more detail, one transparent substrate is treated so that the long axes of liquid crystal molecules are aligned horizontally on the substrate surface, and the other substrate surface is treated so that the long axes of liquid crystal molecules are aligned perpendicularly to the substrate surface. A liquid crystal cell is created in which a nematic liquid crystal with positive dielectric anisotropy is sandwiched between two substrates having transparent electrodes treated with A liquid crystal display structure with polarizers installed on both sides of the liquid crystal layer, and means for displaying multiple colors by changing the voltage applied to the liquid crystal layer in a region where the birefringence of the liquid crystal changes. A liquid crystal color display device consisting of the following is obtained.

以下本発明の実施例を説明する。Examples of the present invention will be described below.

第1図は、本発明による液晶色表示装置を説明するため
の模式的に示す断面図である。
FIG. 1 is a schematic cross-sectional view for explaining a liquid crystal color display device according to the present invention.

2枚の透明電極9を一体的あるいは部分的に備えた透明
な基板1,2例えばガラス基板上に設け、この電極9を
有する基板1面には液晶分子3の長餓が基板1に平行に
配列するよう処理し、電極9を有する基板2面には液晶
分子3の最軸が基板2に垂直に配列するように処理をし
、この処理面が対向するように基板1,2を配置して液
晶3をはさむ。
Transparent substrates 1 and 2 are provided integrally or partially with two transparent electrodes 9, for example, on a glass substrate, and on the surface of the substrate 1 having the electrodes 9, the long edges of the liquid crystal molecules 3 are arranged parallel to the substrate 1. The two surfaces of the substrates having the electrodes 9 are treated so that the most axes of the liquid crystal molecules 3 are aligned perpendicular to the substrate 2, and the substrates 1 and 2 are arranged so that the treated surfaces face each other. and sandwich the LCD 3.

第1図は、このときの液晶層中の液晶分子3の配列を模
式的に示す断面図である。これにより液晶分子は、基板
1から連続的に基板2まで約900煩斜するように配列
する。この液晶セルの光略の例えば両側に偏光子4,5
を設置する。この状態で入射光6は偏光板4で直線偏光
となり、この液晶層の後屈折性により、液晶セルを通過
して楕円偏光を形成する。さらに、この楕円偏光の偏光
子5の偏光面と一致する光が偏光子5を透過する。この
ため、入射光6が白色光の場合、偏光子5を通過する光
は干渉現象により色相を呈する。この色相は液晶層の厚
みにより変調することが可能で、電圧無印加の状態で液
晶層の厚みを変えることにより赤、青、線や、中間色等
、任意の色を表示することができる。特に、基板1の表
面の研磨等により液晶分子3が一定方向に基板1面に平
行に配列する処理、即ち水平配向処理を施した液晶セル
を作成し、偏光子4,5を互いに直交にし、さらに研磨
方向と一方の偏光子を450方向に設置した場合、最も
透過強度が大きく、最も明るい色相を呈する。同様に、
前記液晶セルに、偏光子4,5を平行にし、研磨方向と
一方の偏光子を45o方向に設置した場合も、前記色相
と補色関係の色相を呈する。偏光子と研磨方向の設置方
向が45o以外の場合には透過光強度が変化する。また
、偏光子4,5の設定方向が直交、平行以外の方向にあ
っても、色相表示が可能で、偏光子4,5が直交、平行
の場合とは異なった色相を呈する。このように、偏光子
の位置を変えることにより、光強度変調、色相変調が可
能である。次に、基板1,2の透明電極9からリード端
子をとり出し、電極7を経て、スイッチ8に接続する。
FIG. 1 is a cross-sectional view schematically showing the arrangement of liquid crystal molecules 3 in the liquid crystal layer at this time. As a result, the liquid crystal molecules are arranged continuously from the substrate 1 to the substrate 2 in a diagonal pattern of approximately 900 degrees. For example, polarizers 4 and 5 are placed on both sides of the light of this liquid crystal cell.
Set up. In this state, the incident light 6 becomes linearly polarized light by the polarizing plate 4, and due to the back refraction of this liquid crystal layer, it passes through the liquid crystal cell and forms elliptically polarized light. Furthermore, this elliptically polarized light that matches the polarization plane of the polarizer 5 is transmitted through the polarizer 5. Therefore, when the incident light 6 is white light, the light passing through the polarizer 5 exhibits a hue due to an interference phenomenon. This hue can be modulated by changing the thickness of the liquid crystal layer, and by changing the thickness of the liquid crystal layer with no voltage applied, any color such as red, blue, lines, intermediate colors, etc. can be displayed. In particular, a liquid crystal cell is created in which the liquid crystal molecules 3 are aligned in a certain direction parallel to the surface of the substrate 1 by polishing the surface of the substrate 1, that is, horizontally aligned, and the polarizers 4 and 5 are made orthogonal to each other. Furthermore, when the polishing direction and one polarizer are placed in the 450 direction, the transmission intensity is the highest and the hue is the brightest. Similarly,
Even when the polarizers 4 and 5 are placed parallel to each other in the liquid crystal cell, and one polarizer is placed in the 45o direction relative to the polishing direction, the liquid crystal cell exhibits a hue complementary to the hue. When the orientation of the polarizer and the polishing direction is other than 45o, the transmitted light intensity changes. Further, even if the polarizers 4 and 5 are set in a direction other than orthogonal or parallel, hue display is possible, and a different hue is exhibited than when the polarizers 4 and 5 are set orthogonal or parallel. In this way, by changing the position of the polarizer, light intensity modulation and hue modulation are possible. Next, lead terminals are taken out from the transparent electrodes 9 of the substrates 1 and 2 and connected to the switch 8 via the electrode 7.

スイッチ8をONすることにより液晶分子の煩斜角が、
電圧無印加状態から印加電圧増加とともに連続的に変化
し、その結果、液晶層の複屈折率が液晶への印加電圧値
に応じ変化する。光学的には単色光を液晶層に入射した
場合、透過光強度変化する。入射光6が白色光の場合は
、印加電圧の増加に伴う液晶の複屈折率の変化により透
過光の色相の変化が得られる。電圧を増加しても複屈折
率が変化しなくなる領域則ち複屈折率の飽和領域になる
と黒又は白となり、色相はなくなるか、あるいは非常に
うすし、色になる。この複屈折率の飽和領域の電圧は、
電圧無印加時のネマチック液晶層の複屈折率や液晶層の
厚みにより変化するが、通常実用的には8Vから10V
程度である。また、BCB方式と異なり電圧無印加の状
態で既に液晶分子3がある鏡斜角をもっているため低重
圧を印放することにより、液晶分子の煩斜角を変えるこ
とができ、つまり閥値電圧が極めて低く、光学的には低
電圧で色相を変化することが可能である。しかも、本発
明にかかる表示装置は、赤、青、緑等の各色相間の電圧
差がECB方式に比較して大きいためある色相を表示す
るために液晶に印加される電圧の許容変動幅が大きくと
れる。本発明にかかる液晶色表示菱直において、容器を
構成する二枚の透明基板のうち、一方の基板の透明電極
が施されている面への液晶分子の配列を制御するための
水平配向処理としては、例えば、綿常や各種研磨剤によ
る基板研磨、各種無機物の基板への斜め蒸着、あるいは
、有機シラン系化合物を基板に塗布して研磨、基板への
ある種の高分子フィルムの形成等がある。また、もう一
方の基板の透明電極が施されている面への液晶分子の配
列を制御するための垂直配向処理としては、例えば、基
板の酸処理、各種界面活性剤による基板処理、有機シラ
ン系化合物の基板への塗布等がある。
By turning on the switch 8, the tilt angle of the liquid crystal molecules is
The birefringence of the liquid crystal layer changes continuously as the applied voltage increases from a state where no voltage is applied, and as a result, the birefringence of the liquid crystal layer changes according to the value of the voltage applied to the liquid crystal. Optically, when monochromatic light is incident on a liquid crystal layer, the transmitted light intensity changes. When the incident light 6 is white light, a change in the hue of the transmitted light is obtained due to a change in the birefringence of the liquid crystal as the applied voltage increases. In the region where the birefringence index does not change even when the voltage is increased, that is, in the saturated region of the birefringence index, the color becomes black or white, and the hue disappears or becomes very pale. The voltage in the saturation region of this birefringence is
Although it varies depending on the birefringence of the nematic liquid crystal layer and the thickness of the liquid crystal layer when no voltage is applied, it is usually 8V to 10V in practical use.
That's about it. In addition, unlike the BCB method, the liquid crystal molecules 3 already have a mirror oblique angle when no voltage is applied, so by applying a low pressure, the oblique angle of the liquid crystal molecules can be changed, which means that the threshold voltage can be changed. It is possible to optically change the hue with a very low voltage. Moreover, in the display device according to the present invention, the voltage difference between each hue such as red, blue, green, etc. is large compared to the ECB method, so the permissible fluctuation range of the voltage applied to the liquid crystal to display a certain hue is large. It can be taken. In the LCD color display according to the present invention, as a horizontal alignment treatment for controlling the arrangement of liquid crystal molecules on the surface of one of the two transparent substrates forming the container, on which the transparent electrode is applied. Examples of methods include polishing the substrate with a cotton polisher or various abrasives, diagonally depositing various inorganic substances on the substrate, coating the substrate with an organic silane compound and polishing it, and forming a certain kind of polymer film on the substrate. be. In addition, examples of vertical alignment treatments to control the arrangement of liquid crystal molecules on the surface of the other substrate on which the transparent electrode is applied include acid treatment of the substrate, substrate treatment with various surfactants, and organic silane-based treatment. Examples include coating a compound on a substrate.

さらに本発明にかかる液晶表示装置に用いられる液晶と
しては誘電異万性が正のものがよい。
Further, the liquid crystal used in the liquid crystal display device according to the present invention preferably has positive dielectric anisotropy.

例示すれば、誘電異方性が正の液晶として、例えば、一
般化学構造式(X:ァルキル基、アルコキシ基、アルコ
ィルオキシ基等)などで示される化合物で、単体もしく
は混合物として使用できる。
For example, as a liquid crystal with positive dielectric anisotropy, compounds represented by the general chemical structural formula (X: alkyl group, alkoxy group, alkyloxy group, etc.) can be used alone or as a mixture.

上記一股化学構造式で示される化合物の例を示すと4′
ーn−ブトキシベンジリデン−4ーシア/アリン、4′
ーnーヘキシルベンジリデンー4ーシアノアニリン、4
′ーn−ベンチルー4−シアノビフェニルなどがある。
An example of a compound represented by the above single-pronged chemical structural formula is 4'
-n-butoxybenzylidene-4-cya/aryne, 4'
-n-hexylbenzylidene-4-cyanoaniline, 4
'-n-benzene-4-cyanobiphenyl and the like.

また、比較のために用いた負の液晶としては、例えば一
般化学構造式(X、Y=アルキル基、アルコキシ基、ア
ルコィルオキシ基等)などで示される化合物で、単体も
しくは混合物として使用する。
The negative liquid crystal used for comparison is, for example, a compound represented by a general chemical formula (X, Y=alkyl group, alkoxy group, alkyloxy group, etc.), which is used alone or as a mixture.

上記一般化学構造式で示される化合物の一例を示すと、
4′−メトキシベンジリデン−4一nーフチルアニリン
、4ーエトキシベンジリデンー4一nーブチルアニリン
、4′ームトキシー4一nーフチルアゾキシベンゼンな
どがある。
An example of a compound represented by the above general chemical structural formula is:
Examples include 4'-methoxybenzylidene-41n-phthylaniline, 4-ethoxybenzylidene-41n-butylaniline, and 4'mutoxy41n-phthylazoxybenzene.

誘電異方性が正の液晶は液晶分子長軸方向の誘電率が液
晶分子長軸に直角方向の誘電率よりも大きいことを示し
、逆に誘電異方性が負の液晶は液晶分子長軸に直角方向
の誘電率の方が大きい。
A liquid crystal with positive dielectric anisotropy indicates that the dielectric constant in the long axis direction of the liquid crystal molecules is larger than the permittivity in the direction perpendicular to the long axis of the liquid crystal molecules, and conversely, a liquid crystal with negative dielectric anisotropy has a dielectric constant in the long axis direction of the liquid crystal molecules. The dielectric constant in the direction perpendicular to is larger.

このように、本発明にかかる液晶色表示装置は色表示に
要する電圧が極めて低くてすみ、また各種色相を示す間
の電圧差が大きいため、電源の安定性や精度の許容幅が
広いなど、ECB方式等の従来の液晶色表示装置より優
れた特徴を有している。さらに、本発明にかかる液晶色
表示装置において、液晶容器に透明電極を有しない場合
でも、磁場印加等、液晶分子の煩斜を変化させる手段を
備えていれば、色相変調が可能となる。
As described above, the liquid crystal color display device according to the present invention requires extremely low voltage for color display, and the voltage difference between displaying various hues is large, so the power supply stability and precision tolerance range is wide. It has features superior to conventional liquid crystal color display devices such as the ECB system. Further, in the liquid crystal color display device according to the present invention, even if the liquid crystal container does not have a transparent electrode, hue modulation is possible as long as a means for changing the slope of the liquid crystal molecules, such as applying a magnetic field, is provided.

さらにまた本発明装置は従来のECB方式に較べて液晶
セルの厚みも精度(厚みのバラッキ)の影響を余りうけ
ず、液晶セル製作上極めて有利である。また、本発明の
液晶色表示装置の原理を第1図によって、透過型の場合
だけを説明したが、第I図の構成において出射光側に光
反射もしくは、光拡散板を設けた反射型の表示装置や、
液晶容器の一方の基板が電極を有する反射板であるよう
な反射型の表示装置であっても、透過型の色表示装置と
同等の優れた性能をもっている。とくに後者の反射型の
場合、反射板に相対する側に偏光子をおけばよいので、
透過型と異なり偏光子は1つですむ。以下、本発明装置
の有用性をより明らかにするために、実施例と比較例を
あげて詳細に説明する。
Furthermore, compared to the conventional ECB method, the device of the present invention is less affected by the accuracy (variation in thickness) of the thickness of the liquid crystal cell, and is extremely advantageous in manufacturing the liquid crystal cell. Furthermore, although the principle of the liquid crystal color display device of the present invention has been explained only in the case of a transmissive type with reference to FIG. 1, in the configuration shown in FIG. display device,
Even a reflective display device in which one substrate of a liquid crystal container is a reflective plate having an electrode has excellent performance equivalent to that of a transmissive color display device. In particular, in the case of the latter reflective type, it is sufficient to place a polarizer on the side facing the reflector, so
Unlike the transmission type, only one polarizer is required. Hereinafter, in order to clarify the usefulness of the device of the present invention, a detailed explanation will be given by giving Examples and Comparative Examples.

実施例 1 透明電極がコーティングされた2枚のガラス基板のうち
、一枚の基板の電極を有する面を水平配向処理例えば一
定方向に綿布で研磨(mbbing)により水平配何処
理をし、もう一枚の基板の電極が施されている面を垂直
配向処理例えば有機シラン塗布により垂直配向処理をし
た。
Example 1 Among two glass substrates coated with transparent electrodes, the surface of one substrate having the electrodes is subjected to horizontal alignment treatment, for example, by polishing (mbbing) with a cotton cloth in a certain direction, and the other is The surface of each substrate on which the electrodes were applied was subjected to vertical alignment treatment, for example, by coating with organic silane.

この2枚の基板を処理面が対向するようにして配置し、
液晶容器を形成した。このときの電極間距離はスベーサ
ーを用いて8仏机とした。この容器に液晶例えば4′…
メトキシベンジリデン−4−nーブチルアニリン(以下
M旧BAとする)と4′一n−ブトキシベンジリデン−
4ーシアノアニリン(以下BBCAとする)の2種類の
ネマチック液晶の混合物を注入し、液晶セルとした。こ
の混合液晶の混合比はM旧BA4部とBBCAI部とし
た。この混合液晶は誘電異方性が正で、ネマチック温度
範囲80〜570である。透過光強度の測定はニコン偏
光顕微鏡下で赤(R)(最大透過波長632.7nm)
、緩くG)(最大透過波長554.郎m)、青脚(最大
透過波長452.仇の)の三種のフィルターを用い、入
射白色光線上にある光電子増情管で各フィルターを用い
た際の透過光量変化を検知することにより行った。
Arrange these two substrates so that their processing surfaces face each other,
A liquid crystal container was formed. At this time, the distance between the electrodes was set to 8 distances using a spacer. This container has a liquid crystal display, for example 4'...
Methoxybenzylidene-4-n-butylaniline (hereinafter referred to as M former BA) and 4'-n-butoxybenzylidene-
A mixture of two types of nematic liquid crystals, 4-cyanoaniline (hereinafter referred to as BBCA), was injected to form a liquid crystal cell. The mixing ratio of this mixed liquid crystal was 4 parts of M old BA and 4 parts of BBCAI. This mixed liquid crystal has positive dielectric anisotropy and a nematic temperature range of 80 to 570°C. The transmitted light intensity was measured under a Nikon polarizing microscope using red (R) (maximum transmitted wavelength 632.7 nm).
Using three types of filters: , loosely G) (maximum transmission wavelength 554.m), and blue leg (maximum transmission wavelength 452.m), the results are as follows: This was done by detecting changes in the amount of transmitted light.

液晶の複屈折率を変える駆動には500HZのサイン波
交流電圧を用い、電極間に印加する電圧をOVから変え
て駆動した。偏光顕微鏡の2枚の偏光子である偏光子板
は直交にし、液晶セルの研磨方向と一方の偏光子が45
0方向をとるように設置した。その結果を第2図に示す
づさらに、上記設定で肉眼で電圧印加に伴う色相変化を
観察した。この実施例では蚤場無印加の状態では黄緑を
呈している。色相と印加電圧の関係は第1表に示す。第
2図に示した色相変調可能領域は肉眼で電圧印加に伴う
色相変化観察の際の赤、青、緑等、最も鮮明な色相を表
示するのが可能な電圧領域であり、この実施例ではoy
から1.5V(nns)までである。また、緑から青、
青から赤への各色相間電圧幅は第1表に示すように、そ
れぞれ0.3V(皿s)である。なお、上記色相制御す
るための印加電圧は、実効電圧(肌s)であるため、実
効電圧を変化させる手段であればなんでもよい。例えば
印加電圧のパルス幅を変化させても、同様にすぐれた色
表示が可能である。これにより、明らかなように、低電
圧での各種の色相制御が容易となり、本発明にかかる液
晶表示装置は従来にないすぐれた性能をを示した。比較
例 1 透明電極がコーティングされた2枚のガラス基板を、こ
の電極が施されているガラス基板表面を一定方向に綿布
で研磨し、この研磨方向を一致させ、電極面が対向する
ように配置して従来のECB方式の液晶容器を形成した
A sine wave AC voltage of 500 Hz was used for driving to change the birefringence index of the liquid crystal, and the voltage applied between the electrodes was changed from OV. The polarizer plates, which are the two polarizers of a polarizing microscope, are orthogonal, and the polishing direction of the liquid crystal cell and one polarizer are 45
It was installed to take the 0 direction. The results are shown in FIG. 2. In addition, changes in hue due to voltage application were observed with the naked eye under the above settings. In this example, the color is yellow-green when no flea field is applied. The relationship between hue and applied voltage is shown in Table 1. The hue modulation possible region shown in FIG. 2 is a voltage region in which it is possible to display the most vivid hues such as red, blue, and green when observing hue changes due to voltage application with the naked eye. oy
to 1.5V (nns). Also, from green to blue,
As shown in Table 1, the voltage width between each hue from blue to red is 0.3 V (plate s). Note that since the applied voltage for controlling the hue is an effective voltage (skin s), any means for changing the effective voltage may be used. For example, even if the pulse width of the applied voltage is changed, excellent color display can be achieved as well. As is clear, this makes it easy to control various hues at low voltages, and the liquid crystal display device according to the present invention exhibits unprecedented performance. Comparative Example 1 Two glass substrates coated with transparent electrodes were polished by polishing the surfaces of the glass substrates coated with the electrodes in a certain direction with a cotton cloth, aligning the polishing directions, and arranging the electrode surfaces so that they faced each other. A conventional ECB type liquid crystal container was formed.

この際、電極間距離はスベーサーを用いて8仏のとし、
この液晶容器に実施例1の混合液晶を注入した。実施例
1と同様の測定をし、肉眼観察による色相と印加電圧の
関係を第1表に示した。この比較例は従来より知られて
いるECB方式による色相表示装置に関するもので第1
表から明らかなように、緑、青、赤の各色相が2V付近
で表示され、1.8Vから2.2Vの0.4Vだけ色相
変調可能領域である。
At this time, the distance between the electrodes was set to 8 Buddhas using a subaser.
The mixed liquid crystal of Example 1 was poured into this liquid crystal container. Measurements were made in the same manner as in Example 1, and the relationship between hue and applied voltage as observed with the naked eye is shown in Table 1. This comparative example relates to a hue display device using the conventionally known ECB method, and is the first example.
As is clear from the table, each hue of green, blue, and red is displayed at around 2V, and the hue can be modulated by 0.4V from 1.8V to 2.2V.

また、各色相間の電圧差が0.1Vと、極めて少なかっ
た。このように、実施例1に比較して、従釆より知られ
ているEBC方式に関する本比較例では、緑、青、赤の
各色相を表示するのに必要な印加電圧が2倍から3倍高
く、各色相間の電圧差が3分の1ときわめて少ないため
に、色相制御が非常に困難である。第 1 表 比較例 2 実施例1の液晶容器に液晶、例えばMBBAと4′ーヱ
トキシベンジリデン一4−nーブチルアニリン(以下E
BBAとする)の2種のネマチック液晶の混合物を注入
し液晶セルとした。
Further, the voltage difference between each hue was 0.1V, which was extremely small. As described above, compared to Example 1, in this comparative example regarding the well-known EBC method, the applied voltage required to display each hue of green, blue, and red is doubled to tripled. Since the voltage difference between each hue is extremely small at one-third, hue control is extremely difficult. Table 1 Comparative Example 2 A liquid crystal, such as MBBA and 4'-ethoxybenzylidene-4-n-butylaniline (hereinafter referred to as E) was added to the liquid crystal container of Example 1.
A liquid crystal cell was prepared by injecting a mixture of two types of nematic liquid crystals (referred to as BBA).

この際電極間距離はスベーサーを用いて5仏仇とした。
この場合液晶の混合比はM旧BA3部にEBBA2部と
した。この混合液晶は誘電異方性が負で、ネマチック温
度範囲は60〜530である。透過光強度の測定は実施
例1と同様である。
At this time, the distance between the electrodes was set to 5 mm using a spacer.
In this case, the mixing ratio of liquid crystal was 3 parts of M old BA and 2 parts of EBBA. This mixed liquid crystal has negative dielectric anisotropy and a nematic temperature range of 60 to 530°C. The measurement of transmitted light intensity was the same as in Example 1.

その結果を第3図に示し、色相と印加電圧の関係は第2
表に示した。本実施例の電圧無印加の状態での色相は赤
であった。第3図に示した色相変調可能領域はOVから
4V(rms)までで、各色相間の電圧差は約IVであ
り、実施例1の場合より高い電圧が必要なことがわかっ
た。比較例 3 透明電極がコーティングされた2枚のガラス基板の電極
を施されたガラス表面を、有機シランによる垂直配向処
理し、これを処理面を対向するように配置し液晶容器を
形成した。
The results are shown in Figure 3, and the relationship between hue and applied voltage is
Shown in the table. In this example, the hue was red when no voltage was applied. The hue modulation range shown in FIG. 3 is from OV to 4V (rms), and the voltage difference between each hue is approximately IV, indicating that a higher voltage than in the case of Example 1 is required. Comparative Example 3 The glass surfaces of two glass substrates coated with transparent electrodes were subjected to a vertical alignment treatment using organic silane, and the treated surfaces were arranged to face each other to form a liquid crystal container.

この時の電極間距離はスべ−サーを用いて5山肌とした
。この容器に、実施例2の液晶を注入したものを液晶セ
ルとし、実施例1と同様にして測定した。透過光強度の
測定結果を第4図に、色相と印加電圧の関係を第2表に
示した。この従来技術による比較例は比較例1とは別種
のECB方式による色相表示装置に関するものである。
第4図と第2表により、色相変調可能領域が5.5Vか
ら7.4Vと高く、しかも各色相を表示するのに要する
電圧が、実施例1に比較して非常に高いことがわかる。
第2表 実施例 2 実施例1の液晶セルを偏光顕微鏡の2枚の偏光を平行に
し、液晶セルの研磨方向と偏光子が450方向となるよ
うに設置した。
At this time, the distance between the electrodes was set to five peaks using a spacer. A liquid crystal cell was prepared by injecting the liquid crystal of Example 2 into this container, and measurements were carried out in the same manner as in Example 1. The measurement results of transmitted light intensity are shown in FIG. 4, and the relationship between hue and applied voltage is shown in Table 2. This comparative example based on the prior art relates to a hue display device using an ECB method, which is different from the first comparative example.
From FIG. 4 and Table 2, it can be seen that the hue modulation range is as high as 5.5V to 7.4V, and the voltage required to display each hue is much higher than in Example 1.
Table 2 Example 2 The liquid crystal cell of Example 1 was installed so that the two polarized lights of a polarizing microscope were made parallel and the polishing direction of the liquid crystal cell and the polarizer were in the 450 direction.

実施例1と同様の測定をし、その結果を第5図に示した
。さらに色相と印加電圧の関係を第3表に示した。本実
施例では、実施例1の色相変化と補色関係にある色相変
化を示した。従って、実施例1と同様、色相変調可能領
域はOVから1.5V(肌s)と非常に低く、各色相間
の電圧差も0.3Vとひろく、優れた性能を示した。第
3表 以上の図表により説明したように、誘電率異方性が正の
液晶においては、色相変調を可能とする動作電圧が低く
、しかも、色相間の印加電圧差が広く、電圧変動中を大
きくとれる。
Measurements were carried out in the same manner as in Example 1, and the results are shown in FIG. Furthermore, Table 3 shows the relationship between hue and applied voltage. This example shows a hue change that is complementary to the hue change of Example 1. Therefore, as in Example 1, the hue modulation range was very low at 1.5 V (skin s) from OV, and the voltage difference between each hue was wide at 0.3 V, demonstrating excellent performance. As explained using the figures in Table 3 and above, in liquid crystals with positive dielectric anisotropy, the operating voltage that enables hue modulation is low, and the difference in applied voltage between hues is wide, so that voltage fluctuations can be easily controlled. It can be taken in large quantities.

以上のように、本発明によれば、動作電圧が低く、しか
も色相間の印加電圧差が広く、電圧変動中を大きくとれ
る実用的価値の高い低電圧低電力消費型の液晶色表示装
置を得ることができる。
As described above, according to the present invention, it is possible to obtain a low-voltage, low-power consumption type liquid crystal color display device that has a low operating voltage, wide applied voltage difference between hues, and has high practical value that can tolerate large voltage fluctuations. be able to.

なお上記実施例では第1図に示す如く透過型液晶セルを
設け、該セルの両側に偏光子を設けた例について説明し
たが、前述のように液晶セルを反射型液晶セル例えば一
方の電極を反射面とした構成にしてもよい。この場合に
は偏光子は液晶セルの光路である入射光路側のみに配設
すればよい。
In the above embodiment, a transmissive liquid crystal cell is provided as shown in FIG. 1, and polarizers are provided on both sides of the cell. It may also be configured as a reflective surface. In this case, the polarizer may be provided only on the incident optical path side, which is the optical path of the liquid crystal cell.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の−実施例を説明するための略図、
第2図及び第5図は第1図装置の異なる実施例での液晶
セル印加電圧に対する各色表示特性曲線図、第3図及び
第4図は比較のために用いた液晶色表示装置による液晶
セル印加電圧に対する各色表示特性曲線図である。 1,2・…・・基板、3・・・・・・液晶分子、4,5
・・・・・・偏光子、9・・・・・・電極、6・・・・
・・光、7・・・・・・電源、8“””スイッチ。 ★、図 オZ図 ゲラ図 すム隣 が5図
FIG. 1 is a schematic diagram for explaining an embodiment of the device of the present invention;
Figures 2 and 5 are curves of display characteristics of each color versus applied voltage to the liquid crystal cell in different embodiments of the device shown in Figure 1, and Figures 3 and 4 are liquid crystal cells according to the liquid crystal color display device used for comparison. FIG. 3 is a diagram of each color display characteristic curve with respect to applied voltage. 1, 2...Substrate, 3...Liquid crystal molecules, 4,5
...Polarizer, 9...Electrode, 6...
...Light, 7...Power, 8 """ switch.

Claims (1)

【特許請求の範囲】[Claims] 1 第1及び第2の電極が夫々設けられた少くとも一方
は透明な第1及び第2の基板と、該第1及び第2の基板
間に設けられた誘電異方性が正のネマチツク液晶と、前
記第1の基板に設けられた前記ネマチツク液晶の液晶分
子を水平配向する手段と、前記第2の基板に設けられた
前記液晶分子を垂直配向する手段と、前記ネマチツク液
晶の光路に設けられた偏光子と、前記ネマチツク液晶の
複屈折率を変化させて多色表示する手段とを具備してな
ることを特徴とする液晶色表示装置。
1 First and second substrates, at least one of which is transparent, provided with first and second electrodes, respectively, and a nematic liquid crystal with positive dielectric anisotropy provided between the first and second substrates. a means for horizontally aligning the liquid crystal molecules of the nematic liquid crystal provided on the first substrate; a means for vertically aligning the liquid crystal molecules provided on the second substrate; and a means provided on the optical path of the nematic liquid crystal. What is claimed is: 1. A liquid crystal color display device comprising: a polarizer having a nematic liquid crystal; and means for displaying multiple colors by changing the birefringence of the nematic liquid crystal.
JP50049155A 1975-04-24 1975-04-24 LCD color display device Expired JPS6032167B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP50049155A JPS6032167B2 (en) 1975-04-24 1975-04-24 LCD color display device
US05/678,553 US4097128A (en) 1975-04-24 1976-04-20 Liquid crystal color display devices
DE2617924A DE2617924B2 (en) 1975-04-24 1976-04-23 Liquid crystal display device for color display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50049155A JPS6032167B2 (en) 1975-04-24 1975-04-24 LCD color display device

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP12126775A Division JPS51126097A (en) 1975-10-09 1975-10-09 Liquid crystal color indication equipment
JP12126875A Division JPS51126098A (en) 1975-10-09 1975-10-09 Liquid crystal color indication equipment
JP12126675A Division JPS51126096A (en) 1975-10-09 1975-10-09 Liquid crystal color indication equipment

Publications (2)

Publication Number Publication Date
JPS51124398A JPS51124398A (en) 1976-10-29
JPS6032167B2 true JPS6032167B2 (en) 1985-07-26

Family

ID=12823195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50049155A Expired JPS6032167B2 (en) 1975-04-24 1975-04-24 LCD color display device

Country Status (1)

Country Link
JP (1) JPS6032167B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104657A (en) * 1973-02-05 1974-10-03
JPS50105148A (en) * 1974-01-28 1975-08-19

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49104657A (en) * 1973-02-05 1974-10-03
JPS50105148A (en) * 1974-01-28 1975-08-19

Also Published As

Publication number Publication date
JPS51124398A (en) 1976-10-29

Similar Documents

Publication Publication Date Title
US4097128A (en) Liquid crystal color display devices
JPS6275418A (en) Liquid crystal element
EP0091637B1 (en) Liquid crystal display
EP0372973A2 (en) Liquid crystal display device comprising improved viewing angle characteristics
KR960007791B1 (en) Electro-optical device
JPS58173718A (en) Optical modulating device of liquid crystal and its production
US20040031672A1 (en) Liquid crystal color switch and method of manufacture
JPH01216318A (en) Liquid crystal element
JPS6032167B2 (en) LCD color display device
JPS581777B2 (en) exiyoirohiyoujisouchi
JPH02111918A (en) Liquid crystal electrooptic element
JPH05346584A (en) Liquid crystal optical modulating element
JP2855649B2 (en) Projection display device
US5888420A (en) Liquid crystal device and process for preparing the same
JPS62240928A (en) Liquid crystal optical shutter
JPH02204725A (en) Two-layer type liquid crystal display device
KR20000033321A (en) Phase difference compensation film and super twisted nematic lcd using the same
JPS6259284B2 (en)
JPH02153315A (en) Liquid crystal display device
JPH0519231A (en) Stn type liquid crystal display device
JP2711444B2 (en) Liquid crystal display device
JPH02304526A (en) Liquid crystal display element
JPS6250735A (en) Liquid crystal display device
KR890004375B1 (en) The production of liquid crystal cells using birefringence effect
JP3074805B2 (en) Display element